Cleanup is performed in two ways:
- remove extraneous updates of IPEND[4] w/ CONFIG_IPIPE,
and document remaining use.
- substitute pop-reg-from-stack instructions with plain SP fixups in
all save-RETI-then-discard patterns.
Signed-off-by: Philippe Gerum <rpm@xenomai.org>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
The purpose of the EVT14 handler may depend on whether CONFIG_IPIPE is
enabled, albeit its implementation can be the same in both cases. When
the interrupt pipeline is enabled, EVT14 can be used to raise the core
priority level for the running code; when CONFIG_IPIPE is off, EVT14
can be used to lower this level before running softirq handlers.
Rename evt14_softirq to evt_evt14 to pick an identifier that fits
both, which allows to reuse the same vector setup code as well.
Signed-off-by: Philippe Gerum <rpm@xenomai.org>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
ret_from_fork is always entered with hw interrupts off, which prevents
real-time domains to preempt the Linux kernel during part of the
initial context switch to the new task, which could in turn raise the
worst-case latency figures.
To avoid this, stall the root domain stage in the interrupt pipeline
to keep the scheduling tail code free from Linux-handled IRQs, then
enable hardware interrupts again.
Signed-off-by: Philippe Gerum <rpm@xenomai.org>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
__ipipe_{stall, unstall}_root_raw() identifiers may leave the reader
under the impression that only the virtual state is affected by these
operations, which is wrong. Pick names following the convention used
throughout the interrupt pipeline code.
Signed-off-by: Philippe Gerum <rpm@xenomai.org>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
We handle many exceptions at EVT5 (hardware error level) so that we can
catch exceptions in our exception handling code. Today - if the global
interrupt enable bit (IPEND[4]) is set (interrupts disabled) our trap
handling code goes into a infinite loop, since we need interrupts to be
on to defer things to EVT5.
Normal kernel code should not trigger this for any reason as IPEND[4] gets
cleared early (when doing an interrupt context save) and the kernel stack
there should be sane (or something much worse is happening in the system).
But there have been a few times where this has happened, so this change
makes sure we dump a proper crash message even when things have gone south.
Signed-off-by: Robin Getz <robin.getz@analog.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
The "cleanup console_print()" patch in commit
353f6dd2de introduced an "extern"
declaration into an assembly language file. Remove it.
Signed-off-by: Anirban Sinha <asinha@zeugmasystems.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core-2.6:
Driver Core: devtmpfs - kernel-maintained tmpfs-based /dev
debugfs: Modify default debugfs directory for debugging pktcdvd.
debugfs: Modified default dir of debugfs for debugging UHCI.
debugfs: Change debugfs directory of IWMC3200
debugfs: Change debuhgfs directory of trace-events-sample.h
debugfs: Fix mount directory of debugfs by default in events.txt
hpilo: add poll f_op
hpilo: add interrupt handler
hpilo: staging for interrupt handling
driver core: platform_device_add_data(): use kmemdup()
Driver core: Add support for compatibility classes
uio: add generic driver for PCI 2.3 devices
driver-core: move dma-coherent.c from kernel to driver/base
mem_class: fix bug
mem_class: use minor as index instead of searching the array
driver model: constify attribute groups
UIO: remove 'default n' from Kconfig
Driver core: Add accessor for device platform data
Driver core: move dev_get/set_drvdata to drivers/base/dd.c
Driver core: add new device to bus's list before probing
* git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/pcmcia-2.6:
pcmcia: document return value of pcmcia_loop_config
pcmcia: dtl1_cs: fix pcmcia_loop_config logic
pcmcia: drop non-existant includes
pcmcia: disable prefetch/burst for OZ6933
pcmcia: fix incorrect argument order to list_add_tail()
pcmcia: drivers/pcmcia/pcmcia_resource.c: Remove unnecessary semicolons
pcmcia: Use phys_addr_t for physical addresses
pcmcia: drivers/pcmcia: Make static
* 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6: (75 commits)
PCI hotplug: clean up acpi_run_hpp()
PCI hotplug: acpiphp: use generic pci_configure_slot()
PCI hotplug: shpchp: use generic pci_configure_slot()
PCI hotplug: pciehp: use generic pci_configure_slot()
PCI hotplug: add pci_configure_slot()
PCI hotplug: clean up acpi_get_hp_params_from_firmware() interface
PCI hotplug: acpiphp: don't cache hotplug_params in acpiphp_bridge
PCI hotplug: acpiphp: remove superfluous _HPP/_HPX evaluation
PCI: Clear saved_state after the state has been restored
PCI PM: Return error codes from pci_pm_resume()
PCI: use dev_printk in quirk messages
PCI / PCIe portdrv: Fix pcie_portdrv_slot_reset()
PCI Hotplug: convert acpi_pci_detect_ejectable() to take an acpi_handle
PCI Hotplug: acpiphp: find bridges the easy way
PCI: pcie portdrv: remove unused variable
PCI / ACPI PM: Propagate wake-up enable for devices w/o ACPI support
ACPI PM: Replace wakeup.prepared with reference counter
PCI PM: Introduce device flag wakeup_prepared
PCI / ACPI PM: Rework some debug messages
PCI PM: Simplify PCI wake-up code
...
Fixed up conflict in arch/powerpc/kernel/pci_64.c due to OF device tree
scanning having been moved and merged for the 32- and 64-bit cases. The
'needs_freset' initialization added in 6e19314cc ("PCI/powerpc: support
PCIe fundamental reset") is now in arch/powerpc/kernel/pci_of_scan.c.
* 'writeback' of git://git.kernel.dk/linux-2.6-block:
writeback: fix possible bdi writeback refcounting problem
writeback: Fix bdi use after free in wb_work_complete()
writeback: improve scalability of bdi writeback work queues
writeback: remove smp_mb(), it's not needed with list_add_tail_rcu()
writeback: use schedule_timeout_interruptible()
writeback: add comments to bdi_work structure
writeback: splice dirty inode entries to default bdi on bdi_destroy()
writeback: separate starting of sync vs opportunistic writeback
writeback: inline allocation failure handling in bdi_alloc_queue_work()
writeback: use RCU to protect bdi_list
writeback: only use bdi_writeback_all() for WB_SYNC_NONE writeout
fs: Assign bdi in super_block
writeback: make wb_writeback() take an argument structure
writeback: merely wakeup flusher thread if work allocation fails for WB_SYNC_NONE
writeback: get rid of wbc->for_writepages
fs: remove bdev->bd_inode_backing_dev_info
wb_clear_pending AFAIKS should not be called after the item has been
put on the list, except by the worker threads. It could lead to the
situation where the refcount is decremented below 0 and cause lots of
problems.
Presumably the !wb_has_dirty_io case is not a common one, so it can
be discovered when the thread wakes up to check?
Also add a comment in bdi_work_clear.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
By the time bdi_work_on_stack gets evaluated again in bdi_work_free, it
can already have been deallocated and used for something else in the
!on stack case, giving a false positive in this test and causing
corruption.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
If you're going to do an atomic RMW on each list entry, there's not much
point in all the RCU complexities of the list walking. This is only going
to help the multi-thread case I guess, but it doesn't hurt to do now.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
We cannot safely ensure that the inodes are all gone at this point
in time, and we must not destroy this bdi with inodes having off it.
So just splice our entries to the default bdi since that one will
always persist.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
bdi_start_writeback() is currently split into two paths, one for
WB_SYNC_NONE and one for WB_SYNC_ALL. Add bdi_sync_writeback()
for WB_SYNC_ALL writeback and let bdi_start_writeback() handle
only WB_SYNC_NONE.
Push down the writeback_control allocation and only accept the
parameters that make sense for each function. This cleans up
the API considerably.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This gets rid of work == NULL in bdi_queue_work() and puts the
OOM handling where it belongs.
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Now that bdi_writeback_all() no longer handles integrity writeback,
it doesn't have to block anymore. This means that we can switch
bdi_list reader side protection to RCU.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Data integrity writeback must use bdi_start_writeback() and ensure
that wbc->sb and wbc->bdi are set.
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
We do this automatically in get_sb_bdev() from the set_bdev_super()
callback. Filesystems that have their own private backing_dev_info
must assign that in ->fill_super().
Note that ->s_bdi assignment is required for proper writeback!
Acked-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
We need to be able to pass in range_cyclic as well, so instead
of growing yet another argument, split the arguments into a
struct wb_writeback_args structure that we can use internally.
Also makes it easier to just copy all members to an on-stack
struct, since we can't access work after clearing the pending
bit.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Since it's an opportunistic writeback and not a data integrity action,
don't punt to blocking writeback. Just wakeup the thread and it will
flush old data.
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
It has been unused since it was introduced in:
commit 520808bf20e90fdbdb320264ba7dd5cf9d47dcac
Author: Andrew Morton <akpm@osdl.org>
Date: Fri May 21 00:46:17 2004 -0700
[PATCH] block device layer: separate backing_dev_info infrastructure
So lets just kill it.
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
The good definition of CLOCK_TICK_RATE for coldfires has been lost in the
merge of m68k and m68knommu include files. Restore it. Culprit :
commit ebafc17468
Signed-off-by: Philippe De Muyter <phdm@macqel.be>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ethernet pins on the 532x ColdFire CPU family are multi-function
pins. We need to enable them as ethernet pins when using the FEC
ethernet driver.
Bug report, and older patch, from timothee@manaud.net.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The improved interrupt support for ColdFire CPU cores means we no
longer need all the interrupt setup and ack hacks to support the NE2000
driver on ColdFire platforms. Remove all that code.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
There is really no limit to the addresses which can be used by the
in*() and out*() family of IO space calls in m68k non-MMU environments.
So don't impose an artificial address limit, allow the full 32bit range.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Now that the ColdFire 5272 has full interrupt controller functionality
we can remove all the interrupt masking and acking code from the FEC
ethernet driver.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire 5272 CPU has a very different interrupt controller than
any of the other ColdFire parts. It needs its own controller code to
correctly setup and ack interrupts.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire 5249 CPU has a second (compleletly different) interrupt
controller. It is the only ColdFire CPU that has this type. It controlls
GPIO interrupts amongst a number of interrupts from other internal
peripherals. Add support code for it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The recent changes to the old ColdFire interrupt controller code means
we no longer need to manually unmask the timer interrupt. That is now
done in the interrupt controller code proper.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The older simple ColdFire interrupt controller has no one-to-one mapping
of interrupt numbers to bits in the interrupt mask register. Create a
mapping array that each ColdFire CPU type can populate with its available
interrupts and the bits that each use in the interrupt mask register.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The newer ColdFire 532x family of CPU's uses the old timer, but has a
newer interrupt controller. It doesn't need the special timer setup
that was required when using the older interrupt controller. Remove the
dead timer irq and level setting code, and define the hard coded vector.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire "timers" clock setup can be simplified. There is really no
need for the flexible per-platform setup code. The clock interrupt can be
hard defined per CPU platform (in CPU include files). This makes the
actual timer code simpler.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>