File syncs and directory syncs are optimized by copying their
items into a special (copy-on-write) log tree. There is one log tree per
subvolume and the btrfs super block points to a tree of log tree roots.
After a crash, items are copied out of the log tree and back into the
subvolume. See tree-log.c for all the details.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The btree defragger wasn't making forward progress because the new key wasn't
being saved by the btrfs_search_forward function.
This also disables the automatic btree defrag, it wasn't scaling well to
huge filesystems. The auto-defrag needs to be done differently.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The online btree defragger is simplified and rewritten to use
standard btree searches instead of a walk up / down mechanism.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The allocation trees and the chunk trees are serialized via their own
dedicated mutexes. This means allocation location is still not very
fine grained.
The main FS btree is protected by locks on each block in the btree. Locks
are taken top / down, and as processing finishes on a given level of the
tree, the lock is released after locking the lower level.
The end result of a search is now a path where only the lowest level
is locked. Releasing or freeing the path drops any locks held.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Force chunk allocation when find_free_extent has to do a full scan
* Record the max key at the start of defrag so it doesn't run forever
* Block groups might not be contiguous, make a forward search for the
next block group in extent-tree.c
* Get rid of extra checks for total fs size
* Fix relocate_one_reference to avoid relocating the same file data block
twice when referenced by an older transaction
* Use the open device count when allocating chunks so that we don't
try to allocate from devices that don't exist
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When duplicate copies exist, writes are allowed to fail to one of those
copies. This changeset includes a few changes that allow the FS to
continue even when some IOs fail.
It also adds verification of the parent generation number for btree blocks.
This generation is stored in the pointer to a block, and it ensures
that missed writes to are detected.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Checksums were only verified by btrfs_read_tree_block, which meant the
functions to probe the page cache for blocks were not validating checksums.
Normally this is fine because the buffers will only be in cache if they
have already been validated.
But, there is a window while the buffer is being read from disk where
it could be up to date in the cache but not yet verified. This patch
makes sure all buffers go through checksum verification before they
are used.
This is safer, and it prevents modification of buffers before they go
through the csum code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
1) Forced defrag wasn't working properly (btrfsctl -d) because some
cache only checks were incorrect.
2) Defrag only the leaves unless in forced defrag mode.
3) Don't use complex logic to figure out if a leaf is needs defrag
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This allows us to defrag huge directories, but skip the expensive defrag
case in more common usage, where it does not help as much.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This allows the tree walking code to defrag only the newly allocated
buffers, it seems to be a good balance between perfect defragging and the
performance hit of repeatedly reallocating blocks.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This adds two types of btree defrag, a run time form that tries to
defrag recently allocated blocks in the btree when they are still in ram,
and an ioctl that forces defrag of all btree blocks.
File data blocks are not defragged yet, but this can make a huge difference
in sequential btree reads.
Signed-off-by: Chris Mason <chris.mason@oracle.com>