In case we don't have PEBS, the LBR fixup doesn't make sense.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Stephane Eranian <eranian@google.com>
LKML-Reference: <20101019134808.354429461@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Mostly a cleanup.. it reduces code indentation and makes the code flow
of reserve_ds_buffers() clearer.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Stephane Eranian <eranian@google.com>
LKML-Reference: <20101019134808.253453452@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
So that we may grow additional call-sites..
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Stephane Eranian <eranian@google.com>
LKML-Reference: <20101019134808.196793164@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (96 commits)
apic, x86: Use BIOS settings for IBS and MCE threshold interrupt LVT offsets
apic, x86: Check if EILVT APIC registers are available (AMD only)
x86: ioapic: Call free_irte only if interrupt remapping enabled
arm: Use ARCH_IRQ_INIT_FLAGS
genirq, ARM: Fix boot on ARM platforms
genirq: Fix CONFIG_GENIRQ_NO_DEPRECATED=y build
x86: Switch sparse_irq allocations to GFP_KERNEL
genirq: Switch sparse_irq allocator to GFP_KERNEL
genirq: Make sparse_lock a mutex
x86: lguest: Use new irq allocator
genirq: Remove the now unused sparse irq leftovers
genirq: Sanitize dynamic irq handling
genirq: Remove arch_init_chip_data()
x86: xen: Sanitise sparse_irq handling
x86: Use sane enumeration
x86: uv: Clean up the direct access to irq_desc
x86: Make io_apic.c local functions static
genirq: Remove irq_2_iommu
x86: Speed up the irq_remapped check in hot pathes
intr_remap: Simplify the code further
...
Fix up trivial conflicts in arch/x86/Kconfig
* 'x86-mtrr-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, mtrr: Support mtrr lookup for range spanning across MTRR range
x86, mtrr: Refactor MTRR type overlap check code
* 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Remove pr_<level> uses of KERN_<level>
therm_throt.c: Trivial printk message fix for a unsuitable abbreviation of 'thermal'
x86: Use {push,pop}{l,q}_cfi in more places
i386: Add unwind directives to syscall ptregs stubs
x86-64: Use symbolics instead of raw numbers in entry_64.S
x86-64: Adjust frame type at paranoid_exit:
x86-64: Fix unwind annotations in syscall stubs
* 'x86-amd-nb-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, amd_nb: Enable GART support for AMD family 0x15 CPUs
x86, amd: Use compute unit information to determine thread siblings
x86, amd: Extract compute unit information for AMD CPUs
x86, amd: Add support for CPUID topology extension of AMD CPUs
x86, nmi: Support NMI watchdog on newer AMD CPU families
x86, mtrr: Assume SYS_CFG[Tom2ForceMemTypeWB] exists on all future AMD CPUs
x86, k8: Rename k8.[ch] to amd_nb.[ch] and CONFIG_K8_NB to CONFIG_AMD_NB
x86, k8-gart: Decouple handling of garts and northbridges
x86, cacheinfo: Fix dependency of AMD L3 CID
x86, kvm: add new AMD SVM feature bits
x86, cpu: Fix allowed CPUID bits for KVM guests
x86, cpu: Update AMD CPUID feature bits
x86, cpu: Fix renamed, not-yet-shipping AMD CPUID feature bit
x86, AMD: Remove needless CPU family check (for L3 cache info)
x86, tsc: Remove CPU frequency calibration on AMD
We want the BIOS to setup the EILVT APIC registers. The offsets
were hardcoded and BIOS settings were overwritten by the OS.
Now, the subsystems for MCE threshold and IBS determine the LVT
offset from the registers the BIOS has setup. If the BIOS setup
is buggy on a family 10h system, a workaround enables IBS. If
the OS determines an invalid register setup, a "[Firmware Bug]:
" error message is reported.
We need this change also for upcomming cpu families.
Signed-off-by: Robert Richter <robert.richter@amd.com>
LKML-Reference: <1286360874-1471-3-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide a mechanism that allows running code in IRQ context. It is
most useful for NMI code that needs to interact with the rest of the
system -- like wakeup a task to drain buffers.
Perf currently has such a mechanism, so extract that and provide it as
a generic feature, independent of perf so that others may also
benefit.
The IRQ context callback is generated through self-IPIs where
possible, or on architectures like powerpc the decrementer (the
built-in timer facility) is set to generate an interrupt immediately.
Architectures that don't have anything like this get to do with a
callback from the timer tick. These architectures can call
irq_work_run() at the tail of any IRQ handlers that might enqueue such
work (like the perf IRQ handler) to avoid undue latencies in
processing the work.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
[ various fixes ]
Signed-off-by: Huang Ying <ying.huang@intel.com>
LKML-Reference: <1287036094.7768.291.camel@yhuang-dev>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
PERF_COUNT_HW_CACHE_DTLB:READ:MISS had a bogus umask value of 0 which
counts nothing. Needed to be 0x7 (to count all possibilities).
PERF_COUNT_HW_CACHE_ITLB:READ:MISS had a bogus umask value of 0 which
counts nothing. Needed to be 0x3 (to count all possibilities).
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: <stable@kernel.org> # as far back as it applies
LKML-Reference: <4cb85478.41e9d80a.44e2.3f00@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
commit d9c2d5ac6a "x86, numa: Use near(er)
online node instead of roundrobin for NUMA" changed NUMA initialization on
Intel to choose the nearest online node or first node. Fake NUMA would be
better of with round-robin initialization, instead of the all CPUS on
first node. Change the choice of first node, back to round-robin.
For testing NUMA kernel behaviour without cpusets and NUMA aware
applications, it would be better to have cpus in different nodes, rather
than all in a single node. With cpusets migration of tasks scenarios
cannot not be tested.
I guess having it round-robin shouldn't affect the use cases for all cpus
on the first node.
The code comments in arch/x86/mm/numa_64.c:759 indicate that this used to
be the case, which was changed by commit d9c2d5ac6. It changed from
roundrobin to nearer or first node. And I couldn't find any reason for
this change in its changelog.
Signed-off-by: Nikanth Karthikesan <knikanth@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This fixes possible cases of not collecting valid error info in
the MCE error thresholding groups on F10h hardware.
The current code contains a subtle problem of checking only the
Valid bit of MSR0000_0413 (which is MC4_MISC0 - DRAM
thresholding group) in its first iteration and breaking out if
the bit is cleared.
But (!), this MSR contains an offset value, BlkPtr[31:24], which
points to the remaining MSRs in this thresholding group which
might contain valid information too. But if we bail out only
after we checked the valid bit in the first MSR and not the
block pointer too, we miss that other information.
The thing is, MC4_MISC0[BlkPtr] is not predicated on
MCi_STATUS[MiscV] or MC4_MISC0[Valid] and should be checked
prior to iterating over the MCI_MISCj thresholding group,
irrespective of the MC4_MISC0[Valid] setting.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When the feature PTS is not supported by CPU, the sysfile
package_power_limit_count for package should not be
generated.
This patch is used for fixing missing { and }.
The patch is not complete as there are other error handling
problems in this function - but that can wait until the
merge window.
Signed-off-by: Jin Dongming <jin.dongming@np.css.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghua.yu@initel.com>
Acked-by: Jean Delvare <khali@linux-fr.org>
Cc: Brown Len <len.brown@intel.com>
Cc: Guenter Roeck <guenter.roeck@ericsson.com>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: lm-sensors@lm-sensors.org <lm-sensors@lm-sensors.org>
LKML-Reference: <4C7625D1.4060201@np.css.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf trace scripting: Fix extern struct definitions
perf ui hist browser: Fix segfault on 'a' for annotate
perf tools: Fix build breakage
perf, x86: Handle in flight NMIs on P4 platform
oprofile, ARM: Release resources on failure
oprofile: Add Support for Intel CPU Family 6 / Model 29
Just dead code I believe.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: andi@firstfloor.org
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Conflicts:
tools/perf/util/ui/browsers/hists.c
Merge reason: fix the conflict and merge in changes for dependent patch.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
ba0593bf55 cleared the aforementioned
cpuid bit only on 32-bit due to various problems with Virtual PC. This
somehow got lost during the 32- + 64-bit merge so restore the feature
bit on 64-bit. For that, set it explicitly for non-constant arguments of
cpu_has(). Update comment for future reference.
Signed-off-by: Borislav Petkov <bp@alien8.de>
LKML-Reference: <20101004073127.GA20305@liondog.tnic>
Cc: Ryan O'Neill <ryan@innosecc.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Get compute unit information from CPUID Fn8000_001E_EBX.
(See AMD CPUID Specification - publication # 25481, revision 2.34,
September 2010.)
Note that each core on a compute unit still has a core_id of its own.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123857.GE20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Node information (ID, number of internal nodes) is provided via
CPUID Fn8000_001e_ECX.
See AMD CPUID Specification (Publication # 25481, Revision 2.34,
September 2010).
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123628.GD20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
CPU families 0x12, 0x14 and 0x15 support this functionality.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123357.GC20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Instead of adapting the CPU family check in amd_special_default_mtrr()
for each new CPU family assume that all new AMD CPUs support the
necessary bits in SYS_CFG MSR.
Tom2Enabled is architectural (defined in APM Vol.2).
Tom2ForceMemTypeWB is defined in all BKDGs starting with K8 NPT.
In pre K8-NPT BKDG this bit is reserved (read as zero).
W/o this adaption Linux would unnecessarily complain about bad MTRR
settings on every new AMD CPU family, e.g.
[ 0.000000] WARNING: BIOS bug: CPU MTRRs don't cover all of memory, losing 4863MB of RAM.
Cc: stable@kernel.org # .32.x, .35.x
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123235.GB20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
If acpi_evaluate_object() function call doesn't fail, we must kfree()
output.buffer before returning from pcc_cpufreq_do_osc().
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Dave Jones <davej@redhat.com>
acpi_perf_data is a percpu pointer but was missing __percpu markup.
Add it.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Dave Jones <davej@redhat.com>
After uncapping the CPUID level, we need to also re-run the CPU
feature detection code.
This resolves kernel bugzilla 16322.
Reported-by: boris64 <bugzilla.kernel.org@boris64.net>
Cc: <stable@kernel.org> v2.6.29..2.6.35
LKML-Reference: <tip-@git.kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf, x86: Catch spurious interrupts after disabling counters
tracing/x86: Don't use mcount in kvmclock.c
tracing/x86: Don't use mcount in pvclock.c
Using cpuid_eax() to determine feature availability on other than
the current CPU is invalid. And feature availability should also be
checked in the hotplug code path.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Rudolf Marek <r.marek@assembler.cz>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Guenter Roeck <guenter.roeck@ericsson.com>
At least on Intel, adjusting the max CPUID level can expose new CPUID
features, so we need to re-run get_cpu_cap() after changing the CPUID
level.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The file names are somehow misleading as the code is not specific to
AMD K8 CPUs anymore. The files accomodate code for other AMD CPU
northbridges as well.
Same is true for the config option which is valid for AMD CPU
northbridges in general and not specific to K8.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100917160343.GD4958@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
So far we only provide num_k8_northbridges. This is required in
different areas (e.g. L3 cache index disable, GART). But not all AMD
CPUs provide a GART. Thus it is useful to split off the GART handling
from the generic caching of AMD northbridge misc devices.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100917160254.GC4958@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
L3 cache index disable code uses PCI accesses to AMD northbridge functions.
Currently the code is #ifdef CONFIG_CPU_SUP_AMD.
But it should be #if (defined(CONFIG_CPU_SUP_AMD) && defined(CONFIG_PCI))
which in the end is a dependency to K8_NB.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100917160744.GF4958@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Fix a bug introduced with commit de725de and the change in the
meaning of the return value of intel_pmu_handle_irq(). With the
current code, when you are using the BTS, you get 'dazed by NMI'
each time the BTS buffer fills up.
BTS does interrupt on the PMU vector, thus NMI. You need to take
this into account in the return value of the function.
This version fixes initial patch which was missing changes to
perf_event_intel_ds.c.
Signed-off-by: Stephane Eranian <eranian@google.com>
Acked-by: Don Zickus <dzickus@redhat.com>
Cc: peterz@infradead.org
Cc: paulus@samba.org
Cc: davem@davemloft.net
Cc: fweisbec@gmail.com
Cc: perfmon2-devel@lists.sf.net
Cc: eranian@gmail.com
Cc: robert.richter@amd.com
LKML-Reference: <4c8a1686.aae9d80a.5aa4.5e35@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
mtrr_type_lookup [start:end] looked up the resultant MTRR type for that
range, based on fixed and all variable MTRR ranges. It did check for multiple
MTRR var ranges overlapping [start:end] and returned the net type.
However, if the [start:end] range spanned across any var MTRR range,
mtrr_type_lookup would return an error return of 0xFE. This was based on
typical usage of mtrr_type_lookup in PAT mapping, where region being
mapped would not normally span across MTRR ranges and also trying
to keep the code simple.
Mark recently reported the problem with this limitation. When there are
two continguous MTRR's of type "writeback" and if there is a memory mapping
over a region starting in one MTRR range and ending in another MTRR range,
such mapping will fallback to "uncached" due to the above limitation.
Change below adds support for such lookups spanning multiple MTRR ranges.
We now have a wrapper mtrr_type_lookup that dynamically splits such a region
into smaller chunks that fit within one MTRR range and does a
__mtrr_type_lookup on it and combine the results later.
Reported-by: Mark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
LKML-Reference: <1284159350-19841-3-git-send-email-venki@google.com>
Reviewed-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Move the MTRR type overlap check into a new function. No functional change in
this patch. Just making it easier to add multiple region overlap check in
the following patch.
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
LKML-Reference: <1284159350-19841-2-git-send-email-venki@google.com>
Reviewed-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Make fpu_init() handle 32-bit setup.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-3-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Neither the overcommit nor the reservation sysfs parameter were
actually working, remove them as they'll only get in the way.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Replace pmu::{enable,disable,start,stop,unthrottle} with
pmu::{add,del,start,stop}, all of which take a flags argument.
The new interface extends the capability to stop a counter while
keeping it scheduled on the PMU. We replace the throttled state with
the generic stopped state.
This also allows us to efficiently stop/start counters over certain
code paths (like IRQ handlers).
It also allows scheduling a counter without it starting, allowing for
a generic frozen state (useful for rotating stopped counters).
The stopped state is implemented in two different ways, depending on
how the architecture implemented the throttled state:
1) We disable the counter:
a) the pmu has per-counter enable bits, we flip that
b) we program a NOP event, preserving the counter state
2) We store the counter state and ignore all read/overflow events
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since the current perf_disable() usage is only an optimization,
remove it for now. This eases the removal of the __weak
hw_perf_enable() interface.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Simple registration interface for struct pmu, this provides the
infrastructure for removing all the weak functions.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The recently updated CPUID specification names new SVM feature bits.
Add them to the list of reported features.
Signed-off-by: Andre Przywara <andre.przywara@amd,com>
LKML-Reference: <1283778860-26843-5-git-send-email-andre.przywara@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, mcheck: Avoid duplicate sysfs links/files for thresholding banks
io-mapping: Fix the address space annotations
x86: Fix the address space annotations of iomap_atomic_prot_pfn()
x86, mm: Fix CONFIG_VMSPLIT_1G and 2G_OPT trampoline
x86, hwmon: Fix unsafe smp_processor_id() in thermal_throttle_add_dev
In unexpected_thermal_interrupt(), "LVT TMR interrupt" is used
in error message.
I don't think TMR is a suitable abbreviation for thermal.
1.TMR has been used in IA32 Architectures Software Developer's
Manual, and is the abbreviation for Trigger Mode Register.
2.There is not an standard abbreviation "TMR" defined for thermal
in IA32 Architectures Software Developer's Manual.
3.Though we could understand it as Thermal Monitor Register, it is
easy to be misunderstood as a *TIMER* interrupt also.
I think this patch will fix it.
Signed-off-by: Jin Dongming <jin.dongming@np.css.fujitsu.com>
Reviewed-by: Jean Delvare <khali@linux-fr.org>
Cc: Brown Len <len.brown@intel.com>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
LKML-Reference: <4C7C492D.5020704@np.css.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Old 32-bit AMD CPUs (all w/o L3 cache) should always return 0
for cpuid_edx(0x80000006).
For unknown reason the 32-bit implementation differed from the
64-bit implementation. See commit 67cddd9479 ("i386: Add L3 cache
support to AMD CPUID4 emulation"). The current check is the
result of the x86 merge.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
LKML-Reference: <20100902133710.GA5449@loge.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When the PMU is enabled it is valid to have unhandled nmis, two
events could trigger 'simultaneously' raising two back-to-back
NMIs. If the first NMI handles both, the latter will be empty
and daze the CPU.
The solution to avoid an 'unknown nmi' massage in this case was
simply to stop the nmi handler chain when the PMU is enabled by
stating the nmi was handled. This has the drawback that a) we
can not detect unknown nmis anymore, and b) subsequent nmi
handlers are not called.
This patch addresses this. Now, we check this unknown NMI if it
could be a PMU back-to-back NMI. Otherwise we pass it and let
the kernel handle the unknown nmi.
This is a debug log:
cpu #6, nmi #32333, skip_nmi #32330, handled = 1, time = 1934364430
cpu #6, nmi #32334, skip_nmi #32330, handled = 1, time = 1934704616
cpu #6, nmi #32335, skip_nmi #32336, handled = 2, time = 1936032320
cpu #6, nmi #32336, skip_nmi #32336, handled = 0, time = 1936034139
cpu #6, nmi #32337, skip_nmi #32336, handled = 1, time = 1936120100
cpu #6, nmi #32338, skip_nmi #32336, handled = 1, time = 1936404607
cpu #6, nmi #32339, skip_nmi #32336, handled = 1, time = 1937983416
cpu #6, nmi #32340, skip_nmi #32341, handled = 2, time = 1938201032
cpu #6, nmi #32341, skip_nmi #32341, handled = 0, time = 1938202830
cpu #6, nmi #32342, skip_nmi #32341, handled = 1, time = 1938443743
cpu #6, nmi #32343, skip_nmi #32341, handled = 1, time = 1939956552
cpu #6, nmi #32344, skip_nmi #32341, handled = 1, time = 1940073224
cpu #6, nmi #32345, skip_nmi #32341, handled = 1, time = 1940485677
cpu #6, nmi #32346, skip_nmi #32347, handled = 2, time = 1941947772
cpu #6, nmi #32347, skip_nmi #32347, handled = 1, time = 1941949818
cpu #6, nmi #32348, skip_nmi #32347, handled = 0, time = 1941951591
Uhhuh. NMI received for unknown reason 00 on CPU 6.
Do you have a strange power saving mode enabled?
Dazed and confused, but trying to continue
Deltas:
nmi #32334 340186
nmi #32335 1327704
nmi #32336 1819 <<<< back-to-back nmi [1]
nmi #32337 85961
nmi #32338 284507
nmi #32339 1578809
nmi #32340 217616
nmi #32341 1798 <<<< back-to-back nmi [2]
nmi #32342 240913
nmi #32343 1512809
nmi #32344 116672
nmi #32345 412453
nmi #32346 1462095 <<<< 1st nmi (standard) handling 2 counters
nmi #32347 2046 <<<< 2nd nmi (back-to-back) handling one
counter nmi #32348 1773 <<<< 3rd nmi (back-to-back)
handling no counter! [3]
For back-to-back nmi detection there are the following rules:
The PMU nmi handler was handling more than one counter and no
counter was handled in the subsequent nmi (see [1] and [2]
above).
There is another case if there are two subsequent back-to-back
nmis [3]. The 2nd is detected as back-to-back because the first
handled more than one counter. If the second handles one counter
and the 3rd handles nothing, we drop the 3rd nmi because it
could be a back-to-back nmi.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
[ renamed nmi variable to pmu_nmi to avoid clash with .nmi in entry.S ]
Signed-off-by: Don Zickus <dzickus@redhat.com>
Cc: peterz@infradead.org
Cc: gorcunov@gmail.com
Cc: fweisbec@gmail.com
Cc: ying.huang@intel.com
Cc: ming.m.lin@intel.com
Cc: eranian@google.com
LKML-Reference: <1283454469-1909-3-git-send-email-dzickus@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
During testing of a patch to stop having the perf subsytem
swallow nmis, it was uncovered that Nehalem boxes were randomly
getting unknown nmis when using the perf tool.
Moving the ack'ing of the PMI closer to when we get the status
allows the hardware to properly re-set the PMU bit signaling
another PMI was triggered during the processing of the first
PMI. This allows the new logic for dealing with the
shortcomings of multiple PMIs to handle the extra NMI by
'eat'ing it later.
Now one can wonder why are we getting a second PMI when we
disable all the PMUs in the begining of the NMI handler to
prevent such a case, for that I do not know. But I know the fix
below helps deal with this quirk.
Tested on multiple Nehalems where the problem was occuring.
With the patch, the code now loops a second time to handle the
second PMI (whereas before it was not).
Signed-off-by: Don Zickus <dzickus@redhat.com>
Cc: peterz@infradead.org
Cc: robert.richter@amd.com
Cc: gorcunov@gmail.com
Cc: fweisbec@gmail.com
Cc: ying.huang@intel.com
Cc: ming.m.lin@intel.com
Cc: eranian@google.com
LKML-Reference: <1283454469-1909-2-git-send-email-dzickus@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Implements verification of
- Bits of ESCR EventMask field (meaningful bits in field are hardware
predefined and others bits should be set to zero)
- INSTR_COMPLETED event (it is available on predefined cpu model only)
- Thread shared events (they should be guarded by "perf_event_paranoid"
sysctl due to security reason). The side effect of this action is
that PERF_COUNT_HW_BUS_CYCLES become a "paranoid" general event.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Tested-by: Lin Ming <ming.m.lin@intel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100825182334.GB14874@lenovo>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
6b37f5a20c introduced the CPU frequency
calibration code for AMD CPUs whose TSCs didn't increment with the
core's P0 frequency. From F10h, revB onward, however, the TSC increment
rate is denoted by MSRC001_0015[24] and when this bit is set (which
should be done by the BIOS) the TSC increments with the P0 frequency
so the calibration is not needed and booting can be a couple of mcecs
faster on those machines.
Besides, there should be virtually no machines out there which don't
have this bit set, therefore this calibration can be safely removed. It
is a shaky hack anyway since it assumes implicitly that the core is in
P0 when BIOS hands off to the OS, which might not always be the case.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <20100825162823.GE26438@aftab>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
If on Pentium4 CPUs the FORCE_OVF flag is set then an NMI happens
on every event, which can generate a flood of NMIs. Clear it.
Reported-by: Vince Weaver <vweaver1@eecs.utk.edu>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This fixes the following build warning introduced by the
callchain rework:
arch/x86/kernel/cpu/perf_event.c:1574: warning: ‘perf_callchain_entry_nmi’ defined but not used
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <1282718949.16443.75.camel@minggr.sh.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix BUG: using smp_processor_id() in preemptible thermal_throttle_add_dev.
We know the cpu number when calling thermal_throttle_add_dev, so we can
remove smp_processor_id call in thermal_throttle_add_dev by supplying
the cpu number as argument.
This should resolve kernel bugzilla 16615/16629.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
LKML-Reference: <20100820073634.GB5209@swordfish.minsk.epam.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Maciej Rutecki <maciej.rutecki@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Fixes these build warnings introduced by the callchain
rework:
arch/x86/kernel/cpu/perf_event.c: In function ‘perf_callchain_kernel’:
arch/x86/kernel/cpu/perf_event.c:1646: warning: ‘return’ with a value, in function returning void
arch/x86/kernel/cpu/perf_event.c: In function ‘perf_callchain_user’:
arch/x86/kernel/cpu/perf_event.c:1699: warning: ‘return’ with a value, in function returning void
arch/x86/kernel/cpu/perf_event.c: At top level:
arch/x86/kernel/cpu/perf_event.c:1607: warning: ‘perf_callchain_entry_nmi’ defined but not used
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that software events don't have interrupt disabled anymore in
the event path, callchains can nest on any context. So seperating
nmi and others contexts in two buffers has become racy.
Fix this by providing one buffer per nesting level. Given the size
of the callchain entries (2040 bytes * 4), we now need to allocate
them dynamically.
v2: Fixed put_callchain_entry call after recursion.
Fix the type of the recursion, it must be an array.
v3: Use a manual pr cpu allocation (temporary solution until NMIs
can safely access vmalloc'ed memory).
Do a better separation between callchain reference tracking and
allocation. Make the "put" path lockless for non-release cases.
v4: Protect the callchain buffers with rcu.
v5: Do the cpu buffers allocations node affine.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David Miller <davem@davemloft.net>
Cc: Borislav Petkov <bp@amd64.org>
Store the kernel and user contexts from the generic layer instead
of archs, this gathers some repetitive code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Borislav Petkov <bp@amd64.org>
- Most archs use one callchain buffer per cpu, except x86 that needs
to deal with NMIs. Provide a default perf_callchain_buffer()
implementation that x86 overrides.
- Centralize all the kernel/user regs handling and invoke new arch
handlers from there: perf_callchain_user() / perf_callchain_kernel()
That avoid all the user_mode(), current->mm checks and so...
- Invert some parameters in perf_callchain_*() helpers: entry to the
left, regs to the right, following the traditional (dst, src).
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Borislav Petkov <bp@amd64.org>
callchain_store() is the same on every archs, inline it in
perf_event.h and rename it to perf_callchain_store() to avoid
any collision.
This removes repetitive code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Borislav Petkov <bp@amd64.org>
Drop the TASK_RUNNING test on user tasks for callchains as
this check doesn't seem to make any sense.
Also remove the tests for !current that is not supposed to
happen and current->pid as this should be handled at the
generic level, with exclude_idle attribute.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Borislav Petkov <bp@amd64.org>
A bug in the family-model-stepping matching code caused the presence of
errata to go undetected when OSVW was not used. This causes hangs on
some K8 systems because the E400 workaround is not enabled.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1282141190-930137-1-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Fix the Errata AAK100/AAP53/BD53 workaround, the officialy documented
workaround we implemented in:
11164cd: perf, x86: Add Nehelem PMU programming errata workaround
doesn't actually work fully and causes a stuck PMU state
under load and non-functioning perf profiling.
A functional workaround was found by trial & error.
Affects all Nehalem-class Intel PMUs.
Signed-off-by: Zhang Yanmin <yanmin_zhang@linux.intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1281073148.2125.63.camel@ymzhang.sh.intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <stable@kernel.org> # .35.x
Signed-off-by: Ingo Molnar <mingo@elte.hu>
acpi_perf_data is a percpu pointer but was missing __percpu markup.
Add it.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Dave Jones <davej@redhat.com>
boot_cpu_id is there for historical reasons and was renamed to
boot_cpu_physical_apicid in patch:
c70dcb7 x86: change boot_cpu_id to boot_cpu_physical_apicid
However, there are some remaining occurrences of boot_cpu_id that are
never touched in the kernel and thus its value is always 0.
This patch removes boot_cpu_id completely.
Signed-off-by: Robert Richter <robert.richter@amd.com>
LKML-Reference: <1279731838-1522-8-git-send-email-robert.richter@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
pcc_cpu_info is a percpu pointer but was missing __percpu markup.
Add it.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Dave Jones <davej@redhat.com>
In case if last active performance counter is not overflowed at
moment of NMI being triggered by another counter, the irq
statistics may miss an update stage. As a more serious
consequence -- apic quirk may not be triggered so apic lvt entry
stay masked.
Tested-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <20100805150917.GA6311@lenovo>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The abbreviation of severity should be SEV instead of SER, so the CPER
severity constants are renamed accordingly. GHES severity constants
are renamed in the same way too.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
* 'x86-xsave-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, xsave: Make xstate_enable_boot_cpu() __init, protect on CPU 0
x86, xsave: Add __init attribute to setup_xstate_features()
x86, xsave: Make init_xstate_buf static
x86, xsave: Check cpuid level for XSTATE_CPUID (0x0d)
x86, xsave: Introduce xstate enable functions
x86, xsave: Separate fpu and xsave initialization
x86, xsave: Move boot cpu initialization to xsave_init()
x86, xsave: 32/64 bit boot cpu check unification in initialization
x86, xsave: Do not include asm/i387.h in asm/xsave.h
x86, xsave: Use xsaveopt in context-switch path when supported
x86, xsave: Sync xsave memory layout with its header for user handling
x86, xsave: Track the offset, size of state in the xsave layout
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Clean up arch/x86/kernel/cpu/mtrr/cleanup.c: use ";" not "," to terminate statements
* 'x86-vmware-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, vmware: Preset lpj values when on VMware.
* 'x86-mtrr-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, mtrr: Use stop machine context to rendezvous all the cpu's
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86/apic/es7000_32: Remove unused variable
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Avoid unnecessary __clear_user() and xrstor in signal handling
* 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, vdso: Unmap vdso pages
* 'x86-rwsem-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, rwsem: Minor cleanups
x86, rwsem: Stay on fast path when count > 0 in __up_write()
* 'x86-gcc46-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, gcc-4.6: Fix set but not read variables
x86, gcc-4.6: Avoid unused by set variables in rdmsr
* 'x86-mrst-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, mrst: make mrst_timer_options an enum
x86, mrst: make mrst_identify_cpu() an inline returning enum
x86, mrst: add more timer config options
x86, mrst: add cpu type detection
x86: detect scattered cpuid features earlier
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (162 commits)
tracing/kprobes: unregister_trace_probe needs to be called under mutex
perf: expose event__process function
perf events: Fix mmap offset determination
perf, powerpc: fsl_emb: Restore setting perf_sample_data.period
perf, powerpc: Convert the FSL driver to use local64_t
perf tools: Don't keep unreferenced maps when unmaps are detected
perf session: Invalidate last_match when removing threads from rb_tree
perf session: Free the ref_reloc_sym memory at the right place
x86,mmiotrace: Add support for tracing STOS instruction
perf, sched migration: Librarize task states and event headers helpers
perf, sched migration: Librarize the GUI class
perf, sched migration: Make the GUI class client agnostic
perf, sched migration: Make it vertically scrollable
perf, sched migration: Parameterize cpu height and spacing
perf, sched migration: Fix key bindings
perf, sched migration: Ignore unhandled task states
perf, sched migration: Handle ignored migrate out events
perf: New migration tool overview
tracing: Drop cpparg() macro
perf: Use tracepoint_synchronize_unregister() to flush any pending tracepoint call
...
Fix up trivial conflicts in Makefile and drivers/cpufreq/cpufreq.c