Make sure all FMODE_ constants are documents, and ensure a coherent
style for the already existing comments.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Update FMODE_NDELAY before each ioctl call so that we can kill the
magic FMODE_NDELAY_NOW. It would be even better to do this directly
in setfl(), but for that we'd need to have FMODE_NDELAY for all files,
not just block special files.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Nothing uses prepare_write or commit_write. Remove them from the tree
completely.
[akpm@linux-foundation.org: schedule simple_prepare_write() for unexporting]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/viro/bdev: (66 commits)
[PATCH] kill the rest of struct file propagation in block ioctls
[PATCH] get rid of struct file use in blkdev_ioctl() BLKBSZSET
[PATCH] get rid of blkdev_locked_ioctl()
[PATCH] get rid of blkdev_driver_ioctl()
[PATCH] sanitize blkdev_get() and friends
[PATCH] remember mode of reiserfs journal
[PATCH] propagate mode through swsusp_close()
[PATCH] propagate mode through open_bdev_excl/close_bdev_excl
[PATCH] pass fmode_t to blkdev_put()
[PATCH] kill the unused bsize on the send side of /dev/loop
[PATCH] trim file propagation in block/compat_ioctl.c
[PATCH] end of methods switch: remove the old ones
[PATCH] switch sr
[PATCH] switch sd
[PATCH] switch ide-scsi
[PATCH] switch tape_block
[PATCH] switch dcssblk
[PATCH] switch dasd
[PATCH] switch mtd_blkdevs
[PATCH] switch mmc
...
For execute permission on a regular files we need to check if file has
any execute bits at all, regardless of capabilites.
This check is normally performed by generic_permission() but was also
added to the case when the filesystem defines its own ->permission()
method. In the latter case the filesystem should be responsible for
performing this check.
Move the check from inode_permission() inside filesystems which are
not calling generic_permission().
Create a helper function execute_ok() that returns true if the inode
is a directory or if any execute bits are present in i_mode.
Also fix up the following code:
- coda control file is never executable
- sysctl files are never executable
- hfs_permission seems broken on MAY_EXEC, remove
- hfsplus_permission is eqivalent to generic_permission(), remove
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
* get rid of fake struct file/struct dentry in __blkdev_get()
* merge __blkdev_get() and do_open()
* get rid of flags argument of blkdev_get()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
replace open_bdev_excl/close_bdev_excl with variants taking fmode_t.
superblock gets the value used to mount it stored in sb->s_mode
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
To keep the size of changesets sane we split the switch by drivers;
to keep the damn thing bisectable we do the following:
1) rename the affected methods, add ones with correct
prototypes, make (few) callers handle both. That's this changeset.
2) for each driver convert to new methods. *ALL* drivers
are converted in this series.
3) kill the old (renamed) methods.
Note that it _is_ a flagday; all in-tree drivers are converted and by the
end of this series no trace of old methods remain. The only reason why
we do that this way is to keep the damn thing bisectable and allow per-driver
debugging if anything goes wrong.
New methods:
open(bdev, mode)
release(disk, mode)
ioctl(bdev, mode, cmd, arg) /* Called without BKL */
compat_ioctl(bdev, mode, cmd, arg)
locked_ioctl(bdev, mode, cmd, arg) /* Called with BKL, legacy */
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'for-2.6.28' of git://linux-nfs.org/~bfields/linux: (59 commits)
svcrdma: Fix IRD/ORD polarity
svcrdma: Update svc_rdma_send_error to use DMA LKEY
svcrdma: Modify the RPC reply path to use FRMR when available
svcrdma: Modify the RPC recv path to use FRMR when available
svcrdma: Add support to svc_rdma_send to handle chained WR
svcrdma: Modify post recv path to use local dma key
svcrdma: Add a service to register a Fast Reg MR with the device
svcrdma: Query device for Fast Reg support during connection setup
svcrdma: Add FRMR get/put services
NLM: Remove unused argument from svc_addsock() function
NLM: Remove "proto" argument from lockd_up()
NLM: Always start both UDP and TCP listeners
lockd: Remove unused fields in the nlm_reboot structure
lockd: Add helper to sanity check incoming NOTIFY requests
lockd: change nlmclnt_grant() to take a "struct sockaddr *"
lockd: Adjust nlmsvc_lookup_host() to accomodate AF_INET6 addresses
lockd: Adjust nlmclnt_lookup_host() signature to accomodate non-AF_INET
lockd: Support non-AF_INET addresses in nlm_lookup_host()
NLM: Convert nlm_lookup_host() to use a single argument
svcrdma: Add Fast Reg MR Data Types
...
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (43 commits)
ext4: Rename ext4dev to ext4
ext4: Avoid double dirtying of super block in ext4_put_super()
Update ext4 MAINTAINERS file
Hook ext4 to the vfs fiemap interface.
generic block based fiemap implementation
ocfs2: fiemap support
vfs: vfs-level fiemap interface
ext4: fix xattr deadlock
jbd2: Fix buffer head leak when writing the commit block
ext4: Add debugging markers that can be used by systemtap
jbd2: abort instead of waiting for nonexistent transaction
ext4: fix initialization of UNINIT bitmap blocks
ext4: Remove old legacy block allocator
ext4: Use readahead when reading an inode from the inode table
ext4: Improve the documentation for ext4's /proc tunables
ext4: Combine proc file handling into a single set of functions
ext4: move /proc setup and teardown out of mballoc.c
ext4: Don't use 'struct dentry' for internal lookups
ext4/jbd2: Avoid WARN() messages when failing to write to the superblock
ext4: use percpu data structures for lg_prealloc_list
...
The revalidate_disk routine now checks if a disk has been resized by
comparing the gendisk capacity to the bdev inode size. If they are
different (usually because the disk has been resized underneath the kernel)
the bdev inode size is adjusted to match the capacity.
Signed-off-by: Andrew Patterson <andrew.patterson@hp.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This is a wrapper for the lower-level revalidate_disk call-backs such
as sd_revalidate_disk(). It allows us to perform pre and post
operations when calling them.
We will use this wrapper in a later patch to adjust block device sizes
after an online resize (a _post_ operation).
Signed-off-by: Andrew Patterson <andrew.patterson@hp.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
With extended minors and the soon-to-follow debug feature, large minor
numbers for block devices will be common. This patch does the
followings to make printouts pretty.
* Adapt print formats such that large minors don't break the
formatting.
* For extended MAJ:MIN, %02x%02x for MAJ:MIN used in
printk_all_partitions() doesn't cut it anymore. Update it such that
%03x:%05x is used if either MAJ or MIN doesn't fit in %02x.
* Implement ext_range sysfs attribute which shows total minors the
device can use including both conventional minor space and the
extended one.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
But blkdev_issue_discard() still emits requests which are interpreted as
soft barriers, because naïve callers might otherwise issue subsequent
writes to those same sectors, which might cross on the queue (if they're
reallocated quickly enough).
Callers still _can_ issue non-barrier discard requests, but they have to
take care of queue ordering for themselves.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
We may well want mkfs tools to use this to mark the whole device as
unwanted before they format it, for example.
The ioctl takes a pair of uint64_ts, which are start offset and length
in _bytes_. Although at the moment it might make sense for them both to
be in 512-byte sectors, I don't want to limit the ABI to that.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Some block devices benefit from a hint that they can forget the contents
of certain sectors. Add basic support for this to the block core, along
with a 'blkdev_issue_discard()' helper function which issues such
requests.
The caller doesn't get to provide an end_io functio, since
blkdev_issue_discard() will automatically split the request up into
multiple bios if appropriate. Neither does the function wait for
completion -- it's expected that callers won't care about when, or even
_if_, the request completes. It's only a hint to the device anyway. By
definition, the file system doesn't _care_ about these sectors any more.
[With feedback from OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> and
Jens Axboe <jens.axboe@oracle.com]
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Any block based fs (this patch includes ext3) just has to declare its own
fiemap() function and then call this generic function with its own
get_block_t. This works well for block based filesystems that will map
multiple contiguous blocks at one time, but will work for filesystems that
only map one block at a time, you will just end up with an "extent" for each
block. One gotcha is this will not play nicely where there is hole+data
after the EOF. This function will assume its hit the end of the data as soon
as it hits a hole after the EOF, so if there is any data past that it will
not pick that up. AFAIK no block based fs does this anyway, but its in the
comments of the function anyway just in case.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: linux-fsdevel@vger.kernel.org
Basic vfs-level fiemap infrastructure, which sets up a new ->fiemap
inode operation.
Userspace can get extent information on a file via fiemap ioctl. As input,
the fiemap ioctl takes a struct fiemap which includes an array of struct
fiemap_extent (fm_extents). Size of the extent array is passed as
fm_extent_count and number of extents returned will be written into
fm_mapped_extents. Offset and length fields on the fiemap structure
(fm_start, fm_length) describe a logical range which will be searched for
extents. All extents returned will at least partially contain this range.
The actual extent offsets and ranges returned will be unmodified from their
offset and range on-disk.
The fiemap ioctl returns '0' on success. On error, -1 is returned and errno
is set. If errno is equal to EBADR, then fm_flags will contain those flags
which were passed in which the kernel did not understand. On all other
errors, the contents of fm_extents is undefined.
As fiemap evolved, there have been many authors of the vfs patch. As far as
I can tell, the list includes:
Kalpak Shah <kalpak.shah@sun.com>
Andreas Dilger <adilger@sun.com>
Eric Sandeen <sandeen@redhat.com>
Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: linux-api@vger.kernel.org
Cc: linux-fsdevel@vger.kernel.org
Rewrite grace period code to unify management of grace period across
lockd and nfsd. The current code has lockd and nfsd cooperate to
compute a grace period which is satisfactory to them both, and then
individually enforce it. This creates a slight race condition, since
the enforcement is not coordinated. It's also more complicated than
necessary.
Here instead we have lockd and nfsd each inform common code when they
enter the grace period, and when they're ready to leave the grace
period, and allow normal locking only after both of them are ready to
leave.
We also expect the locks_start_grace()/locks_end_grace() interface here
to be simpler to build on for future cluster/high-availability work,
which may require (for example) putting individual filesystems into
grace, or enforcing grace periods across multiple cluster nodes.
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
This patch adds the CONFIG_FILE_LOCKING option which allows to remove
support for advisory locks. With this patch enabled, the flock()
system call, the F_GETLK, F_SETLK and F_SETLKW operations of fcntl()
and NFS support are disabled. These features are not necessarly needed
on embedded systems. It allows to save ~11 Kb of kernel code and data:
text data bss dec hex filename
1125436 118764 212992 1457192 163c28 vmlinux.old
1114299 118564 212992 1445855 160fdf vmlinux
-11137 -200 0 -11337 -2C49 +/-
This patch has originally been written by Matt Mackall
<mpm@selenic.com>, and is part of the Linux Tiny project.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: matthew@wil.cx
Cc: linux-fsdevel@vger.kernel.org
Cc: mpm@selenic.com
Cc: akpm@linux-foundation.org
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
When we read some part of a file through pagecache, if there is a
pagecache of corresponding index but this page is not uptodate, read IO
is issued and this page will be uptodate.
I think this is good for pagesize == blocksize environment but there is
room for improvement on pagesize != blocksize environment. Because in
this case a page can have multiple buffers and even if a page is not
uptodate, some buffers can be uptodate.
So I suggest that when all buffers which correspond to a part of a file
that we want to read are uptodate, use this pagecache and copy data from
this pagecache to user buffer even if a page is not uptodate. This can
reduce read IO and improve system throughput.
I wrote a benchmark program and got result number with this program.
This benchmark do:
1: mount and open a test file.
2: create a 512MB file.
3: close a file and umount.
4: mount and again open a test file.
5: pwrite randomly 300000 times on a test file. offset is aligned
by IO size(1024bytes).
6: measure time of preading randomly 100000 times on a test file.
The result was:
2.6.26
330 sec
2.6.26-patched
226 sec
Arch:i386
Filesystem:ext3
Blocksize:1024 bytes
Memory: 1GB
On ext3/4, a file is written through buffer/block. So random read/write
mixed workloads or random read after random write workloads are optimized
with this patch under pagesize != blocksize environment. This test result
showed this.
The benchmark program is as follows:
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mount.h>
#define LEN 1024
#define LOOP 1024*512 /* 512MB */
main(void)
{
unsigned long i, offset, filesize;
int fd;
char buf[LEN];
time_t t1, t2;
if (mount("/dev/sda1", "/root/test1/", "ext3", 0, 0) < 0) {
perror("cannot mount\n");
exit(1);
}
memset(buf, 0, LEN);
fd = open("/root/test1/testfile", O_CREAT|O_RDWR|O_TRUNC);
if (fd < 0) {
perror("cannot open file\n");
exit(1);
}
for (i = 0; i < LOOP; i++)
write(fd, buf, LEN);
close(fd);
if (umount("/root/test1/") < 0) {
perror("cannot umount\n");
exit(1);
}
if (mount("/dev/sda1", "/root/test1/", "ext3", 0, 0) < 0) {
perror("cannot mount\n");
exit(1);
}
fd = open("/root/test1/testfile", O_RDWR);
if (fd < 0) {
perror("cannot open file\n");
exit(1);
}
filesize = LEN * LOOP;
for (i = 0; i < 300000; i++){
offset = (random() % filesize) & (~(LEN - 1));
pwrite(fd, buf, LEN, offset);
}
printf("start test\n");
time(&t1);
for (i = 0; i < 100000; i++){
offset = (random() % filesize) & (~(LEN - 1));
pread(fd, buf, LEN, offset);
}
time(&t2);
printf("%ld sec\n", t2-t1);
close(fd);
if (umount("/root/test1/") < 0) {
perror("cannot umount\n");
exit(1);
}
}
Signed-off-by: Hisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Jan Kara <jack@ucw.cz>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fs.h needs path.h, not namei.h; nfs_fs.h doesn't need it at all.
Several places in the tree needed direct include.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
make it atomic_long_t; while we are at it, get rid of useless checks in affs,
hfs and hpfs - ->open() always has it equal to 1, ->release() - to 0.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a new ia_valid flag: ATTR_TIMES_SET, to handle the
UTIMES_OMIT/UTIMES_NOW and UTIMES_NOW/UTIMES_OMIT cases. In these
cases neither ATTR_MTIME_SET nor ATTR_ATIME_SET is in the flags, yet
the POSIX draft specifies that permission checking is performed the
same way as if one or both of the times was explicitly set to a
timestamp.
See the path "vfs: utimensat(): fix error checking for
{UTIME_NOW,UTIME_OMIT} case" by Michael Kerrisk for the patch
introducing this behavior.
This is a cleanup, as well as allowing filesystems (NFS/fuse/...) to
perform their own permission checking instead of the default.
CC: Ulrich Drepper <drepper@redhat.com>
CC: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* MAY_CHDIR is redundant - it's an equivalent of MAY_ACCESS
* MAY_ACCESS on fuse should affect only the last step of pathname resolution
* fchdir() and chroot() should pass MAY_ACCESS, for the same reason why
chdir() needs that.
* now that we pass MAY_ACCESS explicitly in all cases, LOOKUP_ACCESS can be
removed; it has no business being in nameidata.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Remove the unused mode parameter from vfs_symlink and callers.
Thanks to Tetsuo Handa for noticing.
CC: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
All calls to remove_suid() are made with a file pointer, because
(similarly to file_update_time) it is called when the file is written.
Clean up callers by passing in a file instead of a dentry.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
* kill nameidata * argument; map the 3 bits in ->flags anybody cares
about to new MAY_... ones and pass with the mask.
* kill redundant gfs2_iop_permission()
* sanitize ecryptfs_permission()
* fix remaining places where ->permission() instances might barf on new
MAY_... found in mask.
The obvious next target in that direction is permission(9)
folded fix for nfs_permission() breakage from Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
mapping->tree_lock has no read lockers. convert the lock from an rwlock
to a spinlock.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use a special error value FILE_LOCK_DEFERRED to mean that a locking
operation returned asynchronously. This is returned by
posix_lock_file() for sleeping locks to mean that the lock has been
queued on the block list, and will be woken up when it might become
available and needs to be retried (either fl_lmops->fl_notify() is
called or fl_wait is woken up).
f_op->lock() to mean either the above, or that the filesystem will
call back with fl_lmops->fl_grant() when the result of the locking
operation is known. The filesystem can do this for sleeping as well
as non-sleeping locks.
This is to make sure, that return values of -EAGAIN and -EINPROGRESS by
filesystems are not mistaken to mean an asynchronous locking.
This also makes error handling in fs/locks.c and lockd/svclock.c slightly
cleaner.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: David Teigland <teigland@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds O_NONBLOCK support to pipe2. It is minimally more involved
than the patches for eventfd et.al but still trivial. The interfaces of the
create_write_pipe and create_read_pipe helper functions were changed and the
one other caller as well.
The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/syscall.h>
#ifndef __NR_pipe2
# ifdef __x86_64__
# define __NR_pipe2 293
# elif defined __i386__
# define __NR_pipe2 331
# else
# error "need __NR_pipe2"
# endif
#endif
int
main (void)
{
int fds[2];
if (syscall (__NR_pipe2, fds, 0) == -1)
{
puts ("pipe2(0) failed");
return 1;
}
for (int i = 0; i < 2; ++i)
{
int fl = fcntl (fds[i], F_GETFL);
if (fl == -1)
{
puts ("fcntl failed");
return 1;
}
if (fl & O_NONBLOCK)
{
printf ("pipe2(0) set non-blocking mode for fds[%d]\n", i);
return 1;
}
close (fds[i]);
}
if (syscall (__NR_pipe2, fds, O_NONBLOCK) == -1)
{
puts ("pipe2(O_NONBLOCK) failed");
return 1;
}
for (int i = 0; i < 2; ++i)
{
int fl = fcntl (fds[i], F_GETFL);
if (fl == -1)
{
puts ("fcntl failed");
return 1;
}
if ((fl & O_NONBLOCK) == 0)
{
printf ("pipe2(O_NONBLOCK) does not set non-blocking mode for fds[%d]\n", i);
return 1;
}
close (fds[i]);
}
puts ("OK");
return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch introduces the new syscall pipe2 which is like pipe but it also
takes an additional parameter which takes a flag value. This patch implements
the handling of O_CLOEXEC for the flag. I did not add support for the new
syscall for the architectures which have a special sys_pipe implementation. I
think the maintainers of those archs have the chance to go with the unified
implementation but that's up to them.
The implementation introduces do_pipe_flags. I did that instead of changing
all callers of do_pipe because some of the callers are written in assembler.
I would probably screw up changing the assembly code. To avoid breaking code
do_pipe is now a small wrapper around do_pipe_flags. Once all callers are
changed over to do_pipe_flags the old do_pipe function can be removed.
The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/syscall.h>
#ifndef __NR_pipe2
# ifdef __x86_64__
# define __NR_pipe2 293
# elif defined __i386__
# define __NR_pipe2 331
# else
# error "need __NR_pipe2"
# endif
#endif
int
main (void)
{
int fd[2];
if (syscall (__NR_pipe2, fd, 0) != 0)
{
puts ("pipe2(0) failed");
return 1;
}
for (int i = 0; i < 2; ++i)
{
int coe = fcntl (fd[i], F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if (coe & FD_CLOEXEC)
{
printf ("pipe2(0) set close-on-exit for fd[%d]\n", i);
return 1;
}
}
close (fd[0]);
close (fd[1]);
if (syscall (__NR_pipe2, fd, O_CLOEXEC) != 0)
{
puts ("pipe2(O_CLOEXEC) failed");
return 1;
}
for (int i = 0; i < 2; ++i)
{
int coe = fcntl (fd[i], F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if ((coe & FD_CLOEXEC) == 0)
{
printf ("pipe2(O_CLOEXEC) does not set close-on-exit for fd[%d]\n", i);
return 1;
}
}
close (fd[0]);
close (fd[1]);
puts ("OK");
return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[Summary]
Split LRU-list of unused dentries to one per superblock to avoid soft
lock up during NFS mounts and remounting of any filesystem.
Previously I posted here:
http://lkml.org/lkml/2008/3/5/590
[Descriptions]
- background
dentry_unused is a list of dentries which are not referenced.
dentry_unused grows up when references on directories or files are
released. This list can be very long if there is huge free memory.
- the problem
When shrink_dcache_sb() is called, it scans all dentry_unused linearly
under spin_lock(), and if dentry->d_sb is differnt from given
superblock, scan next dentry. This scan costs very much if there are
many entries, and very ineffective if there are many superblocks.
IOW, When we need to shrink unused dentries on one dentry, but scans
unused dentries on all superblocks in the system. For example, we scan
500 dentries to unmount a filesystem, but scans 1,000,000 or more unused
dentries on other superblocks.
In our case , At mounting NFS*, shrink_dcache_sb() is called to shrink
unused dentries on NFS, but scans 100,000,000 unused dentries on
superblocks in the system such as local ext3 filesystems. I hear NFS
mounting took 1 min on some system in use.
* : NFS uses virtual filesystem in rpc layer, so NFS is affected by
this problem.
100,000,000 is possible number on large systems.
Per-superblock LRU of unused dentried can reduce the cost in
reasonable manner.
- How to fix
I found this problem is solved by David Chinner's "Per-superblock
unused dentry LRU lists V3"(1), so I rebase it and add some fix to
reclaim with fairness, which is in Andrew Morton's comments(2).
1) http://lkml.org/lkml/2006/5/25/318
2) http://lkml.org/lkml/2006/5/25/320
Split LRU-list of unused dentries to each superblocks. Then, NFS
mounting will check dentries under a superblock instead of all. But
this spliting will break LRU of dentry-unused. So, I've attempted to
make reclaim unused dentrins with fairness by calculate number of
dentries to scan on this sb based on following way
number of dentries to scan on this sb =
count * (number of dentries on this sb / number of dentries in the machine)
- ToDo
- I have to measuring performance number and do stress tests.
- When unmount occurs during prune_dcache(), scanning on same
superblock, It is unable to reach next superblock because it is gone
away. We restart scannig superblock from first one, it causes
unfairness of reclaim unused dentries on first superblock. But I think
this happens very rarely.
- Test Results
Result on 6GB boxes with excessive unused dentries.
Without patch:
$ cat /proc/sys/fs/dentry-state
10181835 10180203 45 0 0 0
# mount -t nfs 10.124.60.70:/work/kernel-src nfs
real 0m1.830s
user 0m0.001s
sys 0m1.653s
With this patch:
$ cat /proc/sys/fs/dentry-state
10236610 10234751 45 0 0 0
# mount -t nfs 10.124.60.70:/work/kernel-src nfs
real 0m0.106s
user 0m0.002s
sys 0m0.032s
[akpm@linux-foundation.org: fix comments]
Signed-off-by: Kentaro Makita <k-makita@np.css.fujitsu.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: David Chinner <dgc@sgi.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
James Bottomley warns that inclusion of linux/fs.h in a low level
driver was always a danger signal. This patch moves
memory_read_from_buffer() from fs.h to string.h and fixes includes in
existing memory_read_from_buffer() users.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: James Bottomley <James.Bottomley@hansenpartnership.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Bob Moore <robert.moore@intel.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Len Brown <lenb@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-2.6.27' of git://linux-nfs.org/~bfields/linux: (51 commits)
nfsd: nfs4xdr.c do-while is not a compound statement
nfsd: Use C99 initializers in fs/nfsd/nfs4xdr.c
lockd: Pass "struct sockaddr *" to new failover-by-IP function
lockd: get host reference in nlmsvc_create_block() instead of callers
lockd: minor svclock.c style fixes
lockd: eliminate duplicate nlmsvc_lookup_host call from nlmsvc_lock
lockd: eliminate duplicate nlmsvc_lookup_host call from nlmsvc_testlock
lockd: nlm_release_host() checks for NULL, caller needn't
file lock: reorder struct file_lock to save space on 64 bit builds
nfsd: take file and mnt write in nfs4_upgrade_open
nfsd: document open share bit tracking
nfsd: tabulate nfs4 xdr encoding functions
nfsd: dprint operation names
svcrdma: Change WR context get/put to use the kmem cache
svcrdma: Create a kmem cache for the WR contexts
svcrdma: Add flush_scheduled_work to module exit function
svcrdma: Limit ORD based on client's advertised IRD
svcrdma: Remove unused wait q from svcrdma_xprt structure
svcrdma: Remove unneeded spin locks from __svc_rdma_free
svcrdma: Add dma map count and WARN_ON
...
* 'for_linus' of git://git.infradead.org/~dedekind/ubifs-2.6:
UBIFS: include to compilation
UBIFS: add new flash file system
UBIFS: add brief documentation
MAINTAINERS: add UBIFS section
do_mounts: allow UBI root device name
VFS: export sync_sb_inodes
VFS: move inode_lock into sync_sb_inodes
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (61 commits)
ext4: Documention update for new ordered mode and delayed allocation
ext4: do not set extents feature from the kernel
ext4: Don't allow nonextenst mount option for large filesystem
ext4: Enable delalloc by default.
ext4: delayed allocation i_blocks fix for stat
ext4: fix delalloc i_disksize early update issue
ext4: Handle page without buffers in ext4_*_writepage()
ext4: Add ordered mode support for delalloc
ext4: Invert lock ordering of page_lock and transaction start in delalloc
mm: Add range_cont mode for writeback
ext4: delayed allocation ENOSPC handling
percpu_counter: new function percpu_counter_sum_and_set
ext4: Add delayed allocation support in data=writeback mode
vfs: add hooks for ext4's delayed allocation support
jbd2: Remove data=ordered mode support using jbd buffer heads
ext4: Use new framework for data=ordered mode in JBD2
jbd2: Implement data=ordered mode handling via inodes
vfs: export filemap_fdatawrite_range()
ext4: Fix lock inversion in ext4_ext_truncate()
ext4: Invert the locking order of page_lock and transaction start
...