* 'core-ipi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
generic-ipi: Optimize accesses by using DEFINE_PER_CPU_SHARED_ALIGNED for IPI data
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
plist: Fix grammar mistake, and c-style mistake
* 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
kprobes: Add mcount to the kprobes blacklist
* 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86_64: Print modules like i386 does
* 'x86-doc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Put 'nopat' in kernel-parameters
* 'x86-gpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86-64: Allow fbdev primary video code
* 'x86-rlimit-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Use helpers for rlimits
Now that the previous commit made it possible to do the personality
setting at the point of no return, we do just that for ELF binaries.
And suddenly all the reasons for that insane TIF_ABI_PENDING bit go
away, and we can just make SET_PERSONALITY() just do the obvious thing
for a 32-bit compat process.
Everything becomes much more straightforward this way.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
'flush_old_exec()' is the point of no return when doing an execve(), and
it is pretty badly misnamed. It doesn't just flush the old executable
environment, it also starts up the new one.
Which is very inconvenient for things like setting up the new
personality, because we want the new personality to affect the starting
of the new environment, but at the same time we do _not_ want the new
personality to take effect if flushing the old one fails.
As a result, the x86-64 '32-bit' personality is actually done using this
insane "I'm going to change the ABI, but I haven't done it yet" bit
(TIF_ABI_PENDING), with SET_PERSONALITY() not actually setting the
personality, but just the "pending" bit, so that "flush_thread()" can do
the actual personality magic.
This patch in no way changes any of that insanity, but it does split the
'flush_old_exec()' function up into a preparatory part that can fail
(still called flush_old_exec()), and a new part that will actually set
up the new exec environment (setup_new_exec()). All callers are changed
to trivially comply with the new world order.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure compiler won't do weird things with limits. Fetching them
twice may return 2 different values after writable limits are
implemented.
We can either use rlimit helpers added in
3e10e716ab or ACCESS_ONCE if not
applicable; this patch uses the helpers.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
LKML-Reference: <1264609942-24621-1-git-send-email-jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Use savesegment and loadsegment consistently in ia32 compat code.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This moves all the ptrace hooks related to exec into tracehook.h inlines.
This also lifts the calls for tracing out of the binfmt load_binary hooks
into search_binary_handler() after it calls into the binfmt module. This
change has no effect, since all the binfmt modules' load_binary functions
did the call at the end on success, and now search_binary_handler() does
it immediately after return if successful. We consolidate the repeated
code, and binfmt modules no longer need to import ptrace_notify().
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct user.u_ar0 is defined to contain a pointer offset on all
architectures in which it is defined (all architectures which define an
a.out format except SPARC.) However, it has a pointer type in the headers,
which is pointless -- <asm/user.h> is not exported to userspace, and it
just makes the code messy.
Redefine the field as "unsigned long" (which is the same size as a pointer
on all Linux architectures) and change the setting code to user offsetof()
instead of hand-coded arithmetic.
Cc: Linux Arch Mailing List <linux-arch@vger.kernel.org>
Cc: Bryan Wu <bryan.wu@analog.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Lennert Buytenhek <kernel@wantstofly.org>
Cc: Håvard Skinnemoen <hskinnemoen@atmel.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The functions time_before, time_before_eq, time_after, and time_after_eq
are more robust for comparing jiffies against other values.
A simplified version of the semantic patch making this change is as follows:
(http://www.emn.fr/x-info/coccinelle/)
// <smpl>
@ change_compare_np @
expression E;
@@
(
- jiffies <= E
+ time_before_eq(jiffies,E)
|
- jiffies >= E
+ time_after_eq(jiffies,E)
|
- jiffies < E
+ time_before(jiffies,E)
|
- jiffies > E
+ time_after(jiffies,E)
)
@ include depends on change_compare_np @
@@
#include <linux/jiffies.h>
@ no_include depends on !include && change_compare_np @
@@
#include <linux/...>
+ #include <linux/jiffies.h>
// </smpl>
[ mingo@elte.hu: merge to x86.git ]
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We have a lot of code which differs only by the naming of specific
members of structures that contain registers. In order to enable
additional unifications, this patch drops the e- or r- size prefix
from the register names in struct pt_regs, and drops the x- prefixes
for segment registers on the 32-bit side.
This patch also performs the equivalent renames in some additional
places that might be candidates for unification in the future.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Previously the data from before the exec was kept in there. Zero
them instead.
[ tglx: arch/x86 adaptation ]
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For some time /proc/sys/kernel/core_pattern has been able to set its output
destination as a pipe, allowing a user space helper to receive and
intellegently process a core. This infrastructure however has some
shortcommings which can be enhanced. Specifically:
1) The coredump code in the kernel should ignore RLIMIT_CORE limitation
when core_pattern is a pipe, since file system resources are not being
consumed in this case, unless the user application wishes to save the core,
at which point the app is restricted by usual file system limits and
restrictions.
2) The core_pattern code should be able to parse and pass options to the
user space helper as an argv array. The real core limit of the uid of the
crashing proces should also be passable to the user space helper (since it
is overridden to zero when called).
3) Some miscellaneous bugs need to be cleaned up (specifically the
recognition of a recursive core dump, should the user mode helper itself
crash. Also, the core dump code in the kernel should not wait for the user
mode helper to exit, since the same context is responsible for writing to
the pipe, and a read of the pipe by the user mode helper will result in a
deadlock.
This patch:
Remove the check of RLIMIT_CORE if core_pattern is a pipe. In the event that
core_pattern is a pipe, the entire core will be fed to the user mode helper.
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Cc: <martin.pitt@ubuntu.com>
Cc: <wwoods@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>