Code has been converted over to the new explicit on-stack plugging,
and delay users have been converted to use the new API for that.
So lets kill off the old plugging along with aops->sync_page().
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
SELinux would like to implement a new labeling behavior of newly created
inodes. We currently label new inodes based on the parent and the creating
process. This new behavior would also take into account the name of the
new object when deciding the new label. This is not the (supposed) full path,
just the last component of the path.
This is very useful because creating /etc/shadow is different than creating
/etc/passwd but the kernel hooks are unable to differentiate these
operations. We currently require that userspace realize it is doing some
difficult operation like that and than userspace jumps through SELinux hoops
to get things set up correctly. This patch does not implement new
behavior, that is obviously contained in a seperate SELinux patch, but it
does pass the needed name down to the correct LSM hook. If no such name
exists it is fine to pass NULL.
Signed-off-by: Eric Paris <eparis@redhat.com>
RCU free the struct inode. This will allow:
- Subsequent store-free path walking patch. The inode must be consulted for
permissions when walking, so an RCU inode reference is a must.
- sb_inode_list_lock to be moved inside i_lock because sb list walkers who want
to take i_lock no longer need to take sb_inode_list_lock to walk the list in
the first place. This will simplify and optimize locking.
- Could remove some nested trylock loops in dcache code
- Could potentially simplify things a bit in VM land. Do not need to take the
page lock to follow page->mapping.
The downsides of this is the performance cost of using RCU. In a simple
creat/unlink microbenchmark, performance drops by about 10% due to inability to
reuse cache-hot slab objects. As iterations increase and RCU freeing starts
kicking over, this increases to about 20%.
In cases where inode lifetimes are longer (ie. many inodes may be allocated
during the average life span of a single inode), a lot of this cache reuse is
not applicable, so the regression caused by this patch is smaller.
The cache-hot regression could largely be avoided by using SLAB_DESTROY_BY_RCU,
however this adds some complexity to list walking and store-free path walking,
so I prefer to implement this at a later date, if it is shown to be a win in
real situations. I haven't found a regression in any non-micro benchmark so I
doubt it will be a problem.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Instead of always assigning an increasing inode number in new_inode
move the call to assign it into those callers that actually need it.
For now callers that need it is estimated conservatively, that is
the call is added to all filesystems that do not assign an i_ino
by themselves. For a few more filesystems we can avoid assigning
any inode number given that they aren't user visible, and for others
it could be done lazily when an inode number is actually needed,
but that's left for later patches.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (96 commits)
no need for list_for_each_entry_safe()/resetting with superblock list
Fix sget() race with failing mount
vfs: don't hold s_umount over close_bdev_exclusive() call
sysv: do not mark superblock dirty on remount
sysv: do not mark superblock dirty on mount
btrfs: remove junk sb_dirt change
BFS: clean up the superblock usage
AFFS: wait for sb synchronization when needed
AFFS: clean up dirty flag usage
cifs: truncate fallout
mbcache: fix shrinker function return value
mbcache: Remove unused features
add f_flags to struct statfs(64)
pass a struct path to vfs_statfs
update VFS documentation for method changes.
All filesystems that need invalidate_inode_buffers() are doing that explicitly
convert remaining ->clear_inode() to ->evict_inode()
Make ->drop_inode() just return whether inode needs to be dropped
fs/inode.c:clear_inode() is gone
fs/inode.c:evict() doesn't care about delete vs. non-delete paths now
...
Fix up trivial conflicts in fs/nilfs2/super.c
I'm running a shmem pagefault test case (see attached file) under a 64 CPU
system. Profile shows shmem_inode_info->lock is heavily contented and
100% CPUs time are trying to get the lock. In the pagefault (no swap)
case, shmem_getpage gets the lock twice, the last one is avoidable if we
prealloc a page so we could reduce one time of locking. This is what
below patch does.
The result of the test case:
2.6.35-rc3: ~20s
2.6.35-rc3 + patch: ~12s
so this is 40% improvement.
One might argue if we could have better locking for shmem. But even shmem
is lockless, the pagefault will soon have pagecache lock heavily contented
because shmem must add new page to pagecache. So before we have better
locking for pagecache, improving shmem locking doesn't have too much
improvement. I did a similar pagefault test against a ramfs file, the
test result is ~10.5s.
[akpm@linux-foundation.org: fix comment, clean up code layout, elimintate code duplication]
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Zhang, Yanmin" <yanmin.zhang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current implementation of tmpfs is not scalable. We found that
stat_lock is contended by multiple threads when we need to get a new page,
leading to useless spinning inside this spin lock.
This patch makes use of the percpu_counter library to maintain local count
of used blocks to speed up getting and returning of pages. So the
acquisition of stat_lock is unnecessary for getting and returning blocks,
improving the performance of tmpfs on system with large number of cpus.
On a 4 socket 32 core NHM-EX system, we saw improvement of 270%.
The implementation below has a slight chance of race between threads
causing a slight overshoot of the maximum configured blocks. However, any
overshoot is small, and is bounded by the number of cpus. This happens
when the number of used blocks is slightly below the maximum configured
blocks when a thread checks the used block count, and another thread
allocates the last block before the current thread does. This should not
be a problem for tmpfs, as the overshoot is most likely to be a few blocks
and bounded. If a strict limit is really desired, then configured the max
blocks to be the limit less the number of cpus in system.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure we check the truncate constraints early on in ->setattr by adding
those checks to inode_change_ok. Also clean up and document inode_change_ok
to make this obvious.
As a fallout we don't have to call inode_newsize_ok from simple_setsize and
simplify it down to a truncate_setsize which doesn't return an error. This
simplifies a lot of setattr implementations and means we use truncate_setsize
almost everywhere. Get rid of fat_setsize now that it's trivial and mark
ext2_setsize static to make the calling convention obvious.
Keep the inode_newsize_ok in vmtruncate for now as all callers need an
audit for its removal anyway.
Note: setattr code in ecryptfs doesn't call inode_change_ok at all and
needs a deeper audit, but that is left for later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Make sure we call inode_change_ok before doing any changes in ->setattr,
and make sure to call it even if our fs wants to ignore normal UNIX
permissions, but use the ATTR_FORCE to skip those.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Despite its name it's now a generic implementation of ->setattr, but
rather a helper to copy attributes from a struct iattr to the inode.
Rename it to setattr_copy to reflect this fact.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
mtime and ctime should be changed only if the file size has actually
changed. Patches changing ext2 and tmpfs from vmtruncate to new truncate
sequence has caused regressions where they always update timestamps.
There is some strange cases in POSIX where truncate(2) must not update
times unless the size has acutally changed, see 6e656be89.
This area is all still rather buggy in different ways in a lot of
filesystems and needs a cleanup and audit (ideally the vfs will provide
a simple attribute or call to direct all filesystems exactly which
attributes to change). But coming up with the best solution will take a
while and is not appropriate for rc anyway.
So fix recent regression for now.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We don't name our generic fsync implementations very well currently.
The no-op implementation for in-memory filesystems currently is called
simple_sync_file which doesn't make too much sense to start with,
the the generic one for simple filesystems is called simple_fsync
which can lead to some confusion.
This patch renames the generic file fsync method to generic_file_fsync
to match the other generic_file_* routines it is supposed to be used
with, and the no-op implementation to noop_fsync to make it obvious
what to expect. In addition add some documentation for both methods.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch adds support for moving charge of file pages, which include
normal file, tmpfs file and swaps of tmpfs file. It's enabled by setting
bit 1 of <target cgroup>/memory.move_charge_at_immigrate.
Unlike the case of anonymous pages, file pages(and swaps) in the range
mmapped by the task will be moved even if the task hasn't done page fault,
i.e. they might not be the task's "RSS", but other task's "RSS" that maps
the same file. And mapcount of the page is ignored(the page can be moved
even if page_mapcount(page) > 1). So, conditions that the page/swap
should be met to be moved is that it must be in the range mmapped by the
target task and it must be charged to the old cgroup.
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
prep_new_page() will call set_page_private(page, 0) to initialise the
page, so the code is redundant.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- seems what ramfs_get_inode is only locally, make it static.
[AV: the hell it is; it's used by shmem, so shmem needed conversion too
and no, that function can't be made static]
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The entries in xattr handler table should be immutable (ie const)
like other operation tables.
Later patches convert common filesystems. Uncoverted filesystems
will still work, but will generate a compiler warning.
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now that we cache the ACL pointers in the generic inode all the generic_acl
cruft can go away and generic_acl.c can directly implement xattr handlers
dealing with the full Posix ACL semantics for in-memory filesystems.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a flags argument to struct xattr_handler and pass it to all xattr
handler methods. This allows using the same methods for multiple
handlers, e.g. for the ACL methods which perform exactly the same action
for the access and default ACLs, just using a different underlying
attribute. With a little more groundwork it'll also allow sharing the
methods for the regular user/trusted/secure handlers in extN, ocfs2 and
jffs2 like it's already done for xfs in this patch.
Also change the inode argument to the handlers to a dentry to allow
using the handlers mechnism for filesystems that require it later,
e.g. cifs.
[with GFS2 bits updated by Steven Whitehouse <swhiteho@redhat.com>]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There are 2 groups of alloc_file() callers:
* ones that are followed by ima_counts_get
* ones giving non-regular files
So let's pull that ima_counts_get() into alloc_file();
it's a no-op in case of non-regular files.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
While we're fiddling with the swap_map values, let's assign a particular
value to shmem/tmpfs swap pages: their swap counts are never incremented,
and it helps swapoff's try_to_unuse() a little if it can immediately
distinguish those pages from process pages.
Since we've no use for SWAP_MAP_BAD | COUNT_CONTINUED,
we might as well use that 0xbf value for SWAP_MAP_SHMEM.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mark struct vm_area_struct::vm_ops as const
* mark vm_ops in AGP code
But leave TTM code alone, something is fishy there with global vm_ops
being used.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'writeback' of git://git.kernel.dk/linux-2.6-block:
writeback: writeback_inodes_sb() should use bdi_start_writeback()
writeback: don't delay inodes redirtied by a fast dirtier
writeback: make the super_block pinning more efficient
writeback: don't resort for a single super_block in move_expired_inodes()
writeback: move inodes from one super_block together
writeback: get rid to incorrect references to pdflush in comments
writeback: improve readability of the wb_writeback() continue/break logic
writeback: cleanup writeback_single_inode()
writeback: kupdate writeback shall not stop when more io is possible
writeback: stop background writeback when below background threshold
writeback: balance_dirty_pages() shall write more than dirtied pages
fs: Fix busyloop in wb_writeback()
* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (21 commits)
HWPOISON: Enable error_remove_page on btrfs
HWPOISON: Add simple debugfs interface to inject hwpoison on arbitary PFNs
HWPOISON: Add madvise() based injector for hardware poisoned pages v4
HWPOISON: Enable error_remove_page for NFS
HWPOISON: Enable .remove_error_page for migration aware file systems
HWPOISON: The high level memory error handler in the VM v7
HWPOISON: Add PR_MCE_KILL prctl to control early kill behaviour per process
HWPOISON: shmem: call set_page_dirty() with locked page
HWPOISON: Define a new error_remove_page address space op for async truncation
HWPOISON: Add invalidate_inode_page
HWPOISON: Refactor truncate to allow direct truncating of page v2
HWPOISON: check and isolate corrupted free pages v2
HWPOISON: Handle hardware poisoned pages in try_to_unmap
HWPOISON: Use bitmask/action code for try_to_unmap behaviour
HWPOISON: x86: Add VM_FAULT_HWPOISON handling to x86 page fault handler v2
HWPOISON: Add poison check to page fault handling
HWPOISON: Add basic support for poisoned pages in fault handler v3
HWPOISON: Add new SIGBUS error codes for hardware poison signals
HWPOISON: Add support for poison swap entries v2
HWPOISON: Export some rmap vma locking to outside world
...
Fixes the following kmemcheck false positive (the compiler is using
a 32-bit mov to load the 16-bit sbinfo->mode in shmem_fill_super):
[ 0.337000] Total of 1 processors activated (3088.38 BogoMIPS).
[ 0.352000] CPU0 attaching NULL sched-domain.
[ 0.360000] WARNING: kmemcheck: Caught 32-bit read from uninitialized
memory (9f8020fc)
[ 0.361000]
a44240820000000041f6998100000000000000000000000000000000ff030000
[ 0.368000] i i i i i i i i i i i i i i i i u u u u i i i i i i i i i i u
u
[ 0.375000] ^
[ 0.376000]
[ 0.377000] Pid: 9, comm: khelper Not tainted (2.6.31-tip #206) P4DC6
[ 0.378000] EIP: 0060:[<810a3a95>] EFLAGS: 00010246 CPU: 0
[ 0.379000] EIP is at shmem_fill_super+0xb5/0x120
[ 0.380000] EAX: 00000000 EBX: 9f845400 ECX: 824042a4 EDX: 8199f641
[ 0.381000] ESI: 9f8020c0 EDI: 9f845400 EBP: 9f81af68 ESP: 81cd6eec
[ 0.382000] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068
[ 0.383000] CR0: 8005003b CR2: 9f806200 CR3: 01ccd000 CR4: 000006d0
[ 0.384000] DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000
[ 0.385000] DR6: ffff4ff0 DR7: 00000400
[ 0.386000] [<810c25fc>] get_sb_nodev+0x3c/0x80
[ 0.388000] [<810a3514>] shmem_get_sb+0x14/0x20
[ 0.390000] [<810c207f>] vfs_kern_mount+0x4f/0x120
[ 0.392000] [<81b2849e>] init_tmpfs+0x7e/0xb0
[ 0.394000] [<81b11597>] do_basic_setup+0x17/0x30
[ 0.396000] [<81b11907>] kernel_init+0x57/0xa0
[ 0.398000] [<810039b7>] kernel_thread_helper+0x7/0x10
[ 0.400000] [<ffffffff>] 0xffffffff
[ 0.402000] khelper used greatest stack depth: 2820 bytes left
[ 0.407000] calling init_mmap_min_addr+0x0/0x10 @ 1
[ 0.408000] initcall init_mmap_min_addr+0x0/0x10 returned 0 after 0 usecs
Reported-by: Ingo Molnar <mingo@elte.hu>
Analysed-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CONFIG_SHMEM off gives you (ramfs masquerading as) tmpfs, even when
CONFIG_TMPFS is off: that's a little anomalous, and I'd intended to make
more sense of it by removing CONFIG_TMPFS altogether, always enabling its
code when CONFIG_SHMEM; but so many defconfigs have CONFIG_SHMEM on
CONFIG_TMPFS off that we'd better leave that as is.
But there is no point in asking for CONFIG_TMPFS if CONFIG_SHMEM is off:
make TMPFS depend on SHMEM, which also prevents TMPFS_POSIX_ACL
shmem_acl.o being pointlessly built into the kernel when SHMEM is off.
And a selfish change, to prevent the world from being rebuilt when I
switch between CONFIG_SHMEM on and off: the only CONFIG_SHMEM in the
header files is mm.h shmem_lock() - give that a shmem.c stub instead.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following 'make includecheck' warning:
mm/shmem.c: linux/vfs.h is included more than once.
Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After commit 355cfa73 ("mm: modify swap_map and add SWAP_HAS_CACHE flag"),
only the context which have set SWAP_HAS_CACHE flag by swapcache_prepare()
or get_swap_page() would call add_to_swap_cache(). So add_to_swap_cache()
doesn't return -EEXIST any more.
Even though it doesn't return -EEXIST, it's not good behavior conceptually
to call swapcache_prepare() in the -EEXIST case, because it means clearing
SWAP_HAS_CACHE flag while the entry is on swap cache.
This patch removes redundant codes and comments from callers of it, and
adds VM_BUG_ON() in error path of add_to_swap_cache() and some comments.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Enable removing of corrupted pages through truncation
for a bunch of file systems: ext*, xfs, gfs2, ocfs2, ntfs
These should cover most server needs.
I chose the set of migration aware file systems for this
for now, assuming they have been especially audited.
But in general it should be safe for all file systems
on the data area that support read/write and truncate.
Caveat: the hardware error handler does not take i_mutex
for now before calling the truncate function. Is that ok?
Cc: tytso@mit.edu
Cc: hch@infradead.org
Cc: mfasheh@suse.com
Cc: aia21@cantab.net
Cc: hugh.dickins@tiscali.co.uk
Cc: swhiteho@redhat.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
The dirtying of page and set_page_dirty() can be moved into the page lock.
- In shmem_write_end(), the page was dirtied while the page lock was held,
but it's being marked dirty just after dropping the page lock.
- In shmem_symlink(), both dirtying and marking can be moved into page lock.
It's valuable for the hwpoison code to know whether one bad page can be dropped
without losing data. It mainly judges by testing the PG_dirty bit after taking
the page lock. So it becomes important that the dirtying of page and the
marking of dirtiness are both done inside the page lock. Which is a common
practice, but sadly not a rule.
The noticeable exceptions are
- mapped pages
- pages with buffer_heads
The above pages could go dirty at any time. Fortunately the hwpoison will
unmap the page and release the buffer_heads beforehand anyway.
Many other types of pages (eg. metadata pages) can also be dirtied at will by
their owners, the hwpoison code cannot do meaningful things to them anyway.
Only the dirtiness of pagecache pages owned by regular files are interested.
v2: AK: Add comment about set_page_dirty rules (suggested by Peter Zijlstra)
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Devtmpfs lets the kernel create a tmpfs instance called devtmpfs
very early at kernel initialization, before any driver-core device
is registered. Every device with a major/minor will provide a
device node in devtmpfs.
Devtmpfs can be changed and altered by userspace at any time,
and in any way needed - just like today's udev-mounted tmpfs.
Unmodified udev versions will run just fine on top of it, and will
recognize an already existing kernel-created device node and use it.
The default node permissions are root:root 0600. Proper permissions
and user/group ownership, meaningful symlinks, all other policy still
needs to be applied by userspace.
If a node is created by devtmps, devtmpfs will remove the device node
when the device goes away. If the device node was created by
userspace, or the devtmpfs created node was replaced by userspace, it
will no longer be removed by devtmpfs.
If it is requested to auto-mount it, it makes init=/bin/sh work
without any further userspace support. /dev will be fully populated
and dynamic, and always reflect the current device state of the kernel.
With the commonly used dynamic device numbers, it solves the problem
where static devices nodes may point to the wrong devices.
It is intended to make the initial bootup logic simpler and more robust,
by de-coupling the creation of the inital environment, to reliably run
userspace processes, from a complex userspace bootstrap logic to provide
a working /dev.
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Jan Blunck <jblunck@suse.de>
Tested-By: Harald Hoyer <harald@redhat.com>
Tested-By: Scott James Remnant <scott@ubuntu.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
shmfs wants purely standard POSIX ACL semantics, so we can use the new
generic VFS layer POSIX ACL checking rather than cooking our own
'permission()' function.
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As function shmem_file_setup does not modify/allocate/free/pass given
filename - mark it as const.
Signed-off-by: Sergei Trofimovich <slyfox@inbox.ru>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In a following patch, the usage of swap cache is recorded into swap_map.
This patch is for necessary interface changes to do that.
2 interfaces:
- swapcache_prepare()
- swapcache_free()
are added for allocating/freeing refcnt from swap-cache to existing swap
entries. But implementation itself is not changed under this patch. At
adding swapcache_free(), memcg's hook code is moved under
swapcache_free(). This is better than using scattered hooks.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on discussion on lkml (Andrew Morton and Eric Paris),
move ima_counts_get down a layer into shmem/hugetlb__file_setup().
Resolves drm shmem_file_setup() usage case as well.
HD comment:
I still think you're doing this at the wrong level, but recognize
that you probably won't be persuaded until a few more users of
alloc_file() emerge, all wanting your ima_counts_get().
Resolving GEM's shmem_file_setup() is an improvement, so I'll say
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Mimi Zohar <zohar@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
- Add support in ima_path_check() for integrity checking without
incrementing the counts. (Required for nfsd.)
- rename and export opencount_get to ima_counts_get
- replace ima_shm_check calls with ima_counts_get
- export ima_path_check
Signed-off-by: Mimi Zohar <zohar@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Current mem_cgroup_shrink_usage() has two problems.
1. It doesn't call mem_cgroup_out_of_memory and doesn't update
last_oom_jiffies, so pagefault_out_of_memory invokes global OOM.
2. Considering hierarchy, shrinking has to be done from the
mem_over_limit, not from the memcg which the page would be charged to.
mem_cgroup_try_charge_swapin() does all of these things properly, so we
use it and call cancel_charge_swapin when it succeeded.
The name of "shrink_usage" is not appropriate for this behavior, so we
change it too.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.cn>
Cc: Paul Menage <menage@google.com>
Cc: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SHMEM_MAX_BYTES was derived from the maximum size of its triple-indirect
swap vector, forgetting to take the MAX_LFS_FILESIZE limit into account.
Never mind 256kB pages, even 8kB pages on 32-bit kernels allowed files to
grow slightly bigger than that supposed maximum.
Fix this by using the min of both (at build time not run time). And it
happens that this calculation is good as far as 8MB pages on 32-bit or
16MB pages on 64-bit: though SHMSWP_MAX_INDEX gets truncated before that,
it's truncated to such large numbers that we don't need to care.
[akpm@linux-foundation.org: it needs pagemap.h]
[akpm@linux-foundation.org: fix sparc64 min() warnings]
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Yuri Tikhonov <yur@emcraft.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a division by zero which we have in shmem_truncate_range() and
shmem_unuse_inode() when using big PAGE_SIZE values (e.g. 256kB on
ppc44x).
With 256kB PAGE_SIZE, the ENTRIES_PER_PAGEPAGE constant becomes too large
(0x1.0000.0000) on a 32-bit kernel, so this patch just changes its type
from 'unsigned long' to 'unsigned long long'.
Hugh: reverted its unsigned long longs in shmem_truncate_range() and
shmem_getpage(): the pagecache index cannot be more than an unsigned long,
so the divisions by zero occurred in unreached code. It's a pity we need
any ULL arithmetic here, but I found no pretty way to avoid it.
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Synopsis: if shmem_writepage calls swap_writepage directly, most shmem
swap loads benefit, and a catastrophic interaction between SLUB and some
flash storage is avoided.
shmem_writepage() has always been peculiar in making no attempt to write:
it has just transferred a shmem page from file cache to swap cache, then
let that page make its way around the LRU again before being written and
freed.
The idea was that people use tmpfs because they want those pages to stay
in RAM; so although we give it an overflow to swap, we should resist
writing too soon, giving those pages a second chance before they can be
reclaimed.
That was always questionable, and I've toyed with this patch for years;
but never had a clear justification to depart from the original design.
It became more questionable in 2.6.28, when the split LRU patches classed
shmem and tmpfs pages as SwapBacked rather than as file_cache: that in
itself gives them more resistance to reclaim than normal file pages. I
prepared this patch for 2.6.29, but the merge window arrived before I'd
completed gathering statistics to justify sending it in.
Then while comparing SLQB against SLUB, running SLUB on a laptop I'd
habitually used with SLAB, I found SLUB to run my tmpfs kbuild swapping
tests five times slower than SLAB or SLQB - other machines slower too, but
nowhere near so bad. Simpler "cp -a" swapping tests showed the same.
slub_max_order=0 brings sanity to all, but heavy swapping is too far from
normal to justify such a tuning. The crucial factor on that laptop turns
out to be that I'm using an SD card for swap. What happens is this:
By default, SLUB uses order-2 pages for shmem_inode_cache (and many other
fs inodes), so creating tmpfs files under memory pressure brings lumpy
reclaim into play. One subpage of the order is chosen from the bottom of
the LRU as usual, then the other three picked out from their random
positions on the LRUs.
In a tmpfs load, many of these pages will be ones which already passed
through shmem_writepage, so already have swap allocated. And though their
offsets on swap were probably allocated sequentially, now that the pages
are picked off at random, their swap offsets are scattered.
But the flash storage on the SD card is very sensitive to having its
writes merged: once swap is written at scattered offsets, performance
falls apart. Rotating disk seeks increase too, but less disastrously.
So: stop giving shmem/tmpfs pages a second pass around the LRU, write them
out to swap as soon as their swap has been allocated.
It's surely possible to devise an artificial load which runs faster the
old way, one whose sizing is such that the tmpfs pages on their second
pass are the ones that are wanted again, and other pages not.
But I've not yet found such a load: on all machines, under the loads I've
tried, immediate swap_writepage speeds up shmem swapping: especially when
using the SLUB allocator (and more effectively than slub_max_order=0), but
also with the others; and it also reduces the variance between runs. How
much faster varies widely: a factor of five is rare, 5% is common.
One load which might have suffered: imagine a swapping shmem load in a
limited mem_cgroup on a machine with plenty of memory. Before 2.6.29 the
swapcache was not charged, and such a load would have run quickest with
the shmem swapcache never written to swap. But now swapcache is charged,
so even this load benefits from shmem_writepage directly to swap.
Apologies for the #ifndef CONFIG_SWAP swap_writepage() stub in swap.h:
it's silly because that will never get called; but refactoring shmem.c
sensibly according to CONFIG_SWAP will be a separate task.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each time I exit Firefox, /proc/meminfo's Committed_AS goes down almost
400 kB: OVERCOMMIT_NEVER would be allowing overcommits it should
prohibit.
Commit fc8744adc8 "Stop playing silly
games with the VM_ACCOUNT flag" changed shmem_file_setup() to set the
shmem file's VM_ACCOUNT flag according to VM_NORESERVE not being set in
the vma flags; but did so only _after_ the shmem_acct_size(flags, size)
call which is expected to pre-account a shared anonymous object.
It's all clearer if we switch shmem.c over to use VM_NORESERVE
throughout in place of !VM_ACCOUNT.
But I very nearly sent in a patch which mistakenly removed the
accounting from tmpfs files: shmem_get_inode()'s memset was good for not
setting VM_ACCOUNT, but now it needs to set VM_NORESERVE.
Rather than setting that by default, then perhaps clearing it again in
shmem_file_setup(), let's pass it as a flag to shmem_get_inode(): that
allows us to remove the #ifdef CONFIG_SHMEM from shmem_file_setup().
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on comments from Mike Frysinger and Randy Dunlap:
(http://lkml.org/lkml/2009/2/9/262)
- moved ima.h include before CONFIG_SHMEM test to fix compiler error
on Blackfin:
mm/shmem.c: In function 'shmem_zero_setup':
mm/shmem.c:2670: error: implicit declaration of function 'ima_shm_check'
- added 'struct linux_binprm' in ima.h to fix compiler warning on Blackfin:
In file included from mm/shmem.c:32:
include/linux/ima.h:25: warning: 'struct linux_binprm' declared inside
parameter list
include/linux/ima.h:25: warning: its scope is only this definition or
declaration, which is probably not what you want
- moved fs.h include within _LINUX_IMA_H definition
Signed-off-by: Mimi Zohar <zohar@us.ibm.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: James Morris <jmorris@namei.org>
The number of calls to ima_path_check()/ima_file_free()
should be balanced. An extra call to fput(), indicates
the file could have been accessed without first being
measured.
Although f_count is incremented/decremented in places other
than fget/fput, like fget_light/fput_light and get_file, the
current task must already hold a file refcnt. The call to
__fput() is delayed until the refcnt becomes 0, resulting
in ima_file_free() flagging any changes.
- add hook to increment opencount for IPC shared memory(SYSV),
shmat files, and /dev/zero
- moved NULL iint test in opencount_get()
Signed-off-by: Mimi Zohar <zohar@us.ibm.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
The mmap_region() code would temporarily set the VM_ACCOUNT flag for
anonymous shared mappings just to inform shmem_zero_setup() that it
should enable accounting for the resulting shm object. It would then
clear the flag after calling ->mmap (for the /dev/zero case) or doing
shmem_zero_setup() (for the MAP_ANON case).
This just resulted in vma merge issues, but also made for just
unnecessary confusion. Use the already-existing VM_NORESERVE flag for
this instead, and let shmem_{zero|file}_setup() just figure it out from
that.
This also happens to make it obvious that the new DRI2 GEM layer uses a
non-reserving backing store for its object allocation - which is quite
possibly not intentional. But since I didn't want to change semantics
in this patch, I left it alone, and just updated the caller to use the
new flag semantics.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, you can see following even when swap accounting is enabled.
1. Create Group 01, and 02.
2. allocate a "file" on tmpfs by a task under 01.
3. swap out the "file" (by memory pressure)
4. Read "file" from a task in group 02.
5. the charge of "file" is moved to group 02.
This is not ideal behavior. This is because SwapCache which was loaded
by read-ahead is not taken into account..
This is a patch to fix shmem's swapcache behavior.
- remove mem_cgroup_cache_charge_swapin().
- Add SwapCache handler routine to mem_cgroup_cache_charge().
By this, shmem's file cache is charged at add_to_page_cache()
with GFP_NOWAIT.
- pass the page of swapcache to shrink_mem_cgroup.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
My patch, memcg-fix-gfp_mask-of-callers-of-charge.patch changed gfp_mask
of callers of charge to be GFP_HIGHUSER_MOVABLE for showing what will
happen at memory reclaim.
But in recent discussion, it's NACKed because it sounds ugly.
This patch is for reverting it and add some clean up to gfp_mask of
callers of charge. No behavior change but need review before generating
HUNK in deep queue.
This patch also adds explanation to meaning of gfp_mask passed to charge
functions in memcontrol.h.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SwapCache support for memory resource controller (memcg)
Before mem+swap controller, memcg itself should handle SwapCache in proper
way. This is cut-out from it.
In current memcg, SwapCache is just leaked and the user can create tons of
SwapCache. This is a leak of account and should be handled.
SwapCache accounting is done as following.
charge (anon)
- charged when it's mapped.
(because of readahead, charge at add_to_swap_cache() is not sane)
uncharge (anon)
- uncharged when it's dropped from swapcache and fully unmapped.
means it's not uncharged at unmap.
Note: delete from swap cache at swap-in is done after rmap information
is established.
charge (shmem)
- charged at swap-in. this prevents charge at add_to_page_cache().
uncharge (shmem)
- uncharged when it's dropped from swapcache and not on shmem's
radix-tree.
at migration, check against 'old page' is modified to handle shmem.
Comparing to the old version discussed (and caused troubles), we have
advantages of
- PCG_USED bit.
- simple migrating handling.
So, situation is much easier than several months ago, maybe.
[hugh@veritas.com: memcg: handle swap caches build fix]
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix misuse of gfp_kernel.
Now, most of callers of mem_cgroup_charge_xxx functions uses GFP_KERNEL.
I think that this is from the fact that page_cgroup *was* dynamically
allocated.
But now, we allocate all page_cgroup at boot. And
mem_cgroup_try_to_free_pages() reclaim memory from GFP_HIGHUSER_MOVABLE +
specified GFP_RECLAIM_MASK.
* This is because we just want to reduce memory usage.
"Where we should reclaim from ?" is not a problem in memcg.
This patch modifies gfp masks to be GFP_HIGUSER_MOVABLE if possible.
Note: This patch is not for fixing behavior but for showing sane information
in source code.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
tiny-shmem shares most of its 130 lines of code with shmem and tends to
break when particular bits of shmem get modified. Unifying saves code and
makes keeping these two in sync much easier.
before:
14367 392 24 14783 39bf mm/shmem.o
396 72 8 476 1dc mm/tiny-shmem.o
after:
14367 392 24 14783 39bf mm/shmem.o
412 72 8 492 1ec mm/shmem.o tiny
Signed-off-by: Matt Mackall <mpm@selenic.com>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Following "mm: don't mark_page_accessed in fault path", which now
places a mark_page_accessed() in zap_pte_range(), we should remove
the mark_page_accessed() from shmem_fault().
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Johannes Weiner <hannes@saeurebad.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wrap access to task credentials so that they can be separated more easily from
the task_struct during the introduction of COW creds.
Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id().
Change some task->e?[ug]id to task_e?[ug]id(). In some places it makes more
sense to use RCU directly rather than a convenient wrapper; these will be
addressed by later patches.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-audit@redhat.com
Cc: containers@lists.linux-foundation.org
Cc: linux-mm@kvack.org
Signed-off-by: James Morris <jmorris@namei.org>
Junjiro R. Okajima reported a problem where knfsd crashes if you are
using it to export shmemfs objects and run strict overcommit. In this
situation the current->mm based modifier to the overcommit goes through a
NULL pointer.
We could simply check for NULL and skip the modifier but we've caught
other real bugs in the past from mm being NULL here - cases where we did
need a valid mm set up (eg the exec bug about a year ago).
To preserve the checks and get the logic we want shuffle the checking
around and add a new helper to the vm_ security wrappers
Also fix a current->mm reference in nommu that should use the passed mm
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix build]
Reported-by: Junjiro R. Okajima <hooanon05@yahoo.co.jp>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Shmem segments locked into memory via shmctl(SHM_LOCKED) should not be
kept on the normal LRU, since scanning them is a waste of time and might
throw off kswapd's balancing algorithms. Place them on the unevictable
LRU list instead.
Use the AS_UNEVICTABLE flag to mark address_space of SHM_LOCKed shared
memory regions as unevictable. Then these pages will be culled off the
normal LRU lists during vmscan.
Add new wrapper function to clear the mapping's unevictable state when/if
shared memory segment is munlocked.
Add 'scan_mapping_unevictable_page()' to mm/vmscan.c to scan all pages in
the shmem segment's mapping [struct address_space] for evictability now
that they're no longer locked. If so, move them to the appropriate zone
lru list.
Changes depend on [CONFIG_]UNEVICTABLE_LRU.
[kosaki.motohiro@jp.fujitsu.com: revert shm change]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Split the LRU lists in two, one set for pages that are backed by real file
systems ("file") and one for pages that are backed by memory and swap
("anon"). The latter includes tmpfs.
The advantage of doing this is that the VM will not have to scan over lots
of anonymous pages (which we generally do not want to swap out), just to
find the page cache pages that it should evict.
This patch has the infrastructure and a basic policy to balance how much
we scan the anon lists and how much we scan the file lists. The big
policy changes are in separate patches.
[lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset]
[kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru]
[kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page]
[hugh@veritas.com: memcg swapbacked pages active]
[hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED]
[akpm@linux-foundation.org: fix /proc/vmstat units]
[nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration]
[kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo]
[kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Define page_file_cache() function to answer the question:
is page backed by a file?
Originally part of Rik van Riel's split-lru patch. Extracted to make
available for other, independent reclaim patches.
Moved inline function to linux/mm_inline.h where it will be needed by
subsequent "split LRU" and "noreclaim" patches.
Unfortunately this needs to use a page flag, since the PG_swapbacked state
needs to be preserved all the way to the point where the page is last
removed from the LRU. Trying to derive the status from other info in the
page resulted in wrong VM statistics in earlier split VM patchsets.
The total number of page flags in use on a 32 bit machine after this patch
is 19.
[akpm@linux-foundation.org: fix up out-of-order merge fallout]
[hugh@veritas.com: splitlru: shmem_getpage SetPageSwapBacked sooner[
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: MinChan Kim <minchan.kim@gmail.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GEM needs to create shmem files to back buffer objects. Though currently
creation of files for objects could have been driven from userland, the
modesetting work will require allocation of buffer objects before userland
is running, for boot-time message display.
Signed-off-by: Eric Anholt <eric@anholt.net>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Discussion on the mailing list questioned the use of these
magic values in userspace, concluding these values are already
exported to userspace via statfs and their correct/incorrect
usage is left up to the userspace application.
- Move special fs magic number definitions to magic.h
- Add magic.h include
Signed-off-by: Mimi Zohar <zohar@us.ibm.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
Converting page lock to new locking bitops requires a change of page flag
operation naming, so we might as well convert it to something nicer
(!TestSetPageLocked_Lock => trylock_page, SetPageLocked => set_page_locked).
This also facilitates lockdeping of page lock.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SuSE's insserve initscript ordering program hits kernel BUG at mm/shmem.c:814
on 2.6.26. It's using posix_fadvise on directories, and the shmem_readpage
method added in 2.6.23 is letting POSIX_FADV_WILLNEED allocate useless pages
to a tmpfs directory, incrementing i_blocks count but never decrementing it.
Fix this by assigning shmem_aops (pointing to readpage and writepage and
set_page_dirty) only when it's needed, on a regular file or a long symlink.
Many thanks to Kel for outstanding bugreport and steps to reproduce it.
Reported-by: Kel Modderman <kel@otaku42.de>
Tested-by: Kel Modderman <kel@otaku42.de>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmem cache passed to constructor is only needed for constructors that are
themselves multiplexeres. Nobody uses this "feature", nor does anybody uses
passed kmem cache in non-trivial way, so pass only pointer to object.
Non-trivial places are:
arch/powerpc/mm/init_64.c
arch/powerpc/mm/hugetlbpage.c
This is flag day, yes.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Matt Mackall <mpm@selenic.com>
[akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c]
[akpm@linux-foundation.org: fix mm/slab.c]
[akpm@linux-foundation.org: fix ubifs]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we can be sure that elevating the page_count on a pagecache page will
pin it, we can speculatively run this operation, and subsequently check to
see if we hit the right page rather than relying on holding a lock or
otherwise pinning a reference to the page.
This can be done if get_page/put_page behaves consistently throughout the
whole tree (ie. if we "get" the page after it has been used for something
else, we must be able to free it with a put_page).
Actually, there is a period where the count behaves differently: when the
page is free or if it is a constituent page of a compound page. We need
an atomic_inc_not_zero operation to ensure we don't try to grab the page
in either case.
This patch introduces the core locking protocol to the pagecache (ie.
adds page_cache_get_speculative, and tweaks some update-side code to make
it work).
Thanks to Hugh for pointing out an improvement to the algorithm setting
page_count to zero when we have control of all references, in order to
hold off speculative getters.
[kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()]
[hugh@veritas.com: fix add_to_page_cache]
[akpm@linux-foundation.org: repair a comment]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A new call, mem_cgroup_shrink_usage() is added for shmem handling and
relacing non-standard usage of mem_cgroup_charge/uncharge.
Now, shmem calls mem_cgroup_charge() just for reclaim some pages from
mem_cgroup. In general, shmem is used by some process group and not for
global resource (like file caches). So, it's reasonable to reclaim pages
from mem_cgroup where shmem is mainly used.
[hugh@veritas.com: shmem_getpage release page sooner]
[hugh@veritas.com: mem_cgroup_shrink_usage css_put]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have a request for tmpfs to support the AIO interface: easily done, no
more than replacing the old shmem_file_read by shmem_file_aio_read,
cribbed from generic_file_aio_read. (In 2.6.25 its write side was already
changed to use generic_file_aio_write.)
Incorporate cleanups from Andrew Morton and Harvey Harrison.
Tests out fine with LTP's ltp-aiodio.sh, given hacks (not included) to
support O_DIRECT. tmpfs cannot honestly support O_DIRECT: its
cache-avoiding-IO nature is at odds with direct IO-avoiding-cache.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Tested-by: Lawrence Greenfield <leg@google.com>
Cc: Christoph Rohland <hans-christoph.rohland@sap.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Zach Brown <zach.brown@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new BDI capability flag: BDI_CAP_NO_ACCT_WB. If this flag is
set, then don't update the per-bdi writeback stats from
test_set_page_writeback() and test_clear_page_writeback().
Misc cleanups:
- convert bdi_cap_writeback_dirty() and friends to static inline functions
- create a flag that includes all three dirty/writeback related flags,
since almst all users will want to have them toghether
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch replaces the mempolicy mode, mode_flags, and nodemask in the
shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL.
This removes dependency on the details of mempolicy from shmem.c and hugetlbfs
inode.c and simplifies the interfaces.
mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a
pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the
returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context'
argument that causes the input nodemask to be stored in the w.user_nodemask of
the created mempolicy for use when the mempolicy is installed in a tmpfs inode
shared policy tree. At that time, any cpuset contextualization is applied to
the original input nodemask. This preserves the previous behavior where the
input nodemask was stored in the superblock. We can think of the returned
mempolicy as "context free".
Because mpol_parse_str() is now calling mpol_new(), we can remove from
mpol_to_str() the semantic checks that mpol_new() already performs.
Add 'no_context' parameter to mpol_to_str() to specify that it should format
the nodemask in w.user_nodemask for 'bind' and 'interleave' policies.
Change mpol_shared_policy_init() to take a pointer to a "context free" struct
mempolicy and to create a new, "contextualized" mempolicy using the mode,
mode_flags and user_nodemask from the input mempolicy.
Note: we know that the mempolicy passed to mpol_to_str() or
mpol_shared_policy_init() from a tmpfs superblock is "context free". This
is currently the only instance thereof. However, if we found more uses for
this concept, and introduced any ambiguity as to whether a mempolicy was
context free or not, we could add another internal mode flag to identify
context free mempolicies. Then, we could remove the 'no_context' argument
from mpol_to_str().
Added shmem_get_sbmpol() to return a reference counted superblock mempolicy,
if one exists, to pass to mpol_shared_policy_init(). We must add the
reference under the sb stat_lock to prevent races with replacement of the mpol
by remount. This reference is removed in mpol_shared_policy_init().
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: another build fix]
[akpm@linux-foundation.org: yet another build fix]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm/shmem.c currently contains functions to parse and display memory policy
strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with
the rest of the mempolicy support. With subsequent patches, we'll be able to
remove knowledge of the details [mode, flags, policy, ...] completely from
shmem.c
1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in
mm/mempolicy.c. Rework to use the policy_types[] array [used by
mpol_to_str()] to look up mode by name.
2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str()
expects a pointer to a struct mempolicy, so temporarily construct one.
This will be replaced with a reference to a struct mempolicy in the tmpfs
superblock in a subsequent patch.
NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal
sign '=' as the nodemask delimiter to match mpol_parse_str() and the
tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This
is a user visible change to numa_maps, but then the addition of the mode
flags already changed the display. It makes sense to me to have the mounts
and numa_maps display the policy in the same format. However, if anyone
objects strongly, I can pass the desired nodemask delimeter as an arg to
mpol_to_str().
Note 2: Like show_numa_map(), I don't check the return code from
mpol_to_str(). I do use a longer buffer than the one provided by
show_numa_map(), which seems to have sufficed so far.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After further discussion with Christoph Lameter, it has become clear that my
earlier attempts to clean up the mempolicy reference counting were a bit of
overkill in some areas, resulting in superflous ref/unref in what are usually
fast paths. In other areas, further inspection reveals that I botched the
unref for interleave policies.
A separate patch, suitable for upstream/stable trees, fixes up the known
errors in the previous attempt to fix reference counting.
This patch reworks the memory policy referencing counting and, one hopes,
simplifies the code. Maybe I'll get it right this time.
See the update to the numa_memory_policy.txt document for a discussion of
memory policy reference counting that motivates this patch.
Summary:
Lookup of mempolicy, based on (vma, address) need only add a reference for
shared policy, and we need only unref the policy when finished for shared
policies. So, this patch backs out all of the unneeded extra reference
counting added by my previous attempt. It then unrefs only shared policies
when we're finished with them, using the mpol_cond_put() [conditional put]
helper function introduced by this patch.
Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma
containing just the policy. read_swap_cache_async() can call alloc_page_vma()
multiple times, so we can't let alloc_page_vma() unref the shared policy in
this case. To avoid this, we make a copy of any non-null shared policy and
remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading
a page [or multiple pages] from swap, so the overhead should not be an issue
here.
I introduced a new static inline function "mpol_cond_copy()" to copy the
shared policy to an on-stack policy and remove the flags that would require a
conditional free. The current implementation of mpol_cond_copy() assumes that
the struct mempolicy contains no pointers to dynamically allocated structures
that must be duplicated or reference counted during copy.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a change that was requested some time ago by Mel Gorman. Makes sense
to me, so here it is.
Note: I retain the name "mpol_free_shared_policy()" because it actually does
free the shared_policy, which is NOT a reference counted object. However, ...
The mempolicy object[s] referenced by the shared_policy are reference counted,
so mpol_put() is used to release the reference held by the shared_policy. The
mempolicy might not be freed at this time, because some task attached to the
shared object associated with the shared policy may be in the process of
allocating a page based on the mempolicy. In that case, the task performing
the allocation will hold a reference on the mempolicy, obtained via
mpol_shared_policy_lookup(). The mempolicy will be freed when all tasks
holding such a reference have called mpol_put() for the mempolicy.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Parsing of new mode flags in the tmpfs mpol mount option is slightly broken:
Setting a valid flag works OK:
#mount -o remount,mpol=bind=static:1-2 /dev/shm
#mount
...
tmpfs on /dev/shm type tmpfs (rw,mpol=bind=static:1-2)
...
However, we can't remove them or change them, once we've
set a valid flag:
#mount -o remount,mpol=bind:1-2 /dev/shm
#mount
...
tmpfs on /dev/shm type tmpfs (rw,mpol=bind:1-2)
...
It SAYS it removed it, but that's just a copy of the input
string. If we now try to set it to a different flag, we
get:
#mount -o remount,mpol=bind=relative:1-2 /dev/shm
mount: /dev/shm not mounted already, or bad option
And on the console, we see:
tmpfs: Bad value 'bind' for mount option 'mpol'
^ lost remainder of string
Furthermore, bogus flags are accepted with out error.
Granted, they are a no-op:
#mount -o remount,mpol=interleave=foo:0-3 /dev/shm
#mount
...
tmpfs on /dev/shm type tmpfs (rw,mpol=interleave=foo:0-3)
Again, that's just a copy of the input string shown by the mount command.
This patch fixes the behavior by pre-zeroing the flags so that only one of the
mutually exclusive flags can be set at one time. It also reports an error
when an unrecognized flag is specified.
The check for both flags being set is removed because it can't happen with
this implementation. If we ever want to support multiple non-exclusive flags,
this area will need rework and we will need to check that any mutually
exclusive flags aren't specified.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Eric Whitney <eric.whitney@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adds another optional mode flag, MPOL_F_RELATIVE_NODES, that specifies
nodemasks passed via set_mempolicy() or mbind() should be considered relative
to the current task's mems_allowed.
When the mempolicy is created, the passed nodemask is folded and mapped onto
the current task's mems_allowed. For example, consider a task using
set_mempolicy() to pass MPOL_INTERLEAVE | MPOL_F_RELATIVE_NODES with a
nodemask of 1-3. If current's mems_allowed is 4-7, the effected nodemask is
5-7 (the second, third, and fourth node of mems_allowed).
If the same task is attached to a cpuset, the mempolicy nodemask is rebound
each time the mems are changed. Some possible rebinds and results are:
mems result
1-3 1-3
1-7 2-4
1,5-6 1,5-6
1,5-7 5-7
Likewise, the zonelist built for MPOL_BIND acts on the set of zones assigned
to the resultant nodemask from the relative remap.
In the MPOL_PREFERRED case, the preferred node is remapped from the currently
effected nodemask to the relative nodemask.
This mempolicy mode flag was conceived of by Paul Jackson <pj@sgi.com>.
Cc: Paul Jackson <pj@sgi.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the
node remap when the policy is rebound.
Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of
a union with cpuset_mems_allowed:
struct mempolicy {
...
union {
nodemask_t cpuset_mems_allowed;
nodemask_t user_nodemask;
} w;
}
that stores the the nodemask that the user passed when he or she created the
mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES,
which is passed with any mempolicy mode, the user's passed nodemask
intersected with the VMA or task's allowed nodes is always used when
determining the preferred node, setting the MPOL_BIND zonelist, or creating
the interleave nodemask. This happens whenever the policy is rebound,
including when a task's cpuset assignment changes or the cpuset's mems are
changed.
This creates an interesting side-effect in that it allows the mempolicy
"intent" to lie dormant and uneffected until it has access to the node(s) that
it desires. For example, if you currently ask for an interleaved policy over
a set of nodes that you do not have access to, the mempolicy is not created
and the task continues to use the previous policy. With this change, however,
it is possible to create the same mempolicy; it is only effected when access
to nodes in the nodemask is acquired.
It is also possible to mount tmpfs with the static nodemask behavior when
specifying a node or nodemask. To do this, simply add "=static" immediately
following the mempolicy mode at mount time:
mount -o remount mpol=interleave=static:1-3
Also removes mpol_check_policy() and folds its logic into mpol_new() since it
is now obsoleted. The unused vma_mpol_equal() is also removed.
Cc: Paul Jackson <pj@sgi.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the evolution of mempolicies, it is necessary to support mempolicy mode
flags that specify how the policy shall behave in certain circumstances. The
most immediate need for mode flag support is to suppress remapping the
nodemask of a policy at the time of rebind.
Both the mempolicy mode and flags are passed by the user in the 'int policy'
formal of either the set_mempolicy() or mbind() syscall. A new constant,
MPOL_MODE_FLAGS, represents the union of legal optional flags that may be
passed as part of this int. Mempolicies that include illegal flags as part of
their policy are rejected as invalid.
An additional member to struct mempolicy is added to support the mode flags:
struct mempolicy {
...
unsigned short policy;
unsigned short flags;
}
The splitting of the 'int' actual passed by the user is done in
sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is
done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of
there are additional flags, and storing it in the new 'flags' member of struct
mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in
the 'policy' member of the struct and all current users of pol->policy remain
unchanged.
The union of the policy mode and optional mode flags is passed back to the
user in get_mempolicy().
This combination of mode and flags within the same actual does not break
userspace code that relies on get_mempolicy(&policy, ...) and either
switch (policy) {
case MPOL_BIND:
...
case MPOL_INTERLEAVE:
...
};
statements or
if (policy == MPOL_INTERLEAVE) {
...
}
statements. Such applications would need to use optional mode flags when
calling set_mempolicy() or mbind() for these previously implemented statements
to stop working. If an application does start using optional mode flags, it
will need to mask the optional flags off the policy in switch and conditional
statements that only test mode.
An additional member is also added to struct shmem_sb_info to store the
optional mode flags.
[hugh@veritas.com: shmem mpol: fix build warning]
Cc: Paul Jackson <pj@sgi.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mempolicy mode constants, MPOL_DEFAULT, MPOL_PREFERRED, MPOL_BIND, and
MPOL_INTERLEAVE, are better declared as part of an enum since they are
sequentially numbered and cannot be combined.
The policy member of struct mempolicy is also converted from type short to
type unsigned short. A negative policy does not have any legitimate meaning,
so it is possible to change its type in preparation for adding optional mode
flags later.
The equivalent member of struct shmem_sb_info is also changed from int to
unsigned short.
For compatibility, the policy formal to get_mempolicy() remains as a pointer
to an int:
int get_mempolicy(int *policy, unsigned long *nmask,
unsigned long maxnode, unsigned long addr,
unsigned long flags);
although the only possible values is the range of type unsigned short.
Cc: Paul Jackson <pj@sgi.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert tiny-shmem.c function comments to kernel-doc. Add parameters and
convert/fix other kernel-doc in shmem.c.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
My memcgroup patch to fix hang with shmem/tmpfs added NULL page handling to
mem_cgroup_charge_common. It seemed convenient at the time, but hard to
justify now: there's a perfectly appropriate swappage to charge and uncharge
instead, this is not on any hot path through shmem_getpage, and no performance
hit was observed from the slight extra overhead.
So revert that NULL page handling from mem_cgroup_charge_common; and make it
clearer by bringing page_cgroup_assign_new_page_cgroup into its body - that
was a helper I found more of a hindrance to understanding.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcgroup regime relies upon a cgroup reclaiming pages from itself within
add_to_page_cache: which may involve some waiting. Whereas shmem and tmpfs
rely upon using add_to_page_cache while holding a spinlock: when it cannot
wait. The consequence is that when a cgroup reaches its limit, shmem_getpage
just hangs - unless there is outside memory pressure too, neither kswapd nor
radix_tree_preload get it out of the retry loop.
In most cases we can mem_cgroup_cache_charge the page waitably first, to
attach the page_cgroup in advance, so add_to_page_cache will do no more than
increment a count; then mem_cgroup_uncharge_page after (in both success and
failure cases) to balance the books again.
And where there used to be a congestion_wait for kswapd (recently made
redundant by radix_tree_preload), use mem_cgroup_cache_charge with NULL page
to go through a cycle of allocation and freeing, without accounting to any
particular page, and without updating the statistics vector. This brings the
cgroup below its limit so the next try usually succeeds.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch modifies the interface to inode_getsecurity to have the function
return a buffer containing the security blob and its length via parameters
instead of relying on the calling function to give it an appropriately sized
buffer.
Security blobs obtained with this function should be freed using the
release_secctx LSM hook. This alleviates the problem of the caller having to
guess a length and preallocate a buffer for this function allowing it to be
used elsewhere for Labeled NFS.
The patch also removed the unused err parameter. The conversion is similar to
the one performed by Al Viro for the security_getprocattr hook.
Signed-off-by: David P. Quigley <dpquigl@tycho.nsa.gov>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Intensive swapoff testing shows shmem_unuse spinning on an entry in
shmem_swaplist pointing to itself: how does that come about? Days pass...
First guess is this: shmem_delete_inode tests list_empty without taking the
global mutex (so the swapping case doesn't slow down the common case); but
there's an instant in shmem_unuse_inode's list_move_tail when the list entry
may appear empty (a rare case, because it's actually moving the head not the
the list member). So there's a danger of leaving the inode on the swaplist
when it's freed, then reinitialized to point to itself when reused. Fix that
by skipping the list_move_tail when it's a no-op, which happens to plug this.
But this same spinning then surfaces on another machine. Ah, I'd never
suspected it, but shmem_writepage's swaplist manipulation is unsafe: though we
still hold page lock, which would hold off inode deletion if the page were in
pagecache, it doesn't hold off once it's in swapcache (free_swap_and_cache
doesn't wait on locked pages). Hmm: we could put the the inode on swaplist
earlier, but then shmem_unuse_inode could never prune unswapped inodes.
Fix this with an igrab before dropping info->lock, as in shmem_unuse_inode;
though I am a little uneasy about the iput which has to follow - it works, and
I see nothing wrong with it, but it is surprising that shmem inode deletion
may now occur below shmem_writepage. Revisit this fix later?
And while we're looking at these races: the way shmem_unuse tests swapped
without holding info->lock looks unsafe, if we've more than one swap area: a
racing shmem_writepage on another page of the same inode could be putting it
in swapcache, just as we're deciding to remove the inode from swaplist -
there's a danger of going on swap without being listed, so a later swapoff
would hang, being unable to locate the entry. Move that test and removal down
into shmem_unuse_inode, once info->lock is held.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nick has observed that shmem.c still uses GFP_ATOMIC when adding to page cache
or swap cache, without any radix tree preload: so tending to deplete emergency
reserves of memory.
GFP_ATOMIC remains appropriate in shmem_writepage's add_to_swap_cache: it's
being called under memory pressure, so must not wait for more memory to become
available. But shmem_unuse_inode now has a window in which it can and should
preload with GFP_KERNEL, and say GFP_NOWAIT instead of GFP_ATOMIC in its
add_to_page_cache.
shmem_getpage is not so straightforward: its filepage/swappage integrity
relies upon exchanging between caches under spinlock, and it would need a lot
of restructuring to place the preloads correctly. Instead, follow its pattern
of retrying on races: use GFP_NOWAIT instead of GFP_ATOMIC in
add_to_page_cache, and begin each circuit of the repeat loop with a sleeping
radix_tree_preload, followed immediately by radix_tree_preload_end - that
won't guarantee success in the next add_to_page_cache, but doesn't need to.
And we can then remove that bothersome congestion_wait: when needed, it'll
automatically get done in the course of the radix_tree_preload.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Looks-good-to: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are a couple of reasons (patches follow) why it would be good to open a
window for sleep in shmem_unuse_inode, between its search for a matching swap
entry, and its handling of the entry found.
shmem_unuse_inode must then use igrab to hold the inode against deletion in
that window, and its corresponding iput might result in deletion: so it had
better unlock_page before the iput, and might as well release the page too.
Nor is there any need to hold on to shmem_swaplist_mutex once we know we'll
leave the loop. So this unwinding moves from try_to_unuse and shmem_unuse
into shmem_unuse_inode, in the case when it finds a match.
Let try_to_unuse break on error in the shmem_unuse case, as it does in the
unuse_mm case: though at this point in the series, no error to break on.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem_unuse is at present an unbroken search through every swap vector page of
every tmpfs file which might be swapped, all under shmem_swaplist_lock. This
dates from long ago, when the caller held mmlist_lock over it all too: long
gone, but there's never been much pressure for preemptible swapoff.
Make it a little more preemptible, replacing shmem_swaplist_lock by
shmem_swaplist_mutex, inserting a cond_resched in the main loop, and a
cond_resched_lock (on info->lock) at one convenient point in the
shmem_unuse_inode loop, where it has no outstanding kmap_atomic.
If we're serious about preemptible swapoff, there's much further to go e.g.
I'm stupid to let the kmap_atomics of the decreasingly significant HIGHMEM
case dictate preemptiblility for other configs. But as in the earlier patch
to make swapoff scan ptes preemptibly, my hidden agenda is really towards
making memcgroups work, hardly about preemptibility at all.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
tmpfs is expected to limit the memory used (unless mounted with nr_blocks=0 or
size=0). But if a stacked filesystem such as unionfs gets pages from a sparse
tmpfs file by reading holes, and then writes to them, it can easily exceed any
such limit at present.
So suppress the SGP_READ "don't allocate page" ZERO_PAGE optimization when
reading for the kernel (a KERNEL_DS check, ugh, sorry about that). Indeed,
pessimistically mark such pages as dirty, so they cannot get reclaimed and
unaccounted by mistake. The venerable shmem_recalc_inode code (originally to
account for the reclaim of clean pages) suffices to get the accounting right
when swappages are dropped in favour of more uptodate filepages.
This also fixes the NULL shmem_swp_entry BUG or oops in shmem_writepage,
caused by unionfs writing to a very sparse tmpfs file: to minimize memory
allocation in swapout, tmpfs requires the swap vector be allocated upfront,
which wasn't always happening in this stacked case.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
tmpfs has long allowed for a fresh filepage to be created in pagecache, just
before shmem_getpage gets the chance to match it up with the swappage which
already belongs to that offset. But unionfs_writepage now does a
find_or_create_page, divorced from shmem_getpage, which leaves conflicting
filepage and swappage outstanding indefinitely, when unionfs is over tmpfs.
Therefore shmem_writepage (where a page is swizzled from file to swap) must
now be on the lookout for existing swap, ready to free it in favour of the
more uptodate filepage, instead of BUGging on that clash. And when the
add_to_page_cache fails in shmem_unuse_inode, it must defer to an uptodate
filepage, otherwise swapoff would hang. Whereas when add_to_page_cache fails
in shmem_getpage, it should retry in the same way it already does.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>