commit 2351f8d295ed63393190e39c2f7c1fee1a80578f upstream.
Currently the kernel threads are not frozen in software_resume(), so
between dpm_suspend_start(PMSG_QUIESCE) and resume_target_kernel(),
system_freezable_power_efficient_wq can still try to submit SCSI
commands and this can cause a panic since the low level SCSI driver
(e.g. hv_storvsc) has quiesced the SCSI adapter and can not accept
any SCSI commands: https://lkml.org/lkml/2020/4/10/47
At first I posted a fix (https://lkml.org/lkml/2020/4/21/1318) trying
to resolve the issue from hv_storvsc, but with the help of
Bart Van Assche, I realized it's better to fix software_resume(),
since this looks like a generic issue, not only pertaining to SCSI.
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bc23d0e3f717ced21fbfacab3ab887d55e5ba367 upstream.
When the kernel is built with CONFIG_DEBUG_PER_CPU_MAPS, the cpumap code
can trigger a spurious warning if CONFIG_CPUMASK_OFFSTACK is also set. This
happens because in this configuration, NR_CPUS can be larger than
nr_cpumask_bits, so the initial check in cpu_map_alloc() is not sufficient
to guard against hitting the warning in cpumask_check().
Fix this by explicitly checking the supplied key against the
nr_cpumask_bits variable before calling cpu_possible().
Fixes: 6710e11269 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Reported-by: Xiumei Mu <xmu@redhat.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Xiumei Mu <xmu@redhat.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200416083120.453718-1-toke@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 763dafc520add02a1f4639b500c509acc0ea8e5b upstream.
Commit 756125289285 ("audit: always check the netlink payload length
in audit_receive_msg()") fixed a number of missing message length
checks, but forgot to check the length of userspace generated audit
records. The good news is that you need CAP_AUDIT_WRITE to submit
userspace audit records, which is generally only given to trusted
processes, so the impact should be limited.
Cc: stable@vger.kernel.org
Fixes: 756125289285 ("audit: always check the netlink payload length in audit_receive_msg()")
Reported-by: syzbot+49e69b4d71a420ceda3e@syzkaller.appspotmail.com
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 153031a301bb07194e9c37466cfce8eacb977621 upstream.
There was a recent change in blktrace.c that added a RCU protection to
`q->blk_trace` in order to fix a use-after-free issue during access.
However the change missed an edge case that can lead to dereferencing of
`bt` pointer even when it's NULL:
Coverity static analyzer marked this as a FORWARD_NULL issue with CID
1460458.
```
/kernel/trace/blktrace.c: 1904 in sysfs_blk_trace_attr_store()
1898 ret = 0;
1899 if (bt == NULL)
1900 ret = blk_trace_setup_queue(q, bdev);
1901
1902 if (ret == 0) {
1903 if (attr == &dev_attr_act_mask)
>>> CID 1460458: Null pointer dereferences (FORWARD_NULL)
>>> Dereferencing null pointer "bt".
1904 bt->act_mask = value;
1905 else if (attr == &dev_attr_pid)
1906 bt->pid = value;
1907 else if (attr == &dev_attr_start_lba)
1908 bt->start_lba = value;
1909 else if (attr == &dev_attr_end_lba)
```
Added a reassignment with RCU annotation to fix the issue.
Fixes: c780e86dd48 ("blktrace: Protect q->blk_trace with RCU")
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Cengiz Can <cengiz@kernel.wtf>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c780e86dd48ef6467a1146cf7d0fe1e05a635039 upstream.
KASAN is reporting that __blk_add_trace() has a use-after-free issue
when accessing q->blk_trace. Indeed the switching of block tracing (and
thus eventual freeing of q->blk_trace) is completely unsynchronized with
the currently running tracing and thus it can happen that the blk_trace
structure is being freed just while __blk_add_trace() works on it.
Protect accesses to q->blk_trace by RCU during tracing and make sure we
wait for the end of RCU grace period when shutting down tracing. Luckily
that is rare enough event that we can afford that. Note that postponing
the freeing of blk_trace to an RCU callback should better be avoided as
it could have unexpected user visible side-effects as debugfs files
would be still existing for a short while block tracing has been shut
down.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=205711
CC: stable@vger.kernel.org
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Tested-by: Ming Lei <ming.lei@redhat.com>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Reported-by: Tristan Madani <tristmd@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
[bwh: Backported to 4.19: adjust context]
Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d3296fb372bf7497b0e5d0478c4e7a677ec6f6e9 ]
We hit following warning when running tests on kernel
compiled with CONFIG_DEBUG_ATOMIC_SLEEP=y:
WARNING: CPU: 19 PID: 4472 at mm/gup.c:2381 __get_user_pages_fast+0x1a4/0x200
CPU: 19 PID: 4472 Comm: dummy Not tainted 5.6.0-rc6+ #3
RIP: 0010:__get_user_pages_fast+0x1a4/0x200
...
Call Trace:
perf_prepare_sample+0xff1/0x1d90
perf_event_output_forward+0xe8/0x210
__perf_event_overflow+0x11a/0x310
__intel_pmu_pebs_event+0x657/0x850
intel_pmu_drain_pebs_nhm+0x7de/0x11d0
handle_pmi_common+0x1b2/0x650
intel_pmu_handle_irq+0x17b/0x370
perf_event_nmi_handler+0x40/0x60
nmi_handle+0x192/0x590
default_do_nmi+0x6d/0x150
do_nmi+0x2f9/0x3c0
nmi+0x8e/0xd7
While __get_user_pages_fast() is IRQ-safe, it calls access_ok(),
which warns on:
WARN_ON_ONCE(!in_task() && !pagefault_disabled())
Peter suggested disabling page faults around __get_user_pages_fast(),
which gets rid of the warning in access_ok() call.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200407141427.3184722-1-jolsa@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ no upstream commit ]
See the glory details in 100605035e15 ("bpf: Verifier, do_refine_retval_range
may clamp umin to 0 incorrectly") for why 849fa50662 ("bpf/verifier: refine
retval R0 state for bpf_get_stack helper") is buggy. The whole series however
is not suitable for stable since it adds significant amount [0] of verifier
complexity in order to add 32bit subreg tracking. Something simpler is needed.
Unfortunately, reverting 849fa50662 ("bpf/verifier: refine retval R0 state
for bpf_get_stack helper") or just cherry-picking 100605035e15 ("bpf: Verifier,
do_refine_retval_range may clamp umin to 0 incorrectly") is not an option since
it will break existing tracing programs badly (at least those that are using
bpf_get_stack() and bpf_probe_read_str() helpers). Not fixing it in stable is
also not an option since on 4.19 kernels an error will cause a soft-lockup due
to hitting dead-code sanitized branch since we don't hard-wire such branches
in old kernels yet. But even then for 5.x 849fa50662 ("bpf/verifier: refine
retval R0 state for bpf_get_stack helper") would cause wrong bounds on the
verifier simluation when an error is hit.
In one of the earlier iterations of mentioned patch series for upstream there
was the concern that just using smax_value in do_refine_retval_range() would
nuke bounds by subsequent <<32 >>32 shifts before the comparison against 0 [1]
which eventually led to the 32bit subreg tracking in the first place. While I
initially went for implementing the idea [1] to pattern match the two shift
operations, it turned out to be more complex than actually needed, meaning, we
could simply treat do_refine_retval_range() similarly to how we branch off
verification for conditionals or under speculation, that is, pushing a new
reg state to the stack for later verification. This means, instead of verifying
the current path with the ret_reg in [S32MIN, msize_max_value] interval where
later bounds would get nuked, we split this into two: i) for the success case
where ret_reg can be in [0, msize_max_value], and ii) for the error case with
ret_reg known to be in interval [S32MIN, -1]. Latter will preserve the bounds
during these shift patterns and can match reg < 0 test. test_progs also succeed
with this approach.
[0] https://lore.kernel.org/bpf/158507130343.15666.8018068546764556975.stgit@john-Precision-5820-Tower/
[1] https://lore.kernel.org/bpf/158015334199.28573.4940395881683556537.stgit@john-XPS-13-9370/T/#m2e0ad1d5949131014748b6daa48a3495e7f0456d
Fixes: 849fa50662 ("bpf/verifier: refine retval R0 state for bpf_get_stack helper")
Reported-by: Lorenzo Fontana <fontanalorenz@gmail.com>
Reported-by: Leonardo Di Donato <leodidonato@gmail.com>
Reported-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Tested-by: John Fastabend <john.fastabend@gmail.com>
Tested-by: Lorenzo Fontana <fontanalorenz@gmail.com>
Tested-by: Leonardo Di Donato <leodidonato@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 80c503e0e68fbe271680ab48f0fe29bc034b01b7 upstream.
The __torture_print_stats() function in locktorture.c carefully
initializes local variable "min" to statp[0].n_lock_acquired, but
then compares it to statp[i].n_lock_fail. Given that the .n_lock_fail
field should normally be zero, and given the initialization, it seems
reasonable to display the maximum and minimum number acquisitions
instead of miscomputing the maximum and minimum number of failures.
This commit therefore switches from failures to acquisitions.
And this turns out to be not only a day-zero bug, but entirely my
own fault. I hate it when that happens!
Fixes: 0af3fe1efa ("locktorture: Add a lock-torture kernel module")
Reported-by: Will Deacon <will@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d7d27cfc5cf0766a26a8f56868c5ad5434735126 upstream.
Patch series "module autoloading fixes and cleanups", v5.
This series fixes a bug where request_module() was reporting success to
kernel code when module autoloading had been completely disabled via
'echo > /proc/sys/kernel/modprobe'.
It also addresses the issues raised on the original thread
(https://lkml.kernel.org/lkml/20200310223731.126894-1-ebiggers@kernel.org/T/#u)
bydocumenting the modprobe sysctl, adding a self-test for the empty path
case, and downgrading a user-reachable WARN_ONCE().
This patch (of 4):
It's long been possible to disable kernel module autoloading completely
(while still allowing manual module insertion) by setting
/proc/sys/kernel/modprobe to the empty string.
This can be preferable to setting it to a nonexistent file since it
avoids the overhead of an attempted execve(), avoids potential
deadlocks, and avoids the call to security_kernel_module_request() and
thus on SELinux-based systems eliminates the need to write SELinux rules
to dontaudit module_request.
However, when module autoloading is disabled in this way,
request_module() returns 0. This is broken because callers expect 0 to
mean that the module was successfully loaded.
Apparently this was never noticed because this method of disabling
module autoloading isn't used much, and also most callers don't use the
return value of request_module() since it's always necessary to check
whether the module registered its functionality or not anyway.
But improperly returning 0 can indeed confuse a few callers, for example
get_fs_type() in fs/filesystems.c where it causes a WARNING to be hit:
if (!fs && (request_module("fs-%.*s", len, name) == 0)) {
fs = __get_fs_type(name, len);
WARN_ONCE(!fs, "request_module fs-%.*s succeeded, but still no fs?\n", len, name);
}
This is easily reproduced with:
echo > /proc/sys/kernel/modprobe
mount -t NONEXISTENT none /
It causes:
request_module fs-NONEXISTENT succeeded, but still no fs?
WARNING: CPU: 1 PID: 1106 at fs/filesystems.c:275 get_fs_type+0xd6/0xf0
[...]
This should actually use pr_warn_once() rather than WARN_ONCE(), since
it's also user-reachable if userspace immediately unloads the module.
Regardless, request_module() should correctly return an error when it
fails. So let's make it return -ENOENT, which matches the error when
the modprobe binary doesn't exist.
I've also sent patches to document and test this case.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jeff Vander Stoep <jeffv@google.com>
Cc: Ben Hutchings <benh@debian.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200310223731.126894-1-ebiggers@kernel.org
Link: http://lkml.kernel.org/r/20200312202552.241885-1-ebiggers@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 34d66caf251df91ff27b24a3a786810d29989eca upstream.
With commit a74cfffb03b7 ("x86/speculation: Rework SMT state change"),
arch_smt_update() is invoked from each individual CPU hotplug function.
Therefore the extra arch_smt_update() call in the sysfs SMT control is
redundant.
Fixes: a74cfffb03b7 ("x86/speculation: Rework SMT state change")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <konrad.wilk@oracle.com>
Cc: <dwmw@amazon.co.uk>
Cc: <bp@suse.de>
Cc: <srinivas.eeda@oracle.com>
Cc: <peterz@infradead.org>
Cc: <hpa@zytor.com>
Link: https://lkml.kernel.org/r/e2e064f2-e8ef-42ca-bf4f-76b612964752@default
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d1e7fd6462ca9fc76650fbe6ca800e35b24267da upstream.
Replace the 32bit exec_id with a 64bit exec_id to make it impossible
to wrap the exec_id counter. With care an attacker can cause exec_id
wrap and send arbitrary signals to a newly exec'd parent. This
bypasses the signal sending checks if the parent changes their
credentials during exec.
The severity of this problem can been seen that in my limited testing
of a 32bit exec_id it can take as little as 19s to exec 65536 times.
Which means that it can take as little as 14 days to wrap a 32bit
exec_id. Adam Zabrocki has succeeded wrapping the self_exe_id in 7
days. Even my slower timing is in the uptime of a typical server.
Which means self_exec_id is simply a speed bump today, and if exec
gets noticably faster self_exec_id won't even be a speed bump.
Extending self_exec_id to 64bits introduces a problem on 32bit
architectures where reading self_exec_id is no longer atomic and can
take two read instructions. Which means that is is possible to hit
a window where the read value of exec_id does not match the written
value. So with very lucky timing after this change this still
remains expoiltable.
I have updated the update of exec_id on exec to use WRITE_ONCE
and the read of exec_id in do_notify_parent to use READ_ONCE
to make it clear that there is no locking between these two
locations.
Link: https://lore.kernel.org/kernel-hardening/20200324215049.GA3710@pi3.com.pl
Fixes: 2.3.23pre2
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 25016bd7f4caf5fc983bbab7403d08e64cba3004 ]
Qian Cai reported a bug when PROVE_RCU_LIST=y, and read on /proc/lockdep
triggered a warning:
[ ] DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)
...
[ ] Call Trace:
[ ] lock_is_held_type+0x5d/0x150
[ ] ? rcu_lockdep_current_cpu_online+0x64/0x80
[ ] rcu_read_lock_any_held+0xac/0x100
[ ] ? rcu_read_lock_held+0xc0/0xc0
[ ] ? __slab_free+0x421/0x540
[ ] ? kasan_kmalloc+0x9/0x10
[ ] ? __kmalloc_node+0x1d7/0x320
[ ] ? kvmalloc_node+0x6f/0x80
[ ] __bfs+0x28a/0x3c0
[ ] ? class_equal+0x30/0x30
[ ] lockdep_count_forward_deps+0x11a/0x1a0
The warning got triggered because lockdep_count_forward_deps() call
__bfs() without current->lockdep_recursion being set, as a result
a lockdep internal function (__bfs()) is checked by lockdep, which is
unexpected, and the inconsistency between the irq-off state and the
state traced by lockdep caused the warning.
Apart from this warning, lockdep internal functions like __bfs() should
always be protected by current->lockdep_recursion to avoid potential
deadlocks and data inconsistency, therefore add the
current->lockdep_recursion on-and-off section to protect __bfs() in both
lockdep_count_forward_deps() and lockdep_count_backward_deps()
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200312151258.128036-1-boqun.feng@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 87f2d1c662fa1761359fdf558246f97e484d177a ]
irq_domain_alloc_irqs_hierarchy() has 3 call sites in the compilation unit
but only one of them checks for the pointer which is being dereferenced
inside the called function. Move the check into the function. This allows
for catching the error instead of the following crash:
Unable to handle kernel NULL pointer dereference at virtual address 00000000
PC is at 0x0
LR is at gpiochip_hierarchy_irq_domain_alloc+0x11f/0x140
...
[<c06c23ff>] (gpiochip_hierarchy_irq_domain_alloc)
[<c0462a89>] (__irq_domain_alloc_irqs)
[<c0462dad>] (irq_create_fwspec_mapping)
[<c06c2251>] (gpiochip_to_irq)
[<c06c1c9b>] (gpiod_to_irq)
[<bf973073>] (gpio_irqs_init [gpio_irqs])
[<bf974048>] (gpio_irqs_exit+0xecc/0xe84 [gpio_irqs])
Code: bad PC value
Signed-off-by: Alexander Sverdlin <alexander.sverdlin@nokia.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200306174720.82604-1-alexander.sverdlin@nokia.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 26cf52229efc87e2effa9d788f9b33c40fb3358a ]
During our testing, we found a case that shares no longer
working correctly, the cgroup topology is like:
/sys/fs/cgroup/cpu/A (shares=102400)
/sys/fs/cgroup/cpu/A/B (shares=2)
/sys/fs/cgroup/cpu/A/B/C (shares=1024)
/sys/fs/cgroup/cpu/D (shares=1024)
/sys/fs/cgroup/cpu/D/E (shares=1024)
/sys/fs/cgroup/cpu/D/E/F (shares=1024)
The same benchmark is running in group C & F, no other tasks are
running, the benchmark is capable to consumed all the CPUs.
We suppose the group C will win more CPU resources since it could
enjoy all the shares of group A, but it's F who wins much more.
The reason is because we have group B with shares as 2, since
A->cfs_rq.load.weight == B->se.load.weight == B->shares/nr_cpus,
so A->cfs_rq.load.weight become very small.
And in calc_group_shares() we calculate shares as:
load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
shares = (tg_shares * load) / tg_weight;
Since the 'cfs_rq->load.weight' is too small, the load become 0
after scale down, although 'tg_shares' is 102400, shares of the se
which stand for group A on root cfs_rq become 2.
While the se of D on root cfs_rq is far more bigger than 2, so it
wins the battle.
Thus when scale_load_down() scale real weight down to 0, it's no
longer telling the real story, the caller will have the wrong
information and the calculation will be buggy.
This patch add check in scale_load_down(), so the real weight will
be >= MIN_SHARES after scale, after applied the group C wins as
expected.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Michael Wang <yun.wang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/38e8e212-59a1-64b2-b247-b6d0b52d8dc1@linux.alibaba.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 38228e8848cd7dd86ccb90406af32de0cad24be3 upstream.
lockdep complains when padata's paths to update cpumasks via CPU hotplug
and sysfs are both taken:
# echo 0 > /sys/devices/system/cpu/cpu1/online
# echo ff > /sys/kernel/pcrypt/pencrypt/parallel_cpumask
======================================================
WARNING: possible circular locking dependency detected
5.4.0-rc8-padata-cpuhp-v3+ #1 Not tainted
------------------------------------------------------
bash/205 is trying to acquire lock:
ffffffff8286bcd0 (cpu_hotplug_lock.rw_sem){++++}, at: padata_set_cpumask+0x2b/0x120
but task is already holding lock:
ffff8880001abfa0 (&pinst->lock){+.+.}, at: padata_set_cpumask+0x26/0x120
which lock already depends on the new lock.
padata doesn't take cpu_hotplug_lock and pinst->lock in a consistent
order. Which should be first? CPU hotplug calls into padata with
cpu_hotplug_lock already held, so it should have priority.
Fixes: 6751fb3c0e ("padata: Use get_online_cpus/put_online_cpus")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5c6f25887963f15492b604dd25cb149c501bbabf upstream.
Trying to initialize a structure with "= {};" will not always clean out
all padding locations in a structure. So be explicit and call memset to
initialize everything for a number of bpf information structures that
are then copied from userspace, sometimes from smaller memory locations
than the size of the structure.
Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200320162258.GA794295@kroah.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8096f229421f7b22433775e928d506f0342e5907 upstream.
For the bpf syscall, we are relying on the compiler to properly zero out
the bpf_attr union that we copy userspace data into. Unfortunately that
doesn't always work properly, padding and other oddities might not be
correctly zeroed, and in some tests odd things have been found when the
stack is pre-initialized to other values.
Fix this by explicitly memsetting the structure to 0 before using it.
Reported-by: Maciej Żenczykowski <maze@google.com>
Reported-by: John Stultz <john.stultz@linaro.org>
Reported-by: Alexander Potapenko <glider@google.com>
Reported-by: Alistair Delva <adelva@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://android-review.googlesource.com/c/kernel/common/+/1235490
Link: https://lore.kernel.org/bpf/20200320094813.GA421650@kroah.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit da6c7faeb103c493e505e87643272f70be586635 upstream.
btf_enum_check_member() was currently sure to recognize the size of
"enum" type members in struct/union as the size of "int" even if
its size was packed.
This patch fixes BTF enum verification to use the correct size
of member in BPF programs.
Fixes: 179cde8cef ("bpf: btf: Check members of struct/union")
Signed-off-by: Yoshiki Komachi <komachi.yoshiki@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/1583825550-18606-2-git-send-email-komachi.yoshiki@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit df81dfcfd6991d547653d46c051bac195cd182c1 upstream.
The handling of notify->work did not properly maintain notify->kref in two
cases:
1) where the work was already scheduled, another irq_set_affinity_locked()
would get the ref and (no-op-ly) schedule the work. Thus when
irq_affinity_notify() ran, it would drop the original ref but not the
additional one.
2) when cancelling the (old) work in irq_set_affinity_notifier(), if there
was outstanding work a ref had been got for it but was never put.
Fix both by checking the return values of the work handling functions
(schedule_work() for (1) and cancel_work_sync() for (2)) and put the
extra ref if the return value indicates preexisting work.
Fixes: cd7eab44e9 ("genirq: Add IRQ affinity notifiers")
Fixes: 59c39840f5ab ("genirq: Prevent use-after-free and work list corruption")
Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ben Hutchings <ben@decadent.org.uk>
Link: https://lkml.kernel.org/r/24f5983f-2ab5-e83a-44ee-a45b5f9300f5@solarflare.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 2e5383d7904e60529136727e49629a82058a5607 ]
Older (and maybe current) versions of systemd set release_agent to "" when
shutting down, but do not set notify_on_release to 0.
Since 64e90a8acb ("Introduce STATIC_USERMODEHELPER to mediate
call_usermodehelper()"), we filter out such calls when the user mode helper
path is "". However, when used in conjunction with an actual (i.e. non "")
STATIC_USERMODEHELPER, the path is never "", so the real usermode helper
will be called with argv[0] == "".
Let's avoid this by not invoking the release_agent when it is "".
Signed-off-by: Tycho Andersen <tycho@tycho.ws>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit db8dd9697238be70a6b4f9d0284cd89f59c0e070 ]
if seq_file .next fuction does not change position index,
read after some lseek can generate unexpected output.
# mount | grep cgroup
# dd if=/mnt/cgroup.procs bs=1 # normal output
...
1294
1295
1296
1304
1382
584+0 records in
584+0 records out
584 bytes copied
dd: /mnt/cgroup.procs: cannot skip to specified offset
83 <<< generates end of last line
1383 <<< ... and whole last line once again
0+1 records in
0+1 records out
8 bytes copied
dd: /mnt/cgroup.procs: cannot skip to specified offset
1386 <<< generates last line anyway
0+1 records in
0+1 records out
5 bytes copied
https://bugzilla.kernel.org/show_bug.cgi?id=206283
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 8d67743653dce5a0e7aa500fcccb237cde7ad88e upstream.
The recent futex inode life time fix changed the ordering of the futex key
union struct members, but forgot to adjust the hash function accordingly,
As a result the hashing omits the leading 64bit and even hashes beyond the
futex key causing a bad hash distribution which led to a ~100% performance
regression.
Hand in the futex key pointer instead of a random struct member and make
the size calculation based of the struct offset.
Fixes: 8019ad13ef7f ("futex: Fix inode life-time issue")
Reported-by: Rong Chen <rong.a.chen@intel.com>
Decoded-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Rong Chen <rong.a.chen@intel.com>
Link: https://lkml.kernel.org/r/87h7yy90ve.fsf@nanos.tec.linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8019ad13ef7f64be44d4f892af9c840179009254 upstream.
As reported by Jann, ihold() does not in fact guarantee inode
persistence. And instead of making it so, replace the usage of inode
pointers with a per boot, machine wide, unique inode identifier.
This sequence number is global, but shared (file backed) futexes are
rare enough that this should not become a performance issue.
Reported-by: Jann Horn <jannh@google.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 763802b53a427ed3cbd419dbba255c414fdd9e7c upstream.
Commit 3f8fd02b1bf1 ("mm/vmalloc: Sync unmappings in
__purge_vmap_area_lazy()") introduced a call to vmalloc_sync_all() in
the vunmap() code-path. While this change was necessary to maintain
correctness on x86-32-pae kernels, it also adds additional cycles for
architectures that don't need it.
Specifically on x86-64 with CONFIG_VMAP_STACK=y some people reported
severe performance regressions in micro-benchmarks because it now also
calls the x86-64 implementation of vmalloc_sync_all() on vunmap(). But
the vmalloc_sync_all() implementation on x86-64 is only needed for newly
created mappings.
To avoid the unnecessary work on x86-64 and to gain the performance
back, split up vmalloc_sync_all() into two functions:
* vmalloc_sync_mappings(), and
* vmalloc_sync_unmappings()
Most call-sites to vmalloc_sync_all() only care about new mappings being
synchronized. The only exception is the new call-site added in the
above mentioned commit.
Shile Zhang directed us to a report of an 80% regression in reaim
throughput.
Fixes: 3f8fd02b1bf1 ("mm/vmalloc: Sync unmappings in __purge_vmap_area_lazy()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Reported-by: Shile Zhang <shile.zhang@linux.alibaba.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Borislav Petkov <bp@suse.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [GHES]
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20191009124418.8286-1-joro@8bytes.org
Link: https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/4D3JPPHBNOSPFK2KEPC6KGKS6J25AIDB/
Link: http://lkml.kernel.org/r/20191113095530.228959-1-shile.zhang@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit fda31c50292a5062332fa0343c084bd9f46604d9 ]
When queueing a signal, we increment both the users count of pending
signals (for RLIMIT_SIGPENDING tracking) and we increment the refcount
of the user struct itself (because we keep a reference to the user in
the signal structure in order to correctly account for it when freeing).
That turns out to be fairly expensive, because both of them are atomic
updates, and particularly under extreme signal handling pressure on big
machines, you can get a lot of cache contention on the user struct.
That can then cause horrid cacheline ping-pong when you do these
multiple accesses.
So change the reference counting to only pin the user for the _first_
pending signal, and to unpin it when the last pending signal is
dequeued. That means that when a user sees a lot of concurrent signal
queuing - which is the only situation when this matters - the only
atomic access needed is generally the 'sigpending' count update.
This was noticed because of a particularly odd timing artifact on a
dual-socket 96C/192T Cascade Lake platform: when you get into bad
contention, on that machine for some reason seems to be much worse when
the contention happens in the upper 32-byte half of the cacheline.
As a result, the kernel test robot will-it-scale 'signal1' benchmark had
an odd performance regression simply due to random alignment of the
'struct user_struct' (and pointed to a completely unrelated and
apparently nonsensical commit for the regression).
Avoiding the double increments (and decrements on the dequeueing side,
of course) makes for much less contention and hugely improved
performance on that will-it-scale microbenchmark.
Quoting Feng Tang:
"It makes a big difference, that the performance score is tripled! bump
from original 17000 to 54000. Also the gap between 5.0-rc6 and
5.0-rc6+Jiri's patch is reduced to around 2%"
[ The "2% gap" is the odd cacheline placement difference on that
platform: under the extreme contention case, the effect of which half
of the cacheline was hot was 5%, so with the reduced contention the
odd timing artifact is reduced too ]
It does help in the non-contended case too, but is not nearly as
noticeable.
Reported-and-tested-by: Feng Tang <feng.tang@intel.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Philip Li <philip.li@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit aa202f1f56960c60e7befaa0f49c72b8fa11b0a8 upstream.
wq_select_unbound_cpu() is designed for unbound workqueues only, but
it's wrongly called when using a bound workqueue too.
Fixing this ensures work queued to a bound workqueue with
cpu=WORK_CPU_UNBOUND always runs on the local CPU.
Before, that would happen only if wq_unbound_cpumask happened to include
it (likely almost always the case), or was empty, or we got lucky with
forced round-robin placement. So restricting
/sys/devices/virtual/workqueue/cpumask to a small subset of a machine's
CPUs would cause some bound work items to run unexpectedly there.
Fixes: ef55718044 ("workqueue: schedule WORK_CPU_UNBOUND work on wq_unbound_cpumask CPUs")
Cc: stable@vger.kernel.org # v4.5+
Signed-off-by: Hillf Danton <hdanton@sina.com>
[dj: massage changelog]
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9c974c77246460fa6a92c18554c3311c8c83c160 upstream.
PF_EXITING is set earlier than actual removal from css_set when a task
is exitting. This can confuse cgroup.procs readers who see no PF_EXITING
tasks, however, rmdir is checking against css_set membership so it can
transitionally fail with EBUSY.
Fix this by listing tasks that weren't unlinked from css_set active
lists.
It may happen that other users of the task iterator (without
CSS_TASK_ITER_PROCS) spot a PF_EXITING task before cgroup_exit(). This
is equal to the state before commit c03cd7738a83 ("cgroup: Include dying
leaders with live threads in PROCS iterations") but it may be reviewed
later.
Reported-by: Suren Baghdasaryan <surenb@google.com>
Fixes: c03cd7738a83 ("cgroup: Include dying leaders with live threads in PROCS iterations")
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2d4ecb030dcc90fb725ecbfc82ce5d6c37906e0e upstream.
If seq_file .next fuction does not change position index,
read after some lseek can generate unexpected output:
1) dd bs=1 skip output of each 2nd elements
$ dd if=/sys/fs/cgroup/cgroup.procs bs=8 count=1
2
3
4
5
1+0 records in
1+0 records out
8 bytes copied, 0,000267297 s, 29,9 kB/s
[test@localhost ~]$ dd if=/sys/fs/cgroup/cgroup.procs bs=1 count=8
2
4 <<< NB! 3 was skipped
6 <<< ... and 5 too
8 <<< ... and 7
8+0 records in
8+0 records out
8 bytes copied, 5,2123e-05 s, 153 kB/s
This happen because __cgroup_procs_start() makes an extra
extra cgroup_procs_next() call
2) read after lseek beyond end of file generates whole last line.
3) read after lseek into middle of last line generates
expected rest of last line and unexpected whole line once again.
Additionally patch removes an extra position index changes in
__cgroup_procs_start()
Cc: stable@vger.kernel.orghttps://bugzilla.kernel.org/show_bug.cgi?id=206283
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e876ecc67db80dfdb8e237f71e5b43bb88ae549c ]
We are testing network memory accounting in our setup and noticed
inconsistent network memory usage and often unrelated cgroups network
usage correlates with testing workload. On further inspection, it
seems like mem_cgroup_sk_alloc() and cgroup_sk_alloc() are broken in
irq context specially for cgroup v1.
mem_cgroup_sk_alloc() and cgroup_sk_alloc() can be called in irq context
and kind of assumes that this can only happen from sk_clone_lock()
and the source sock object has already associated cgroup. However in
cgroup v1, where network memory accounting is opt-in, the source sock
can be unassociated with any cgroup and the new cloned sock can get
associated with unrelated interrupted cgroup.
Cgroup v2 can also suffer if the source sock object was created by
process in the root cgroup or if sk_alloc() is called in irq context.
The fix is to just do nothing in interrupt.
WARNING: Please note that about half of the TCP sockets are allocated
from the IRQ context, so, memory used by such sockets will not be
accouted by the memcg.
The stack trace of mem_cgroup_sk_alloc() from IRQ-context:
CPU: 70 PID: 12720 Comm: ssh Tainted: 5.6.0-smp-DEV #1
Hardware name: ...
Call Trace:
<IRQ>
dump_stack+0x57/0x75
mem_cgroup_sk_alloc+0xe9/0xf0
sk_clone_lock+0x2a7/0x420
inet_csk_clone_lock+0x1b/0x110
tcp_create_openreq_child+0x23/0x3b0
tcp_v6_syn_recv_sock+0x88/0x730
tcp_check_req+0x429/0x560
tcp_v6_rcv+0x72d/0xa40
ip6_protocol_deliver_rcu+0xc9/0x400
ip6_input+0x44/0xd0
? ip6_protocol_deliver_rcu+0x400/0x400
ip6_rcv_finish+0x71/0x80
ipv6_rcv+0x5b/0xe0
? ip6_sublist_rcv+0x2e0/0x2e0
process_backlog+0x108/0x1e0
net_rx_action+0x26b/0x460
__do_softirq+0x104/0x2a6
do_softirq_own_stack+0x2a/0x40
</IRQ>
do_softirq.part.19+0x40/0x50
__local_bh_enable_ip+0x51/0x60
ip6_finish_output2+0x23d/0x520
? ip6table_mangle_hook+0x55/0x160
__ip6_finish_output+0xa1/0x100
ip6_finish_output+0x30/0xd0
ip6_output+0x73/0x120
? __ip6_finish_output+0x100/0x100
ip6_xmit+0x2e3/0x600
? ipv6_anycast_cleanup+0x50/0x50
? inet6_csk_route_socket+0x136/0x1e0
? skb_free_head+0x1e/0x30
inet6_csk_xmit+0x95/0xf0
__tcp_transmit_skb+0x5b4/0xb20
__tcp_send_ack.part.60+0xa3/0x110
tcp_send_ack+0x1d/0x20
tcp_rcv_state_process+0xe64/0xe80
? tcp_v6_connect+0x5d1/0x5f0
tcp_v6_do_rcv+0x1b1/0x3f0
? tcp_v6_do_rcv+0x1b1/0x3f0
__release_sock+0x7f/0xd0
release_sock+0x30/0xa0
__inet_stream_connect+0x1c3/0x3b0
? prepare_to_wait+0xb0/0xb0
inet_stream_connect+0x3b/0x60
__sys_connect+0x101/0x120
? __sys_getsockopt+0x11b/0x140
__x64_sys_connect+0x1a/0x20
do_syscall_64+0x51/0x200
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The stack trace of mem_cgroup_sk_alloc() from IRQ-context:
Fixes: 2d75807383 ("mm: memcontrol: consolidate cgroup socket tracking")
Fixes: d979a39d72 ("cgroup: duplicate cgroup reference when cloning sockets")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e4add247789e4ba5e08ad8256183ce2e211877d4 ]
optimize_kprobe() and unoptimize_kprobe() cancels if a given kprobe
is on the optimizing_list or unoptimizing_list already. However, since
the following commit:
f66c0447cca1 ("kprobes: Set unoptimized flag after unoptimizing code")
modified the update timing of the KPROBE_FLAG_OPTIMIZED, it doesn't
work as expected anymore.
The optimized_kprobe could be in the following states:
- [optimizing]: Before inserting jump instruction
op.kp->flags has KPROBE_FLAG_OPTIMIZED and
op->list is not empty.
- [optimized]: jump inserted
op.kp->flags has KPROBE_FLAG_OPTIMIZED and
op->list is empty.
- [unoptimizing]: Before removing jump instruction (including unused
optprobe)
op.kp->flags has KPROBE_FLAG_OPTIMIZED and
op->list is not empty.
- [unoptimized]: jump removed
op.kp->flags doesn't have KPROBE_FLAG_OPTIMIZED and
op->list is empty.
Current code mis-expects [unoptimizing] state doesn't have
KPROBE_FLAG_OPTIMIZED, and that can cause incorrect results.
To fix this, introduce optprobe_queued_unopt() to distinguish [optimizing]
and [unoptimizing] states and fixes the logic in optimize_kprobe() and
unoptimize_kprobe().
[ mingo: Cleaned up the changelog and the code a bit. ]
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bristot@redhat.com
Fixes: f66c0447cca1 ("kprobes: Set unoptimized flag after unoptimizing code")
Link: https://lkml.kernel.org/r/157840814418.7181.13478003006386303481.stgit@devnote2
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit f66c0447cca1281116224d474cdb37d6a18e4b5b upstream.
Set the unoptimized flag after confirming the code is completely
unoptimized. Without this fix, when a kprobe hits the intermediate
modified instruction (the first byte is replaced by an INT3, but
later bytes can still be a jump address operand) while unoptimizing,
it can return to the middle byte of the modified code, which causes
an invalid instruction exception in the kernel.
Usually, this is a rare case, but if we put a probe on the function
call while text patching, it always causes a kernel panic as below:
# echo p text_poke+5 > kprobe_events
# echo 1 > events/kprobes/enable
# echo 0 > events/kprobes/enable
invalid opcode: 0000 [#1] PREEMPT SMP PTI
RIP: 0010:text_poke+0x9/0x50
Call Trace:
arch_unoptimize_kprobe+0x22/0x28
arch_unoptimize_kprobes+0x39/0x87
kprobe_optimizer+0x6e/0x290
process_one_work+0x2a0/0x610
worker_thread+0x28/0x3d0
? process_one_work+0x610/0x610
kthread+0x10d/0x130
? kthread_park+0x80/0x80
ret_from_fork+0x3a/0x50
text_poke() is used for patching the code in optprobes.
This can happen even if we blacklist text_poke() and other functions,
because there is a small time window during which we show the intermediate
code to other CPUs.
[ mingo: Edited the changelog. ]
Tested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bristot@redhat.com
Fixes: 6274de4984 ("kprobes: Support delayed unoptimizing")
Link: https://lkml.kernel.org/r/157483422375.25881.13508326028469515760.stgit@devnote2
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 039ae8bcf7a5f4476f4487e6bf816885fb3fb617 upstream.
This re-applies the commit reverted here:
commit c40f7d74c741 ("sched/fair: Fix infinite loop in update_blocked_averages() by reverting a9e7f6544b9c")
I.e. now that cfs_rq can be safely removed/added in the list, we can re-apply:
commit a9e7f6544b ("sched/fair: Fix O(nr_cgroups) in load balance path")
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: sargun@sargun.me
Cc: tj@kernel.org
Cc: xiexiuqi@huawei.com
Cc: xiezhipeng1@huawei.com
Link: https://lkml.kernel.org/r/1549469662-13614-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Vishnu Rangayyan <vishnu.rangayyan@apple.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 31bc6aeaab1d1de8959b67edbed5c7a4b3cdbe7c upstream.
Removing a cfs_rq from rq->leaf_cfs_rq_list can break the parent/child
ordering of the list when it will be added back. In order to remove an
empty and fully decayed cfs_rq, we must remove its children too, so they
will be added back in the right order next time.
With a normal decay of PELT, a parent will be empty and fully decayed
if all children are empty and fully decayed too. In such a case, we just
have to ensure that the whole branch will be added when a new task is
enqueued. This is default behavior since :
commit f6783319737f ("sched/fair: Fix insertion in rq->leaf_cfs_rq_list")
In case of throttling, the PELT of throttled cfs_rq will not be updated
whereas the parent will. This breaks the assumption made above unless we
remove the children of a cfs_rq that is throttled. Then, they will be
added back when unthrottled and a sched_entity will be enqueued.
As throttled cfs_rq are now removed from the list, we can remove the
associated test in update_blocked_averages().
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: sargun@sargun.me
Cc: tj@kernel.org
Cc: xiexiuqi@huawei.com
Cc: xiezhipeng1@huawei.com
Link: https://lkml.kernel.org/r/1549469662-13614-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Vishnu Rangayyan <vishnu.rangayyan@apple.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 78041c0c9e935d9ce4086feeff6c569ed88ddfd4 upstream.
The tracing seftests checks various aspects of the tracing infrastructure,
and one is filtering. If trace_printk() is active during a self test, it can
cause the filtering to fail, which will disable that part of the trace.
To keep the selftests from failing because of trace_printk() calls,
trace_printk() checks the variable tracing_selftest_running, and if set, it
does not write to the tracing buffer.
As some tracers were registered earlier in boot, the selftest they triggered
would fail because not all the infrastructure was set up for the full
selftest. Thus, some of the tests were post poned to when their
infrastructure was ready (namely file system code). The postpone code did
not set the tracing_seftest_running variable, and could fail if a
trace_printk() was added and executed during their run.
Cc: stable@vger.kernel.org
Fixes: 9afecfbb95 ("tracing: Postpone tracer start-up tests till the system is more robust")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2ad3e17ebf94b7b7f3f64c050ff168f9915345eb upstream.
Commit 219ca39427 ("audit: use union for audit_field values since
they are mutually exclusive") combined a number of separate fields in
the audit_field struct into a single union. Generally this worked
just fine because they are generally mutually exclusive.
Unfortunately in audit_data_to_entry() the overlap can be a problem
when a specific error case is triggered that causes the error path
code to attempt to cleanup an audit_field struct and the cleanup
involves attempting to free a stored LSM string (the lsm_str field).
Currently the code always has a non-NULL value in the
audit_field.lsm_str field as the top of the for-loop transfers a
value into audit_field.val (both .lsm_str and .val are part of the
same union); if audit_data_to_entry() fails and the audit_field
struct is specified to contain a LSM string, but the
audit_field.lsm_str has not yet been properly set, the error handling
code will attempt to free the bogus audit_field.lsm_str value that
was set with audit_field.val at the top of the for-loop.
This patch corrects this by ensuring that the audit_field.val is only
set when needed (it is cleared when the audit_field struct is
allocated with kcalloc()). It also corrects a few other issues to
ensure that in case of error the proper error code is returned.
Cc: stable@vger.kernel.org
Fixes: 219ca39427 ("audit: use union for audit_field values since they are mutually exclusive")
Reported-by: syzbot+1f4d90ead370d72e450b@syzkaller.appspotmail.com
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e20d3a055a457a10a4c748ce5b7c2ed3173a1324 upstream.
This if guards whether user-space wants a copy of the offload-jited
bytecode and whether this bytecode exists. By erroneously doing a bitwise
AND instead of a logical AND on user- and kernel-space buffer-size can lead
to no data being copied to user-space especially when user-space size is a
power of two and bigger then the kernel-space buffer.
Fixes: fcfb126def ("bpf: add new jited info fields in bpf_dev_offload and bpf_prog_info")
Signed-off-by: Johannes Krude <johannes@krude.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/bpf/20200212193227.GA3769@phlox.h.transitiv.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cba6437a1854fde5934098ec3bd0ee83af3129f5 upstream.
Qian Cai reported that the WARN_ON() in the x86/msi affinity setting code,
which catches cases where the affinity setting is not done on the CPU which
is the current target of the interrupt, triggers during CPU hotplug stress
testing.
It turns out that the warning which was added with the commit addressing
the MSI affinity race unearthed yet another long standing bug.
If user space writes a bogus affinity mask, i.e. it contains no online CPUs,
then it calls irq_select_affinity_usr(). This was introduced for ALPHA in
eee45269b0 ("[PATCH] Alpha: convert to generic irq framework (generic part)")
and subsequently made available for all architectures in
1840475676 ("genirq: Expose default irq affinity mask (take 3)")
which introduced the circumvention of the affinity setting restrictions for
interrupt which cannot be moved in process context.
The whole exercise is bogus in various aspects:
1) If the interrupt is already started up then there is absolutely
no point to honour a bogus interrupt affinity setting from user
space. The interrupt is already assigned to an online CPU and it
does not make any sense to reassign it to some other randomly
chosen online CPU.
2) If the interupt is not yet started up then there is no point
either. A subsequent startup of the interrupt will invoke
irq_setup_affinity() anyway which will chose a valid target CPU.
So the only correct solution is to just return -EINVAL in case user space
wrote an affinity mask which does not contain any online CPUs, except for
ALPHA which has it's own magic sauce for this.
Fixes: 1840475676 ("genirq: Expose default irq affinity mask (take 3)")
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Qian Cai <cai@lca.pw>
Link: https://lkml.kernel.org/r/878sl8xdbm.fsf@nanos.tec.linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 6722b23e7a2ace078344064a9735fb73e554e9ef ]
if seq_file .next fuction does not change position index,
read after some lseek can generate unexpected output.
Without patch:
# dd bs=30 skip=1 if=/sys/kernel/tracing/events/sched/sched_switch/trigger
dd: /sys/kernel/tracing/events/sched/sched_switch/trigger: cannot skip to specified offset
n traceoff snapshot stacktrace enable_event disable_event enable_hist disable_hist hist
# Available triggers:
# traceon traceoff snapshot stacktrace enable_event disable_event enable_hist disable_hist hist
6+1 records in
6+1 records out
206 bytes copied, 0.00027916 s, 738 kB/s
Notice the printing of "# Available triggers:..." after the line.
With the patch:
# dd bs=30 skip=1 if=/sys/kernel/tracing/events/sched/sched_switch/trigger
dd: /sys/kernel/tracing/events/sched/sched_switch/trigger: cannot skip to specified offset
n traceoff snapshot stacktrace enable_event disable_event enable_hist disable_hist hist
2+1 records in
2+1 records out
88 bytes copied, 0.000526867 s, 167 kB/s
It only prints the end of the file, and does not restart.
Link: http://lkml.kernel.org/r/3c35ee24-dd3a-8119-9c19-552ed253388a@virtuozzo.comhttps://bugzilla.kernel.org/show_bug.cgi?id=206283
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e4075e8bdffd93a9b6d6e1d52fabedceeca5a91b ]
if seq_file .next fuction does not change position index,
read after some lseek can generate unexpected output.
Without patch:
# dd bs=4 skip=1 if=/sys/kernel/tracing/set_ftrace_pid
dd: /sys/kernel/tracing/set_ftrace_pid: cannot skip to specified offset
id
no pid
2+1 records in
2+1 records out
10 bytes copied, 0.000213285 s, 46.9 kB/s
Notice the "id" followed by "no pid".
With the patch:
# dd bs=4 skip=1 if=/sys/kernel/tracing/set_ftrace_pid
dd: /sys/kernel/tracing/set_ftrace_pid: cannot skip to specified offset
id
0+1 records in
0+1 records out
3 bytes copied, 0.000202112 s, 14.8 kB/s
Notice that it only prints "id" and not the "no pid" afterward.
Link: http://lkml.kernel.org/r/4f87c6ad-f114-30bb-8506-c32274ce2992@virtuozzo.comhttps://bugzilla.kernel.org/show_bug.cgi?id=206283
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 90435a7891a2259b0f74c5a1bc5600d0d64cba8f ]
If seq_file .next fuction does not change position index,
read after some lseek can generate an unexpected output.
See also: https://bugzilla.kernel.org/show_bug.cgi?id=206283
v1 -> v2: removed missed increment in end of function
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/eca84fdd-c374-a154-d874-6c7b55fc3bc4@virtuozzo.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 708e0ada1916be765b7faa58854062f2bc620bbf ]
In setup_load_info(), info->name (which contains the name of the module,
mostly used for early logging purposes before the module gets set up)
gets unconditionally assigned if .modinfo is missing despite the fact
that there is an if (!info->name) check near the end of the function.
Avoid assigning a placeholder string to info->name if .modinfo doesn't
exist, so that we can fall back to info->mod->name later on.
Fixes: 5fdc7db644 ("module: setup load info before module_sig_check()")
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 11e31f608b499f044f24b20be73f1dcab3e43f8a ]
Robert reported that during boot the watchdog timestamp is set to 0 for one
second which is the indicator for a watchdog reset.
The reason for this is that the timestamp is in seconds and the time is
taken from sched clock and divided by ~1e9. sched clock starts at 0 which
means that for the first second during boot the watchdog timestamp is 0,
i.e. reset.
Use ULONG_MAX as the reset indicator value so the watchdog works correctly
right from the start. ULONG_MAX would only conflict with a real timestamp
if the system reaches an uptime of 136 years on 32bit and almost eternity
on 64bit.
Reported-by: Robert Richter <rrichter@marvell.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/87o8v3uuzl.fsf@nanos.tec.linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dfb6cd1e654315168e36d947471bd2a0ccd834ae ]
Looking through old emails in my INBOX, I came across a patch from Luis
Henriques that attempted to fix a race of two stat tracers registering the
same stat trace (extremely unlikely, as this is done in the kernel, and
probably doesn't even exist). The submitted patch wasn't quite right as it
needed to deal with clean up a bit better (if two stat tracers were the
same, it would have the same files).
But to make the code cleaner, all we needed to do is to keep the
all_stat_sessions_mutex held for most of the registering function.
Link: http://lkml.kernel.org/r/1410299375-20068-1-git-send-email-luis.henriques@canonical.com
Fixes: 002bb86d8d ("tracing/ftrace: separate events tracing and stats tracing engine")
Reported-by: Luis Henriques <luis.henriques@canonical.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit afccc00f75bbbee4e4ae833a96c2d29a7259c693 ]
tracing_stat_init() was always returning '0', even on the error paths. It
now returns -ENODEV if tracing_init_dentry() fails or -ENOMEM if it fails
to created the 'trace_stat' debugfs directory.
Link: http://lkml.kernel.org/r/1410299381-20108-1-git-send-email-luis.henriques@canonical.com
Fixes: ed6f1c996b ("tracing: Check return value of tracing_init_dentry()")
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
[ Pulled from the archeological digging of my INBOX ]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 45178ac0cea853fe0e405bf11e101bdebea57b15 ]
Paul reported a very sporadic, rcutorture induced, workqueue failure.
When the planets align, the workqueue rescuer's self-migrate fails and
then triggers a WARN for running a work on the wrong CPU.
Tejun then figured that set_cpus_allowed_ptr()'s stop_one_cpu() call
could be ignored! When stopper->enabled is false, stop_machine will
insta complete the work, without actually doing the work. Worse, it
will not WARN about this (we really should fix this).
It turns out there is a small window where a freshly online'ed CPU is
marked 'online' but doesn't yet have the stopper task running:
BP AP
bringup_cpu()
__cpu_up(cpu, idle) --> start_secondary()
...
cpu_startup_entry()
bringup_wait_for_ap()
wait_for_ap_thread() <-- cpuhp_online_idle()
while (1)
do_idle()
... available to run kthreads ...
stop_machine_unpark()
stopper->enable = true;
Close this by moving the stop_machine_unpark() into
cpuhp_online_idle(), such that the stopper thread is ready before we
start the idle loop and schedule.
Reported-by: "Paul E. McKenney" <paulmck@kernel.org>
Debugged-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: "Paul E. McKenney" <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>