Pull x86 tracing updates from Ingo Molnar:
"This tree adds IRQ vector tracepoints that are named after the handler
and which output the vector #, based on a zero-overhead approach that
relies on changing the IDT entries, by Seiji Aguchi.
The new tracepoints look like this:
# perf list | grep -i irq_vector
irq_vectors:local_timer_entry [Tracepoint event]
irq_vectors:local_timer_exit [Tracepoint event]
irq_vectors:reschedule_entry [Tracepoint event]
irq_vectors:reschedule_exit [Tracepoint event]
irq_vectors:spurious_apic_entry [Tracepoint event]
irq_vectors:spurious_apic_exit [Tracepoint event]
irq_vectors:error_apic_entry [Tracepoint event]
irq_vectors:error_apic_exit [Tracepoint event]
[...]"
* 'x86-tracing-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tracing: Add config option checking to the definitions of mce handlers
trace,x86: Do not call local_irq_save() in load_current_idt()
trace,x86: Move creation of irq tracepoints from apic.c to irq.c
x86, trace: Add irq vector tracepoints
x86: Rename variables for debugging
x86, trace: Introduce entering/exiting_irq()
tracing: Add DEFINE_EVENT_FN() macro
[Purpose of this patch]
As Vaibhav explained in the thread below, tracepoints for irq vectors
are useful.
http://www.spinics.net/lists/mm-commits/msg85707.html
<snip>
The current interrupt traces from irq_handler_entry and irq_handler_exit
provide when an interrupt is handled. They provide good data about when
the system has switched to kernel space and how it affects the currently
running processes.
There are some IRQ vectors which trigger the system into kernel space,
which are not handled in generic IRQ handlers. Tracing such events gives
us the information about IRQ interaction with other system events.
The trace also tells where the system is spending its time. We want to
know which cores are handling interrupts and how they are affecting other
processes in the system. Also, the trace provides information about when
the cores are idle and which interrupts are changing that state.
<snip>
On the other hand, my usecase is tracing just local timer event and
getting a value of instruction pointer.
I suggested to add an argument local timer event to get instruction pointer before.
But there is another way to get it with external module like systemtap.
So, I don't need to add any argument to irq vector tracepoints now.
[Patch Description]
Vaibhav's patch shared a trace point ,irq_vector_entry/irq_vector_exit, in all events.
But there is an above use case to trace specific irq_vector rather than tracing all events.
In this case, we are concerned about overhead due to unwanted events.
So, add following tracepoints instead of introducing irq_vector_entry/exit.
so that we can enable them independently.
- local_timer_vector
- reschedule_vector
- call_function_vector
- call_function_single_vector
- irq_work_entry_vector
- error_apic_vector
- thermal_apic_vector
- threshold_apic_vector
- spurious_apic_vector
- x86_platform_ipi_vector
Also, introduce a logic switching IDT at enabling/disabling time so that a time penalty
makes a zero when tracepoints are disabled. Detailed explanations are as follows.
- Create trace irq handlers with entering_irq()/exiting_irq().
- Create a new IDT, trace_idt_table, at boot time by adding a logic to
_set_gate(). It is just a copy of original idt table.
- Register the new handlers for tracpoints to the new IDT by introducing
macros to alloc_intr_gate() called at registering time of irq_vector handlers.
- Add checking, whether irq vector tracing is on/off, into load_current_idt().
This has to be done below debug checking for these reasons.
- Switching to debug IDT may be kicked while tracing is enabled.
- On the other hands, switching to trace IDT is kicked only when debugging
is disabled.
In addition, the new IDT is created only when CONFIG_TRACING is enabled to avoid being
used for other purposes.
Signed-off-by: Seiji Aguchi <seiji.aguchi@hds.com>
Link: http://lkml.kernel.org/r/51C323ED.5050708@hds.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Rename variables for debugging to describe meaning of them precisely.
Also, introduce a generic way to switch IDT by checking a current state,
debug on/off.
Signed-off-by: Seiji Aguchi <seiji.aguchi@hds.com>
Link: http://lkml.kernel.org/r/51C323A8.7050905@hds.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
We want to use this in early code where alternatives might not have run
yet and for that case we fall back to the dynamic boot_cpu_has.
For that, force a 5-byte jump since the compiler could be generating
differently sized jumps for each label.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1370772454-6106-5-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
static_cpu_has may be used only after alternatives have run. Before that
it always returns false if constant folding with __builtin_constant_p()
doesn't happen. And you don't want that.
This patch is the result of me debugging an issue where I overzealously
put static_cpu_has in code which executed before alternatives have run
and had to spend some time with scratching head and cursing at the
monitor.
So add a jump to a warning which screams loudly when we use this
function too early. The alternatives patch that check away in
conjunction with patching the rest of the kernel image.
[ hpa: factored this into its own configuration option. If we want to
have an overarching option, it should be an option which selects
other options, not as a group option in the source code. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1370772454-6106-4-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Reimplement FPU detection code in C and drop old, not-so-recommended
detection method in asm. Move all the relevant stuff into i387.c where
it conceptually belongs. Finally drop cpuinfo_x86.hard_math.
[ hpa: huge thanks to Borislav for taking my original concept patch
and productizing it ]
[ Boris, note to self: do not use static_cpu_has before alternatives! ]
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/1367244262-29511-2-git-send-email-bp@alien8.de
Link: http://lkml.kernel.org/r/1365436666-9837-2-git-send-email-bp@alien8.de
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We add another 32-bit vector at the end of the ->x86_capability
bitvector which collects bugs present in CPUs. After all, a CPU bug is a
kind of a capability, albeit a strange one.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1363788448-31325-2-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
In 64 bit, load ucode on AP in cpu_init().
In 32 bit, show ucode loading info on AP in cpu_init(). Microcode has been
loaded earlier before paging. Now it is safe to show the loading microcode
info on this AP.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Link: http://lkml.kernel.org/r/1356075872-3054-5-git-send-email-fenghua.yu@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Remove static declaration in have_cpuid_p() to make it a global function. The
function will be called in early loading microcode.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Link: http://lkml.kernel.org/r/1356075872-3054-4-git-send-email-fenghua.yu@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Pull big execve/kernel_thread/fork unification series from Al Viro:
"All architectures are converted to new model. Quite a bit of that
stuff is actually shared with architecture trees; in such cases it's
literally shared branch pulled by both, not a cherry-pick.
A lot of ugliness and black magic is gone (-3KLoC total in this one):
- kernel_thread()/kernel_execve()/sys_execve() redesign.
We don't do syscalls from kernel anymore for either kernel_thread()
or kernel_execve():
kernel_thread() is essentially clone(2) with callback run before we
return to userland, the callbacks either never return or do
successful do_execve() before returning.
kernel_execve() is a wrapper for do_execve() - it doesn't need to
do transition to user mode anymore.
As a result kernel_thread() and kernel_execve() are
arch-independent now - they live in kernel/fork.c and fs/exec.c
resp. sys_execve() is also in fs/exec.c and it's completely
architecture-independent.
- daemonize() is gone, along with its parts in fs/*.c
- struct pt_regs * is no longer passed to do_fork/copy_process/
copy_thread/do_execve/search_binary_handler/->load_binary/do_coredump.
- sys_fork()/sys_vfork()/sys_clone() unified; some architectures
still need wrappers (ones with callee-saved registers not saved in
pt_regs on syscall entry), but the main part of those suckers is in
kernel/fork.c now."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (113 commits)
do_coredump(): get rid of pt_regs argument
print_fatal_signal(): get rid of pt_regs argument
ptrace_signal(): get rid of unused arguments
get rid of ptrace_signal_deliver() arguments
new helper: signal_pt_regs()
unify default ptrace_signal_deliver
flagday: kill pt_regs argument of do_fork()
death to idle_regs()
don't pass regs to copy_process()
flagday: don't pass regs to copy_thread()
bfin: switch to generic vfork, get rid of pointless wrappers
xtensa: switch to generic clone()
openrisc: switch to use of generic fork and clone
unicore32: switch to generic clone(2)
score: switch to generic fork/vfork/clone
c6x: sanitize copy_thread(), get rid of clone(2) wrapper, switch to generic clone()
take sys_fork/sys_vfork/sys_clone prototypes to linux/syscalls.h
mn10300: switch to generic fork/vfork/clone
h8300: switch to generic fork/vfork/clone
tile: switch to generic clone()
...
Conflicts:
arch/microblaze/include/asm/Kbuild
Previously these functions were not run on the BSP (CPU 0, the boot processor)
since the boot processor init would only be executed before this functionality
was initialized.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Link: http://lkml.kernel.org/r/1352835171-3958-11-git-send-email-fenghua.yu@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Pull x86/smap support from Ingo Molnar:
"This adds support for the SMAP (Supervisor Mode Access Prevention) CPU
feature on Intel CPUs: a hardware feature that prevents unintended
user-space data access from kernel privileged code.
It's turned on automatically when possible.
This, in combination with SMEP, makes it even harder to exploit kernel
bugs such as NULL pointer dereferences."
Fix up trivial conflict in arch/x86/kernel/entry_64.S due to newly added
includes right next to each other.
* 'x86-smap-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, smep, smap: Make the switching functions one-way
x86, suspend: On wakeup always initialize cr4 and EFER
x86-32: Start out eflags and cr4 clean
x86, smap: Do not abuse the [f][x]rstor_checking() functions for user space
x86-32, smap: Add STAC/CLAC instructions to 32-bit kernel entry
x86, smap: Reduce the SMAP overhead for signal handling
x86, smap: A page fault due to SMAP is an oops
x86, smap: Turn on Supervisor Mode Access Prevention
x86, smap: Add STAC and CLAC instructions to control user space access
x86, uaccess: Merge prototypes for clear_user/__clear_user
x86, smap: Add a header file with macros for STAC/CLAC
x86, alternative: Add header guards to <asm/alternative-asm.h>
x86, alternative: Use .pushsection/.popsection
x86, smap: Add CR4 bit for SMAP
x86-32, mm: The WP test should be done on a kernel page
Pull x86/mm changes from Ingo Molnar:
"The biggest change is new TLB partial flushing code for AMD CPUs.
(The v3.6 kernel had the Intel CPU side code, see commits
e0ba94f14f74..effee4b9b3b.)
There's also various other refinements around the TLB flush code"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Distinguish TLB shootdown interrupts from other functions call interrupts
x86/mm: Fix range check in tlbflush debugfs interface
x86, cpu: Preset default tlb_flushall_shift on AMD
x86, cpu: Add AMD TLB size detection
x86, cpu: Push TLB detection CPUID check down
x86, cpu: Fixup tlb_flushall_shift formatting
Pull x86/fpu update from Ingo Molnar:
"The biggest change is the addition of the non-lazy (eager) FPU saving
support model and enabling it on CPUs with optimized xsaveopt/xrstor
FPU state saving instructions.
There are also various Sparse fixes"
Fix up trivial add-add conflict in arch/x86/kernel/traps.c
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, kvm: fix kvm's usage of kernel_fpu_begin/end()
x86, fpu: remove cpu_has_xmm check in the fx_finit()
x86, fpu: make eagerfpu= boot param tri-state
x86, fpu: enable eagerfpu by default for xsaveopt
x86, fpu: decouple non-lazy/eager fpu restore from xsave
x86, fpu: use non-lazy fpu restore for processors supporting xsave
lguest, x86: handle guest TS bit for lazy/non-lazy fpu host models
x86, fpu: always use kernel_fpu_begin/end() for in-kernel FPU usage
x86, kvm: use kernel_fpu_begin/end() in kvm_load/put_guest_fpu()
x86, fpu: remove unnecessary user_fpu_end() in save_xstate_sig()
x86, fpu: drop_fpu() before restoring new state from sigframe
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels
x86, fpu: Consolidate inline asm routines for saving/restoring fpu state
x86, signal: Cleanup ifdefs and is_ia32, is_x32
Pull x86 debug update from Ingo Molnar:
"Various small enhancements"
* 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/debug: Dump family, model, stepping of the boot CPU
x86/iommu: Use NULL instead of plain 0 for __IOMMU_INIT
x86/iommu: Drop duplicate const in __IOMMU_INIT
x86/fpu/xsave: Keep __user annotation in casts
x86/pci/probe_roms: Add missing __iomem annotation to pci_map_biosrom()
x86/signals: ia32_signal.c: add __user casts to fix sparse warnings
x86/vdso: Add __user annotation to VDSO32_SYMBOL
x86: Fix __user annotations in asm/sys_ia32.h
There is no fundamental reason why we should switch SMEP and SMAP on
during early cpu initialization just to switch them off again. Now
with %eflags and %cr4 forced to be initialized to a clean state, we
only need the one-way enable. Also, make the functions inline to make
them (somewhat) harder to abuse.
This does mean that SMEP and SMAP do not get initialized anywhere near
as early. Even using early_param() instead of __setup() doesn't give
us control early enough to do this during the early cpu initialization
phase. This seems reasonable to me, because SMEP and SMAP should not
matter until we have userspace to protect ourselves from, but it does
potentially make it possible for a bug involving a "leak of
permissions to userspace" to get uncaught.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Reason for merge:
x86/fpu changed the structure of some of the code that x86/smap
changes; mostly fpu-internal.h but also minor changes to the
signal code.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Resolved Conflicts:
arch/x86/ia32/ia32_signal.c
arch/x86/include/asm/fpu-internal.h
arch/x86/kernel/signal.c
When Supervisor Mode Access Prevention (SMAP) is enabled, access to
userspace from the kernel is controlled by the AC flag. To make the
performance of manipulating that flag acceptable, there are two new
instructions, STAC and CLAC, to set and clear it.
This patch adds those instructions, via alternative(), when the SMAP
feature is enabled. It also adds X86_EFLAGS_AC unconditionally to the
SYSCALL entry mask; there is simply no reason to make that one
conditional.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/1348256595-29119-9-git-send-email-hpa@linux.intel.com
When acting on a user bug report, we find ourselves constantly
asking for /proc/cpuinfo in order to know the exact family,
model, stepping of the CPU in question.
Instead of having to ask this, add this to dmesg so that it is
visible and no ambiguities can ensue from looking at the
official name string of the CPU coming from CPUID and trying
to map it to f/m/s.
Output then looks like this:
[ 0.146041] smpboot: CPU0: AMD FX(tm)-8100 Eight-Core Processor (fam: 15, model: 01, stepping: 02)
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Link: http://lkml.kernel.org/r/1347640666-13638-1-git-send-email-bp@amd64.org
[ tweaked it minimally to add commas. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Decouple non-lazy/eager fpu restore policy from the existence of the xsave
feature. Introduce a synthetic CPUID flag to represent the eagerfpu
policy. "eagerfpu=on" boot paramter will enable the policy.
Requested-by: H. Peter Anvin <hpa@zytor.com>
Requested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1347300665-6209-2-git-send-email-suresh.b.siddha@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
On 64 bit x86 we save the current eflags in cpu_init for use in
ret_from_fork. Strictly speaking reserved bits in EFLAGS should
be read as written but in practise it is unlikely that EFLAGS
could ever be extended in this way and the kernel alread clears
any undefined flags early on.
The equivalent 32 bit code simply hard codes 0x0202 as the new
EFLAGS.
This change makes 64 bit use the same mechanism to setup the
initial EFLAGS on fork. Note that 64 bit resets EFLAGS before
calling schedule_tail() as opposed to 32 bit which calls
schedule_tail() first. Therefore the correct value for EFLAGS
has opposite IF bit.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/20120824195847.GA31628@moon
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Clear AVX, AVX2 features along with clearing XSAVE feature bits,
as part of the parsing "noxsave" parameter.
Fixes the kernel boot panic with "noxsave" boot parameter.
We could have checked cpu_has_osxsave along with cpu_has_avx etc, but Peter
mentioned clearing the feature bits will be better for uses like
static_cpu_has() etc.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343755754.2041.2.camel@sbsiddha-desk.sc.intel.com
Cc: <stable@vger.kernel.org> # v3.5
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Push the max CPUID leaf check into the ->detect_tlb function and remove
general test case from the generic path.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1344272439-29080-3-git-send-email-bp@amd64.org
Acked-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The TLB characteristics appeared like this in dmesg:
[ 0.065817] Last level iTLB entries: 4KB 512, 2MB 1024, 4MB 512
[ 0.065817] Last level dTLB entries: 4KB 1024, 2MB 1024, 4MB 512
[ 0.065817] tlb_flushall_shift is 0xffffffff
where tlb_flushall_shift is actually -1 but dumped as a hex number.
However, the Kconfig option CONFIG_DEBUG_TLBFLUSH and the rest of the
code treats this as a signed decimal and states "If you set it to -1,
the code flushes the whole TLB unconditionally."
So, fix its formatting in accordance with the other references to it.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1344272439-29080-2-git-send-email-bp@amd64.org
Acked-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Pull x86/mm changes from Peter Anvin:
"The big change here is the patchset by Alex Shi to use INVLPG to flush
only the affected pages when we only need to flush a small page range.
It also removes the special INVALIDATE_TLB_VECTOR interrupts (32
vectors!) and replace it with an ordinary IPI function call."
Fix up trivial conflicts in arch/x86/include/asm/apic.h (added code next
to changed line)
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tlb: Fix build warning and crash when building for !SMP
x86/tlb: do flush_tlb_kernel_range by 'invlpg'
x86/tlb: replace INVALIDATE_TLB_VECTOR by CALL_FUNCTION_VECTOR
x86/tlb: enable tlb flush range support for x86
mm/mmu_gather: enable tlb flush range in generic mmu_gather
x86/tlb: add tlb_flushall_shift knob into debugfs
x86/tlb: add tlb_flushall_shift for specific CPU
x86/tlb: fall back to flush all when meet a THP large page
x86/flush_tlb: try flush_tlb_single one by one in flush_tlb_range
x86/tlb_info: get last level TLB entry number of CPU
x86: Add read_mostly declaration/definition to variables from smp.h
x86: Define early read-mostly per-cpu macros
Testing show different CPU type(micro architectures and NUMA mode) has
different balance points between the TLB flush all and multiple invlpg.
And there also has cases the tlb flush change has no any help.
This patch give a interface to let x86 vendor developers have a chance
to set different shift for different CPU type.
like some machine in my hands, balance points is 16 entries on
Romely-EP; while it is at 8 entries on Bloomfield NHM-EP; and is 256 on
IVB mobile CPU. but on model 15 core2 Xeon using invlpg has nothing
help.
For untested machine, do a conservative optimization, same as NHM CPU.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Link: http://lkml.kernel.org/r/1340845344-27557-5-git-send-email-alex.shi@intel.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
For 4KB pages, x86 CPU has 2 or 1 level TLB, first level is data TLB and
instruction TLB, second level is shared TLB for both data and instructions.
For hupe page TLB, usually there is just one level and seperated by 2MB/4MB
and 1GB.
Although each levels TLB size is important for performance tuning, but for
genernal and rude optimizing, last level TLB entry number is suitable. And
in fact, last level TLB always has the biggest entry number.
This patch will get the biggest TLB entry number and use it in furture TLB
optimizing.
Accroding Borislav's suggestion, except tlb_ll[i/d]_* array, other
function and data will be released after system boot up.
For all kinds of x86 vendor friendly, vendor specific code was moved to its
specific files.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Link: http://lkml.kernel.org/r/1340845344-27557-2-git-send-email-alex.shi@intel.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
There's no real reason why, when showing the MSRs on a CPU at boottime,
we should be using the AMD-specific variant. Simply use the generic safe
one which handles #GPs just fine.
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1338562358-28182-3-git-send-email-bp@amd64.org
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
When the NMI handler runs, it checks if it preempted a debug handler
and if that handler is using the debug stack. If it is, it changes the
IDT table not to update the stack, otherwise it will reset the debug
stack and corrupt the debug handler it preempted.
Now that ftrace uses breakpoints to change functions from nops to
callers, many more places may hit a breakpoint. Unfortunately this
includes some of the calls that lockdep performs. Which causes issues
with the debug stack. It too needs to change the debug stack before
tracing (if called from the debug handler).
Allow the debug_stack_set_zero() and debug_stack_reset() to be nested
so that the debug handlers can take advantage of them too.
[ Used this_cpu_*() over __get_cpu_var() as suggested by H. Peter Anvin ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Since percpu_xxx() serial functions are duplicated with this_cpu_xxx().
Removing percpu_xxx() definition and replacing them by this_cpu_xxx()
in code. There is no function change in this patch, just preparation for
later percpu_xxx serial function removing.
On x86 machine the this_cpu_xxx() serial functions are same as
__this_cpu_xxx() without no unnecessary premmpt enable/disable.
Thanks for Stephen Rothwell, he found and fixed a i386 build error in
the patch.
Also thanks for Andrew Morton, he kept updating the patchset in Linus'
tree.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Acked-by: Christoph Lameter <cl@gentwo.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
It's only called from amd.c:srat_detect_node(). The introduced
condition for calling the fixup code is true for all AMD
multi-node processors, e.g. Magny-Cours and Interlagos. There we
have 2 NUMA nodes on one socket. Thus there are cores having
different numa-node-id but with equal phys_proc_id.
There is no point to print error messages in such a situation.
The confusing/misleading error message was introduced with
commit 64be4c1c24 ("x86: Add
x86_init platform override to fix up NUMA core numbering").
Remove the default fixup function (especially the error message)
and replace it by a NULL pointer check, move the
Numascale-specific condition for calling the fixup into the
fixup-function itself and slightly adapt the comment.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: <stable@kernel.org>
Cc: <sp@numascale.com>
Cc: <bp@amd64.org>
Cc: <daniel@numascale-asia.com>
Link: http://lkml.kernel.org/r/20120402160648.GR27684@alberich.amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 updates from Ingo Molnar.
This touches some non-x86 files due to the sanitized INLINE_SPIN_UNLOCK
config usage.
Fixed up trivial conflicts due to just header include changes (removing
headers due to cpu_idle() merge clashing with the <asm/system.h> split).
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic/amd: Be more verbose about LVT offset assignments
x86, tls: Off by one limit check
x86/ioapic: Add io_apic_ops driver layer to allow interception
x86/olpc: Add debugfs interface for EC commands
x86: Merge the x86_32 and x86_64 cpu_idle() functions
x86/kconfig: Remove CONFIG_TR=y from the defconfigs
x86: Stop recursive fault in print_context_stack after stack overflow
x86/io_apic: Move and reenable irq only when CONFIG_GENERIC_PENDING_IRQ=y
x86/apic: Add separate apic_id_valid() functions for selected apic drivers
locking/kconfig: Simplify INLINE_SPIN_UNLOCK usage
x86/kconfig: Update defconfigs
x86: Fix excessive MSR print out when show_msr is not specified
"[RFC - PATCH 0/7] consolidation of BUG support code."
https://lkml.org/lkml/2012/1/26/525
--
The changes shown here are to unify linux's BUG support under
the one <linux/bug.h> file. Due to historical reasons, we have
some BUG code in bug.h and some in kernel.h -- i.e. the support for
BUILD_BUG in linux/kernel.h predates the addition of linux/bug.h,
but old code in kernel.h wasn't moved to bug.h at that time. As
a band-aid, kernel.h was including <asm/bug.h> to pseudo link them.
This has caused confusion[1] and general yuck/WTF[2] reactions.
Here is an example that violates the principle of least surprise:
CC lib/string.o
lib/string.c: In function 'strlcat':
lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON'
make[2]: *** [lib/string.o] Error 1
$
$ grep linux/bug.h lib/string.c
#include <linux/bug.h>
$
We've included <linux/bug.h> for the BUG infrastructure and yet we
still get a compile fail! [We've not kernel.h for BUILD_BUG_ON.]
Ugh - very confusing for someone who is new to kernel development.
With the above in mind, the goals of this changeset are:
1) find and fix any include/*.h files that were relying on the
implicit presence of BUG code.
2) find and fix any C files that were consuming kernel.h and
hence relying on implicitly getting some/all BUG code.
3) Move the BUG related code living in kernel.h to <linux/bug.h>
4) remove the asm/bug.h from kernel.h to finally break the chain.
During development, the order was more like 3-4, build-test, 1-2.
But to ensure that git history for bisect doesn't get needless
build failures introduced, the commits have been reorderd to fix
the problem areas in advance.
[1] https://lkml.org/lkml/2012/1/3/90
[2] https://lkml.org/lkml/2012/1/17/414
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJPbNwpAAoJEOvOhAQsB9HWrqYP/A0t9VB0nK6e42F0OR2P14MZ
GJFtf1B++wwioIrx+KSWSRfSur1C5FKhDbxLR3I/pvkAYl4+T4JvRdMG6xJwxyip
CC1kVQQNDjWVVqzjz2x6rYkOffx6dUlw/ERyIyk+OzP+1HzRIsIrugMqbzGLlX0X
y0v2Tbd0G6xg1DV8lcRdp95eIzcGuUvdb2iY2LGadWZczEOeSXx64Jz3QCFxg3aL
LFU4oovsg8Nb7MRJmqDvHK/oQf5vaTm9WSrS0pvVte0msSQRn8LStYdWC0G9BPCS
GwL86h/eLXlUXQlC5GpgWg1QQt5i2QpjBFcVBIG0IT5SgEPMx+gXyiqZva2KwbHu
LKicjKtfnzPitQnyEV/N6JyV1fb1U6/MsB7ebU5nCCzt9Gr7MYbjZ44peNeprAtu
HMvJ/BNnRr4Ha6nPQNu952AdASPKkxmeXFUwBL1zUbLkOX/bK/vy1ujlcdkFxCD7
fP3t7hghYa737IHk0ehUOhrE4H67hvxTSCKioLUAy/YeN1IcfH/iOQiCBQVLWmoS
AqYV6ou9cqgdYoyila2UeAqegb+8xyubPIHt+lebcaKxs5aGsTg+r3vq5juMDAPs
iwSVYUDcIw9dHer1lJfo7QCy3QUTRDTxh+LB9VlHXQICgeCK02sLBOi9hbEr4/H8
Ko9g8J3BMxcMkXLHT9ud
=PYQT
-----END PGP SIGNATURE-----
Merge tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull <linux/bug.h> cleanup from Paul Gortmaker:
"The changes shown here are to unify linux's BUG support under the one
<linux/bug.h> file. Due to historical reasons, we have some BUG code
in bug.h and some in kernel.h -- i.e. the support for BUILD_BUG in
linux/kernel.h predates the addition of linux/bug.h, but old code in
kernel.h wasn't moved to bug.h at that time. As a band-aid, kernel.h
was including <asm/bug.h> to pseudo link them.
This has caused confusion[1] and general yuck/WTF[2] reactions. Here
is an example that violates the principle of least surprise:
CC lib/string.o
lib/string.c: In function 'strlcat':
lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON'
make[2]: *** [lib/string.o] Error 1
$
$ grep linux/bug.h lib/string.c
#include <linux/bug.h>
$
We've included <linux/bug.h> for the BUG infrastructure and yet we
still get a compile fail! [We've not kernel.h for BUILD_BUG_ON.] Ugh -
very confusing for someone who is new to kernel development.
With the above in mind, the goals of this changeset are:
1) find and fix any include/*.h files that were relying on the
implicit presence of BUG code.
2) find and fix any C files that were consuming kernel.h and hence
relying on implicitly getting some/all BUG code.
3) Move the BUG related code living in kernel.h to <linux/bug.h>
4) remove the asm/bug.h from kernel.h to finally break the chain.
During development, the order was more like 3-4, build-test, 1-2. But
to ensure that git history for bisect doesn't get needless build
failures introduced, the commits have been reorderd to fix the problem
areas in advance.
[1] https://lkml.org/lkml/2012/1/3/90
[2] https://lkml.org/lkml/2012/1/17/414"
Fix up conflicts (new radeon file, reiserfs header cleanups) as per Paul
and linux-next.
* tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
kernel.h: doesn't explicitly use bug.h, so don't include it.
bug: consolidate BUILD_BUG_ON with other bug code
BUG: headers with BUG/BUG_ON etc. need linux/bug.h
bug.h: add include of it to various implicit C users
lib: fix implicit users of kernel.h for TAINT_WARN
spinlock: macroize assert_spin_locked to avoid bug.h dependency
x86: relocate get/set debugreg fcns to include/asm/debugreg.
Dave found:
| During bootup, I now have 162 messages like this..
| [ 0.227346] MSR0000001b: 00000000fee00900
| [ 0.227465] MSR00000021: 0000000000000001
| [ 0.227584] MSR0000002a: 00000000c1c81400
|
| commit 21c3fcf3e3 looks suspect.
| It claims that it will only print these out if show_msr= is
| passed, but that doesn't seem to be the case.
Fix it by changing to the version that checks the index.
Reported-and-tested-by: Dave Jones <davej@redhat.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1332477103-4595-1-git-send-email-yinghai@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86/fpu changes from Ingo Molnar.
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
i387: Split up <asm/i387.h> into exported and internal interfaces
i387: Uninline the generic FP helpers that we expose to kernel modules
Since we already have a debugreg.h header file, move the
assoc. get/set functions to it. In addition to it being the
logical home for them, it has a secondary advantage. The
functions that are moved use BUG(). So we really need to
have linux/bug.h in scope. But asm/processor.h is used about
600 times, vs. only about 15 for debugreg.h -- so adding bug.h
to the latter reduces the amount of time we'll be processing
it during a compile.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: "H. Peter Anvin" <hpa@zytor.com>
While various modules include <asm/i387.h> to get access to things we
actually *intend* for them to use, most of that header file was really
pretty low-level internal stuff that we really don't want to expose to
others.
So split the header file into two: the small exported interfaces remain
in <asm/i387.h>, while the internal definitions that are only used by
core architecture code are now in <asm/fpu-internal.h>.
The guiding principle for this was to expose functions that we export to
modules, and leave them in <asm/i387.h>, while stuff that is used by
task switching or was marked GPL-only is in <asm/fpu-internal.h>.
The fpu-internal.h file could be further split up too, especially since
arch/x86/kvm/ uses some of the remaining stuff for its module. But that
kvm usage should probably be abstracted out a bit, and at least now the
internal FPU accessor functions are much more contained. Even if it
isn't perhaps as contained as it _could_ be.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1202211340330.5354@i5.linux-foundation.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Instead of exporting the very low-level internals of the FPU state
save/restore code (ie things like 'fpu_owner_task'), we should export
the higher-level interfaces.
Inlining these things is pointless anyway: sure, sometimes the end
result is small, but while 'stts()' can result in just three x86
instructions, those are not cheap instructions (writing %cr0 is a
serializing instruction and a very slow one at that).
So the overhead of a function call is not noticeable, and we really
don't want random modules mucking about with our internal state save
logic anyway.
So this unexports 'fpu_owner_task', and instead uninlines and exports
the actual functions that modules can use: fpu_kernel_begin/end() and
unlazy_fpu().
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1202211339590.5354@i5.linux-foundation.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
(And define it properly for x86-32, which had its 'current_task'
declaration in separate from x86-64)
Bitten by my dislike for modules on the machines I use, and the fact
that apparently nobody else actually wanted to test the patches I sent
out.
Snif. Nobody else cares.
Anyway, we probably should uninline the 'kernel_fpu_begin()' function
that is what modules actually use and that references this, but this is
the minimal fix for now.
Reported-by: Josh Boyer <jwboyer@gmail.com>
Reported-and-tested-by: Jongman Heo <jongman.heo@samsung.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes us recognize when we try to restore FPU state that matches
what we already have in the FPU on this CPU, and avoids the restore
entirely if so.
To do this, we add two new data fields:
- a percpu 'fpu_owner_task' variable that gets written any time we
update the "has_fpu" field, and thus acts as a kind of back-pointer
to the task that owns the CPU. The exception is when we save the FPU
state as part of a context switch - if the save can keep the FPU
state around, we leave the 'fpu_owner_task' variable pointing at the
task whose FP state still remains on the CPU.
- a per-thread 'last_cpu' field, that indicates which CPU that thread
used its FPU on last. We update this on every context switch
(writing an invalid CPU number if the last context switch didn't
leave the FPU in a lazily usable state), so we know that *that*
thread has done nothing else with the FPU since.
These two fields together can be used when next switching back to the
task to see if the CPU still matches: if 'fpu_owner_task' matches the
task we are switching to, we know that no other task (or kernel FPU
usage) touched the FPU on this CPU in the meantime, and if the current
CPU number matches the 'last_cpu' field, we know that this thread did no
other FP work on any other CPU, so the FPU state on the CPU must match
what was saved on last context switch.
In that case, we can avoid the 'f[x]rstor' entirely, and just clear the
CR0.TS bit.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Found out that show_msr=<cpus> is broken, when I asked a
user to use it to capture debug info about broken MTRR's
whose MTRR settings are probably different between CPUs.
Only the first CPUs MSRs are printed, but that is not
enough to track down the suspected bug.
For years we called print_cpu_msr from print_cpu_info(),
but this commit:
| commit 2eaad1fddd
| Author: Mike Travis <travis@sgi.com>
| Date: Thu Dec 10 17:19:36 2009 -0800
|
| x86: Limit the number of processor bootup messages
removed the print_cpu_info() call from all APs.
Put it back - it will only print MSRs when the user
specifically requests them via show_msr=<cpus>.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Mike Travis <travis@sgi.com>
Link: http://lkml.kernel.org/r/1329069237-11483-1-git-send-email-yinghai@kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits)
perf tools: Fix compile error on x86_64 Ubuntu
perf report: Fix --stdio output alignment when --showcpuutilization used
perf annotate: Get rid of field_sep check
perf annotate: Fix usage string
perf kmem: Fix a memory leak
perf kmem: Add missing closedir() calls
perf top: Add error message for EMFILE
perf test: Change type of '-v' option to INCR
perf script: Add missing closedir() calls
tracing: Fix compile error when static ftrace is enabled
recordmcount: Fix handling of elf64 big-endian objects.
perf tools: Add const.h to MANIFEST to make perf-tar-src-pkg work again
perf tools: Add support for guest/host-only profiling
perf kvm: Do guest-only counting by default
perf top: Don't update total_period on process_sample
perf hists: Stop using 'self' for struct hist_entry
perf hists: Rename total_session to total_period
x86: Add counter when debug stack is used with interrupts enabled
x86: Allow NMIs to hit breakpoints in i386
x86: Keep current stack in NMI breakpoints
...
Mathieu Desnoyers pointed out a case that can cause issues with
NMIs running on the debug stack:
int3 -> interrupt -> NMI -> int3
Because the interrupt changes the stack, the NMI will not see that
it preempted the debug stack. Looking deeper at this case,
interrupts only happen when the int3 is from userspace or in
an a location in the exception table (fixup).
userspace -> int3 -> interurpt -> NMI -> int3
All other int3s that happen in the kernel should be processed
without ever enabling interrupts, as the do_trap() call will
panic the kernel if it is called to process any other location
within the kernel.
Adding a counter around the sections that enable interrupts while
using the debug stack allows the NMI to also check that case.
If the NMI sees that it either interrupted a task using the debug
stack or the debug counter is non-zero, then it will have to
change the IDT table to make the int3 not change stacks (which will
corrupt the stack if it does).
Note, I had to move the debug_usage functions out of processor.h
and into debugreg.h because of the static inlined functions to
inc and dec the debug_usage counter. __get_cpu_var() requires
smp.h which includes processor.h, and would fail to build.
Link: http://lkml.kernel.org/r/1323976535.23971.112.camel@gandalf.stny.rr.com
Reported-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul Turner <pjt@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
We want to allow NMI handlers to have breakpoints to be able to
remove stop_machine from ftrace, kprobes and jump_labels. But if
an NMI interrupts a current breakpoint, and then it triggers a
breakpoint itself, it will switch to the breakpoint stack and
corrupt the data on it for the breakpoint processing that it
interrupted.
Instead, have the NMI check if it interrupted breakpoint processing
by checking if the stack that is currently used is a breakpoint
stack. If it is, then load a special IDT that changes the IST
for the debug exception to keep the same stack in kernel context.
When the NMI is done, it puts it back.
This way, if the NMI does trigger a breakpoint, it will keep
using the same stack and not stomp on the breakpoint data for
the breakpoint it interrupted.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Several fields in struct cpuinfo_x86 were not defined for the
!SMP case, likely to save space. However, those fields still
have some meaning for UP, and keeping them allows some #ifdef
removal from other files. The additional size of the UP kernel
from this change is not significant enough to worry about
keeping up the distinction:
text data bss dec hex filename
4737168 506459 972040 6215667 5ed7f3 vmlinux.o.before
4737444 506459 972040 6215943 5ed907 vmlinux.o.after
for a difference of 276 bytes for an example UP config.
If someone wants those 276 bytes back badly then it should
be implemented in a cleaner way.
Signed-off-by: Kevin Winchester <kjwinchester@gmail.com>
Cc: Steffen Persvold <sp@numascale.com>
Link: http://lkml.kernel.org/r/1324428742-12498-1-git-send-email-kjwinchester@gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
I used "ifdef CONFIG_NUMA" simply because it doesn't make
sense in a non-numa configuration even with SMP enabled.
Besides, the only place where it is called right now is
in kernel/cpu/amd.c:srat_detect_node() within the
"CONFIG_NUMA" protected part.
Signed-off-by: Steffen Persvold <sp@numascale.com>
Cc: Daniel J Blueman <daniel@numascale-asia.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Link: http://lkml.kernel.org/r/1323073238-32686-2-git-send-email-daniel@numascale-asia.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>