This adds 'ecc_strength' to struct mtd_info. This stores the maximum number of
bit errors that can be corrected in one writesize region.
For consistency with the nand code, 'strength' is similiarly added to struct
nand_ecc_ctrl. This stores the maximum number of bit errors that can be
corrected in one ecc step.
Signed-off-by: Mike Dunn <mikedunn@newsguy.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
The description for badblockbits is incorrect. I think someone just made
up a false description on the spot to satisfy some kerneldoc warning.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Macronix is produing SLC NAND MX30LF1208AA, so add their manufacturer
code to the manufacturer lists.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
The nand_chip.ops field is a struct that is passed around globally with
no particular reason. Every time it is used, it could just as easily be
replaced with a local struct that is updated on each operation. So make
it local.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
This fixes issues with `nanddump -n' and the MEMREADOOB[64] ioctls on
hardware that performs error correction when reading only OOB data. A
driver for such hardware needs to know when we're doing a RAW vs. a
normal write, but mtd_do_read_oob does not pass such information to the
lower layers (e.g., NAND). We should pass MTD_OOB_RAW or MTD_OOB_PLACE
based on the MTD file mode.
For now, most drivers can get away with just setting:
chip->ecc.read_oob_raw = chip->ecc.read_oob
This is done by default; but for systems that behave as described above,
you must supply your own replacement function.
This was tested with nandsim as well as on actual SLC NAND.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Cc: Jim Quinlan <jim2101024@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
This fixes issues with `nandwrite -n -o' and the MEMWRITEOOB[64] ioctls
on hardware that writes ECC when writing OOB. The problem arises as
follows: `nandwrite -n' can write page data to flash without applying
ECC, but when used with the `-o' option, ECC is applied (incorrectly),
contrary to the `--noecc' option.
I found that this is the case because my hardware computes and writes
ECC data to flash upon either OOB write or page write. Thus, to support
a proper "no ECC" write, my driver must know when we're performing a raw
OOB write vs. a normal ECC OOB write. However, MTD does not pass any raw
mode information to the write_oob functions. This patch addresses the
problems by:
1) Passing MTD_OOB_RAW down to lower layers, instead of just defaulting
to MTD_OOB_PLACE
2) Handling MTD_OOB_RAW within the NAND layer's `nand_do_write_oob'
3) Adding a new (replaceable) function pointer in struct ecc_ctrl; this
function should support writing OOB without ECC data. Current
hardware often can use the same OOB write function when writing
either with or without ECC
This was tested with nandsim as well as on actual SLC NAND.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Cc: Jim Quinlan <jim2101024@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
The set_parts and priv members of struct platform_nand_chip where
removed in commit c36a6ef3845262ade529afb9f458738b1f196f83 but the
kerneldoc wasn't updated.
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Artem Bityutskiy <dedekind1@gmail.com>
Drop now unused set_parts from struct platform_nand_data. Also, while we are
at it, drop long unused priv field from platform_nand_data.
Signed-off-by: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
After several steps of rearrangement and consolidation, it is probably
worth re-sequencing the numbers on some of our affected flags in nand.h
and bbm.h.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
The NAND_CREATE_EMPTY_BBT flag was added by commit:
453281a973
mtd: nand: introduce NAND_CREATE_EMPTY_BBT
This flag is not used within the kernel and not explained well, so I
took the liberty to edit its comments.
Also, this is a BBT-related flag (and closely tied with NAND_BBT_CREATE)
so I'm moving it to bbm.h next to NAND_BBT_CREATE, thus requiring that
we use the flag in nand_chip.bbt_options, *not* in nand_chip.options.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
This patch works with the following three flags from two headers (nand.h
and bbm.h):
(1) NAND_USE_FLASH_BBT (nand.h)
(2) NAND_USE_FLASH_BBT_NO_OOB (nand.h)
(3) NAND_BBT_NO_OOB (bbm.h)
These flags are all related and interdependent, yet they were in
different headers. Flag (2) is simply the combination of (1) and (3) and
can be eliminated.
This patch accomplishes the following:
* eliminate NAND_USE_FLASH_BBT_NO_OOB (i.e., flag (2))
* move NAND_USE_FLASH_BBT (i.e., flag (1)) to bbm.h
It's important to note that because (1) and (3) are now both found in
bbm.h, they should NOT be used in the "nand_chip.options" field.
I removed a small section from the mtdnand DocBook because it referes to
NAND_USE_FLASH_BBT in nand.h, which has been moved to bbm.h.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
This patch handles the problems we've been having with using conflicting
flags from nand.h and bbm.h in the same nand_chip.options field. We
should try to separate these two spaces a little more clearly, and so I
have added a bbt_options field to nand_chip.
Important notes about nand_chip fields:
* bbt_options field should contain ONLY flags from bbm.h. They should be
able to pass safely to a nand_bbt_descr data structure.
- BBT option flags start with the "NAND_BBT_" prefix.
* options field should contian ONLY flags from nand.h. Ideally, they
should not be involved in any BBT related options.
- NAND chip option flags start with the "NAND_" prefix.
* Every flag should have a nice comment explaining what the flag is. While
this is not yet the case on all existing flags, please be sure to write
one for new flags. Even better, you can help document the code better
yourself!
Please try to follow these conventions to make everyone's lives easier.
Among the flags that are being moved to the new bbt_options field
throughout various drivers, etc. are:
* NAND_BBT_SCANLASTPAGE
* NAND_BBT_SCAN2NDPAGE
and there will be more to come.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
The NAND_USE_FLASH_BBT_NO_OOB and NAND_CREATE_EMPTY_BBT flags conflict
with the NAND_BBT_SCANBYTE1AND6 and NAND_BBT_DYNAMICSTRUCT flags,
respectively. This change will allow us to utilize these options
independently.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This patch adds software BCH ECC support to mtd, in order to handle recent
NAND device ecc requirements (4 bits or more).
It does so by adding a new ecc mode (NAND_ECC_SOFT_BCH) for use by board
drivers, and a new Kconfig option to enable BCH support. It relies on the
generic BCH library introduced in a previous patch.
When a board driver uses mode NAND_ECC_SOFT_BCH, it should also set fields
chip->ecc.size and chip->ecc.bytes to select BCH ecc data size and required
error correction capability. See nand_bch_init() documentation for details.
It has been tested on the following platforms using mtd-utils, UBI and
UBIFS: x86 (with nandsim), arm926ejs.
Signed-off-by: Ivan Djelic <ivan.djelic@parrot.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Warning(include/linux/mtd/nand.h:543): No description found for parameter 'badblockbits'
Warning(drivers/mtd/nand/nand_bbt.c:1101): No description found for parameter 'mtd'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: linux-mtd@lists.infradead.org
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Remove tabs between type and name.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
- *var instead of * var
- proper multiline comment
- func(args) instead of func (args)
- 80 lines
So from
|total: 2 errors, 37 warnings, 654 lines checked
we got to one warning.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
it will create an empty BBT table without considering vendor's BBT
information. Vendor's information may be unavailable if the NAND
controller has a different DATA & OOB layout or this information may be
allready purged.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
The first (sixt) byte in the OOB area contains vendor's bad block
information. During identification of the NAND chip this information is
collected by scanning the complete chip.
The option NAND_USE_FLASH_BBT is used to store this information in a sector so
we don't have to scan the complete flash. Unfortunately the code stores
a marker in order to recognize the BBT in the OOB area. This will fail
if the OOB area is completely used for ECC.
This patch introduces the option NAND_USE_FLASH_BBT_NO_OOB which has to be
used with NAND_USE_FLASH_BBT. It will then store BBT on flash without
touching the OOB area. The BBT format on flash remains same except the
first page starts with the recognition pattern followed by the version byte.
This change was tested in nandsim and it looks good so far :)
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Not all the NAND devices have all the information in additional
id bytes.
So add a hook in the nand_chip{} is a good method to calculate the
right value of oobsize, erasesize and so on.
Without the hook,you will get the wrong value, and you have to hack
in the ->scan_bbt() to change the wrong value which make the code
mess.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This patch adds support for reading NAND device ONFI parameters and use
the ONFI informations to define its geometry. In case the device supports
ONFI, the onfi_version field in struct nand_chip contains the version (BCD)
and the onfi_params structure can be used by drivers to set up timings and
such. We currently only support ONFI 1.0 parameters.
Signed-off-by: Brian Norris <norris@broadcom.com>
Signed-off-by: Matthieu Castet <matthieu.castet@parrot.com>
Signed-off-by: Maxime Bizon <mbizon@freebox.fr>
Signed-off-by: Florian Fainelli <ffainelli@freebox.fr>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This command is used to read the device ONFI parameters page.
Signed-off-by: Florian Fainelli <ffainelli@freebox.fr>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
An increase in NAND_MAX_OOBSIZE and NAND_MAX_PAGESIZE is necessary
in order to support many new chips. Among those:
Toshiba TC58TxG4S2FBAxx 8KB page, 576B OOB
Micron MT29F64G08CBAAA 8KB page, 448B OOB
Signed-off-by: Brian Norris <norris@broadcom.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
NAND_BB_LAST_PAGE used to be in nand.h, but it pertained to bad block
management and so belongs next to NAND_BBT_SCAN2NDPAGE in bbm.h. Also,
its previous flag value (0x00000400) conflicted with NAND_BBT_SCANALLPAGES
so I changed its value to 0x00008000. All uses of the name were modified to
provide consistency with other "NAND_BBT_*" flags.
Signed-off-by: Brian Norris <norris@broadcom.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This is a slightly modified version of a patch submitted last year by
Reuben Dowle <reuben.dowle@navico.com>. His original comments follow:
This patch adds support for some MLC NAND flashes that place the BB
marker in the LAST page of the bad block rather than the FIRST page used
for SLC NAND and other types of MLC nand.
Lifted from Samsung datasheet for K9LG8G08U0A (1Gbyte MLC NAND):
"
Identifying Initial Invalid Block(s)
All device locations are erased(FFh) except locations where the initial
invalid block(s) information is written prior to shipping. The initial
invalid block(s) status is defined by the 1st byte in the spare area.
Samsung makes sure that the last page of every initial invalid block has
non-FFh data at the column address of 2,048.
...
"
As far as I can tell, this is the same for all Samsung MLC nand, and in
fact the samsung bsp for the processor used in our project (s3c6410)
actually contained a hack similar to this patch but less portable to
enable use of their NAND parts. I discovered this problem when trying to
use a Micron NAND which does not used this layout - I wish samsung would
put their stuff in main-line to avoid this type of problem.
Currently this patch causes all MLC nand with manufacturer codes from
Samsung and ST(Numonyx) to use this alternative location, since these
are the manufactures that I know of that use this layout.
Signed-off-by: Kevin Cernekee <cernekee@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Some of the newer MLC devices have a 6-byte ID sequence in which
several field definitions differ from older chips in a manner that is
not backward compatible. For instance:
Samsung K9GAG08U0M (5-byte sequence): ec d5 14 b6 74
4th byte, bits 1:0 encode the page size: 0=1KiB, 1=2KiB, 2=4KiB, 3=8KiB
4th byte, bits 5:4 encode the block size: 0=64KiB, 1=128KiB, ...
4th byte, bit 6 encodes the OOB size: 0=8B/512B, 1=16B/512B
Samsung K9GAG08U0D (6-byte sequence): ec d5 94 29 34 41
4th byte, bits 1:0 encode the page size: 0=2KiB, 1=4KiB, 3=8KiB, 4=rsvd
4th byte, bits 7;5:4 encode the block size: 0=128KiB, 1=256KiB, ...
4th byte, bits 6;3:2 encode the OOB size: 1=128B/page, 2=218B/page
This patch uses the new 6-byte scheme if the following conditions are
all true:
1) The ID code wraps around after exactly 6 bytes
2) Manufacturer is Samsung
3) 6th byte is zero
The patch also extends the maximum OOB size from 128B to 256B.
Signed-off-by: Kevin Cernekee <cernekee@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This can be used to protect against bitflips in that field, but now mostly
for smartmedia.
Signed-off-by: Maxim Levitsky <maximlevitsky@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Add nand lock / unlock routines. At least 'micron' parts
support this.
Signed-off-by: Vimal Singh <vimalsingh@ti.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Add NAND_SCAN_SILENT_NODEV to chip->options to the user-worrying messages
'No NAND device found!!!'. This message often worries users (was three
exclamation marks really necessary?) and especially in systems such as the
Simtec Osiris where there may be optional NAND devices which are not
known until probe time.
Revised version of the original NAND_PROBE_SPECULATIVE patch after comments
by Artem Bityutskiy about adding a whole new call.
Signed-off-by: Ben Dooks <ben@simtec.co.uk>
Signed-off-by: Simtec Linux Team <linux@simtec.co.uk>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
nand.h, onenand.h and flashchip.h defined enumeration types
for chip status using the same symbolic names. This prevented
a board file to include more than one of them. In particular,
no nand and onenand platform devices could live in the same file.
This patch augments flashchip.h with a few status values in order
to cover all cases, so nand.h and onenand.h can use flstate_t
without declaring their own status enum.
Signed-off-by: Alessandro Rubini <rubini@unipv.it>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This consolidates common code in nand.h and bbm.h. The
comments and data structures were the same, this keeps
the comment from nand.h as it fits 80 columns, while the one
in bbm.h did not.
Signed-off-by: Alessandro Rubini <rubini@unipv.it>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This patch adds the new mode NAND_ECC_HW_OOB_FIRST in the nand code to
support 4-bit ECC on TI DaVinci devices with large page (up to 2KiB) NAND
chips. This ECC mode is similar to NAND_ECC_HW, with the exception of
read_page API that first reads the OOB area, reads the data in chunks,
feeds the ECC from OOB area to the ECC hw engine and perform any
correction on the data as per the ECC status reported by the engine.
"ECC_HW_OOB_FIRST" name suggested by Thomas Gleixner
Reviewed-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Sneha Narnakaje <nsnehaprabha@ti.com>
Signed-off-by: Sandeep Paulraj <s-paulraj@ti.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This patch adds a new "page" parameter to all NAND read_page/read_page_raw
APIs. The read_page API for the new mode ECC_HW_OOB_FIRST requires the
page information to send the READOOB command and read the OOB area before
the data area.
Reviewed-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Sneha Narnakaje <nsnehaprabha@ti.com>
Signed-off-by: Sandeep Paulraj <s-paulraj@ti.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Add optional callback to allow platform to initialize partitions.
Static partitions on a nand device could vary depending on the size of the
device. This patch allows an optional platform callback to be used to
setup this partition information at runtime.
Scan order is:
1) chip.part_probe_types
2) chip.set_parts
3) chip.partitions
4) full mtd device (fallback for no partitions)
Some of the existing nand drivers could possibly be replaced by the
plat_nand driver by using this patch. These include autcpu12.c and
ts7250.c drivers.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Add optional probe and remove callbacks to the plat_nand driver.
Some platforms may require additional setup, such as configuring the
memory controller, before the nand device can be accessed. This patch
provides an optional callback to handle this setup as well as a callback
to teardown the setup.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Tested-by: Alexander Clouter <alex@digriz.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This patch adds (write|read)_buf callbacks to plat_nand.
The NAND on the TS-7800 provisioned by the FPGA allows readw() and
readl() to be used which gives a 2.5x speed up. To be able to use this
from the plat_nand driver a hook for read_buf (and also write_buf whilst
we are in there) need to be made available. This patch adds the hook.
Signed-off-by: Alexander Clouter <alex@digriz.org.uk>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Siewior <bigeasy@linutronix.de>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Delete extra kernel-doc notation for struct fields and function
parameters that don't exist:
Warning(include/linux/mtd/nand.h:428): Excess struct/union/enum/typedef member 'wq' description in 'nand_chip'
Warning(include/linux/mtd/nand.h:428): Excess struct/union/enum/typedef member 'datbuf' description in 'nand_chip'
Warning(include/linux/mtd/nand.h:428): Excess struct/union/enum/typedef member 'oobbuf' description in 'nand_chip'
Warning(include/linux/mtd/nand.h:428): Excess struct/union/enum/typedef member 'oobdirty' description in 'nand_chip'
Warning(include/linux/mtd/nand.h:428): Excess struct/union/enum/typedef member 'data_poi' description in 'nand_chip'
Warning(drivers/mtd/nand/nand_base.c:2527): Excess function parameter 'maxchips' description in 'nand_scan_tail'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
MTD internal API presently uses 32-bit values to represent
device size. This patch updates them to 64-bits but leaves
the external API unchanged. Extending the external API
is a separate issue for several reasons. First, no one
needs it at the moment. Secondly, whether the implementation
is done with IOCTLs, sysfs or both is still debated. Thirdly
external API changes require the internal API to be accepted
first.
Note that although the MTD API will be able to support 64-bit
device sizes, existing drivers do not and are not required
to do so, although NAND base has been updated.
In general, changing from 32-bit to 64-bit values cause little
or no changes to the majority of the code with the following
exceptions:
- printk message formats
- division and modulus of 64-bit values
- NAND base support
- 32-bit local variables used by mtdpart and mtdconcat
- naughtily assuming one structure maps to another
in MEMERASE ioctl
Signed-off-by: Adrian Hunter <ext-adrian.hunter@nokia.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Current implementation of subpage read feature for NAND has issues with
small page devices. Small page NAND do not support RNDOUT command.
So subpage feature is not applicable for them.
This patch disables support of subpage for small page NAND.
The code is verified on nandsim(SP NAND simulation) and on LP NAND
devices.
Thanks a lot to Artem for finding this issue.
Signed-off-by: Alexey Korolev <akorolev@infradead.org>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This patch enables NAND subpage read functionality.
If upper layer drivers are requesting to read non page aligned data NAND
subpage-read functionality reads the only whose ECC regions which include
requested data when original code reads whole page.
This significantly improves performance in many cases.
Here are some digits :
UBI volume mount time
No subpage reads: 5.75 seconds
Subpage read patch: 2.42 seconds
Open/stat time for files on JFFS2 volume:
No subpage read 0m 5.36s
Subpage read 0m 2.88s
Signed-off-by Alexey Korolev <akorolev@infradead.org>
Acked-by: Artem Bityutskiy <dedekind@infradead.org>
Acked-by: Jörn Engel <joern@logfs.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>