Commit graph

351 commits

Author SHA1 Message Date
Arron Wang
d31652a26b NFC: Fix target mode p2p link establishment
With commit e29a9e2ae1, we set the active_target pointer from
nfc_dep_link_is_up() in order to support the case where the target
detection and the DEP link setting are done atomically by the driver.
That can only happen in initiator mode, so we need to check for that
otherwise we fail to bring a p2p link in target mode.

Signed-off-by: Arron Wang <arron.wang@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2014-01-04 03:31:32 +01:00
Hannes Frederic Sowa
f3d3342602 net: rework recvmsg handler msg_name and msg_namelen logic
This patch now always passes msg->msg_namelen as 0. recvmsg handlers must
set msg_namelen to the proper size <= sizeof(struct sockaddr_storage)
to return msg_name to the user.

This prevents numerous uninitialized memory leaks we had in the
recvmsg handlers and makes it harder for new code to accidentally leak
uninitialized memory.

Optimize for the case recvfrom is called with NULL as address. We don't
need to copy the address at all, so set it to NULL before invoking the
recvmsg handler. We can do so, because all the recvmsg handlers must
cope with the case a plain read() is called on them. read() also sets
msg_name to NULL.

Also document these changes in include/linux/net.h as suggested by David
Miller.

Changes since RFC:

Set msg->msg_name = NULL if user specified a NULL in msg_name but had a
non-null msg_namelen in verify_iovec/verify_compat_iovec. This doesn't
affect sendto as it would bail out earlier while trying to copy-in the
address. It also more naturally reflects the logic by the callers of
verify_iovec.

With this change in place I could remove "
if (!uaddr || msg_sys->msg_namelen == 0)
	msg->msg_name = NULL
".

This change does not alter the user visible error logic as we ignore
msg_namelen as long as msg_name is NULL.

Also remove two unnecessary curly brackets in ___sys_recvmsg and change
comments to netdev style.

Cc: David Miller <davem@davemloft.net>
Suggested-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-20 21:52:30 -05:00
Johannes Berg
2a94fe48f3 genetlink: make multicast groups const, prevent abuse
Register generic netlink multicast groups as an array with
the family and give them contiguous group IDs. Then instead
of passing the global group ID to the various functions that
send messages, pass the ID relative to the family - for most
families that's just 0 because the only have one group.

This avoids the list_head and ID in each group, adding a new
field for the mcast group ID offset to the family.

At the same time, this allows us to prevent abusing groups
again like the quota and dropmon code did, since we can now
check that a family only uses a group it owns.

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-19 16:39:06 -05:00
Johannes Berg
68eb55031d genetlink: pass family to functions using groups
This doesn't really change anything, but prepares for the
next patch that will change the APIs to pass the group ID
within the family, rather than the global group ID.

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-19 16:39:06 -05:00
Johannes Berg
c53ed74236 genetlink: only pass array to genl_register_family_with_ops()
As suggested by David Miller, make genl_register_family_with_ops()
a macro and pass only the array, evaluating ARRAY_SIZE() in the
macro, this is a little safer.

The openvswitch has some indirection, assing ops/n_ops directly in
that code. This might ultimately just assign the pointers in the
family initializations, saving the struct genl_family_and_ops and
code (once mcast groups are handled differently.)

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-19 16:39:05 -05:00
Johannes Berg
4534de8305 genetlink: make all genl_ops users const
Now that genl_ops are no longer modified in place when
registering, they can be made const. This patch was done
mostly with spatch:

@@
identifier ops;
@@
+const
 struct genl_ops ops[] = {
 ...
 };

(except the struct thing in net/openvswitch/datapath.c)

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-14 17:10:41 -05:00
Samuel Ortiz
ddc1a70b5f NFC: Fix SE API related sparse warning
se_io_cb can be declared static. This fixes the following sparse
warning:

net/nfc/netlink.c:1287:6: warning: symbol 'se_io_cb' was not declared.
Should it be static?

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-10-07 14:18:44 +02:00
Eric Lapuyade
2bed278517 NFC: NCI: Modify NCI SPI to implement CS/INT handshake per the spec
The NFC Forum NCI specification defines both a hardware and software
protocol when using a SPI physical transport to connect an NFC NCI
Chipset. The hardware requirement is that, after having raised the chip
select line, the SPI driver must wait for an INT line from the NFC
chipset to raise before it sends the data. The chip select must be
raised first though, because this is the signal that the NFC chipset
will detect to wake up and then raise its INT line. If the INT line
doesn't raise in a timely fashion, the SPI driver should abort
operation.

When data is transferred from Device host (DH) to NFC Controller (NFCC),
the signaling sequence is the following:

Data Transfer from DH to NFCC
• 1-Master asserts SPI_CSN
• 2-Slave asserts SPI_INT
• 3-Master sends NCI-over-SPI protocol header and payload data
• 4-Slave deasserts SPI_INT
• 5-Master deasserts SPI_CSN

When data must be transferred from NFCC to DH, things are a little bit
different.

Data Transfer from NFCC to DH
• 1-Slave asserts SPI_INT -> NFC chipset irq handler called -> process
reading from SPI
• 2-Master asserts SPI_CSN
• 3-Master send 2-octet NCI-over-SPI protocol header
• 4-Slave sends 2-octet NCI-over-SPI protocol payload length
• 5-Slave sends NCI-over-SPI protocol payload
• 6-Master deasserts SPI_CSN

In this case, SPI driver should function normally as it does today. Note
that the INT line can and will be lowered anytime between beginning of
step 3 and end of step 5. A low INT is therefore valid after chip select
has been raised.

This would be easily implemented in a single driver. Unfortunately, we
don't write the SPI driver and I had to imagine some workaround trick to
get the SPI and NFC drivers to work in a synchronized fashion. The trick
is the following:

- send an empty spi message: this will raise the chip select line, and
send nothing. We expect the /CS line will stay arisen because we asked
for it in the spi_transfer cs_change field
- wait for a completion, that will be completed by the NFC driver IRQ
handler when it knows we are in the process of sending data (NFC spec
says that we use SPI in a half duplex mode, so we are either sending or
receiving).
- when completed, proceed with the normal data send.

This has been tested and verified to work very consistently on a Nexus
10 (spi-s3c64xx driver). It may not work the same with other spi
drivers.

The previously defined nci_spi_ops{} whose intended purpose were to
address this problem are not used anymore and therefore totally removed.

The nci_spi_send() takes a new optional write_handshake_completion
completion pointer. If non NULL, the nci spi layer will run the above
trick when sending data to the NFC Chip. If NULL, the data is sent
normally all at once and it is then the NFC driver responsibility to
know what it's doing.

Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 14:59:56 +02:00
Eric Lapuyade
22d4aae589 NFC: NCI: nci_spi_recv_frame() now returns (not forward) the read frame
Previously, nci_spi_recv_frame() would directly transmit incoming frames
to the NCI Core. However, it turns out that some NFC NCI Chips will add
additional proprietary headers that must be handled/removed before NCI
Core gets a chance to handle the frame. With this modification, the chip
phy or driver are now responsible to transmit incoming frames to NCI
Core after proper treatment, and NCI SPI becomes a driver helper instead
of sitting between the NFC driver and NCI Core.

As a general rule in NFC, *_recv_frame() APIs are used to deliver an
incoming frame to an upper layer. To better suit the actual purpose of
nci_spi_recv_frame(), and go along with its nci_spi_send()
counterpart, the function is renamed to nci_spi_read()

The skb is returned as the function result

Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 14:25:41 +02:00
Eric Lapuyade
a4ada6cadb NFC: NCI: zero struct spi_transfer variables before usage
Using ARM compiler, and without zero-ing spi_transfer, spi-s3c64xx
driver would issue abnormal errors due to bpw field value being set to
unexpected value. This structure MUST be set to all zeros except for
those field specifically used.

Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 14:21:09 +02:00
Samuel Ortiz
5ce3f32b52 NFC: netlink: SE API implementation
Implementation of the NFC_CMD_SE_IO command for sending ISO7816 APDUs to
NFC embedded secure elements. The reply is forwarded to user space
through NFC_CMD_SE_IO as well.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 02:35:05 +02:00
Thierry Escande
13292c9a1e NFC: digital: Fix sens_res endiannes handling
This was triggered by the following sparse warning:

net/nfc/digital_technology.c:272:20: sparse: cast to restricted __be16

The SENS_RES response must be treated as __le16 with the first byte
received as LSB and the second one as MSB. This is the way neard
handles it in the sens_res field of the nfc_target structure which is
treated as u16 in cpu endianness. So le16_to_cpu() is used on the
received SENS_RES instead of memcpy'ing it.

SENS_RES test macros have also been fixed accordingly.

Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 02:02:42 +02:00
Thierry Escande
4cf7e03296 NFC: rawsock: Fix a memory leak
In the rawsock data exchange callback, the sk_buff is not freed
on error.

Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 02:02:40 +02:00
Fengguang Wu
180106bd07 NFC: digital: digital_tg_send_sensf_res() can be static
Fixes sparse hint:

net/nfc/digital_technology.c:640:5: sparse: symbol 'digital_tg_send_sensf_res'
was not declared. Should it be static?

Cc: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 02:02:35 +02:00
Samuel Ortiz
260425308d NFC: digital: Add newline to pr_* calls
We do not add the newline to the pr_fmt macro, in order to give more
flexibility to the caller and to keep the logging style consistent with
the rest of the NFC and kernel code.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 02:02:34 +02:00
Samuel Ortiz
c5da0e4a35 NFC: digital: Remove PR_ERR and PR_DBG macros
They can be replaced by the standard pr_err and pr_debug one after
defining the right pr_fmt macro.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 02:02:32 +02:00
Eric Lapuyade
645d5087bd NFC: NCI: Store the spi device pointer from the spi instance
Storing the spi device was forgotten in the original implementation,
which would pretty obviously cause some kind of serious crash when
actually trying to send something through that device.

Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 02:02:30 +02:00
Thierry Escande
1c7a4c24fb NFC Digital: Add target NFC-DEP support
This adds support for NFC-DEP target mode for NFC-A and NFC-F
technologies.

If the driver provides it, the stack uses an automatic mode for
technology detection and automatic anti-collision. Otherwise the stack
tries to use non-automatic synchronization and listens for SENS_REQ and
SENSF_REQ commands.

The detection, activation, and data exchange procedures work exactly
the same way as in initiator mode, as described in the previous
commits, except that the digital stack waits for commands and sends
responses back to the peer device.

Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 02:02:28 +02:00
Thierry Escande
7d0911c02f NFC Digital: Add initiator NFC-DEP support
This adds support for NFC-DEP protocol in initiator mode for NFC-A and
NFC-F technologies.

When a target is detected, the process flow is as follow:

For NFC-A technology:
1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ
    command.
2   - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP
      protocol. NFC core is notified through nfc_targets_found().
      Execution continues at step 4.
3   - Otherwise, it's a tag and the NFC core is notified. Detection
      ends.
4 - The digital stacks sends an ATR_REQ command containing a randomly
    generated NFCID3 and the general bytes obtained from the LLCP layer
    of NFC core.

For NFC-F technology:
1 - The digital stack receives a SENSF_RES as the reply of the
    SENSF_REQ command.
2   - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer
      device is configured for NFC-DEP protocol. NFC core is notified
      through nfc_targets_found(). Execution continues at step 4.
3   - Otherwise it's a type 3 tag. NFC core is notified. Detection
      ends.
4 - The digital stacks sends an ATR_REQ command containing the NFC-F
    NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer
    of NFC core.

For both technologies:
5 - The digital stacks receives the ATR_RES response containing the
    NFCID3 and the general bytes of the peer device.
6 - The digital stack notifies NFC core that the DEP link is up through
    nfc_dep_link_up().
7 - The NFC core performs data exchange through tm_transceive().
8 - The digital stack sends a DEP_REQ command containing an I PDU with
    the data from NFC core.
9 - The digital stack receives a DEP_RES command
10  - If the DEP_RES response contains a supervisor PDU with timeout
      extension request (RTOX) the digital stack sends a DEP_REQ
      command containing a supervisor PDU acknowledging the RTOX
      request. The execution continues at step 9.
11  - If the DEP_RES response contains an I PDU, the response data is
      passed back to NFC core through the response callback. The
      execution continues at step 8.

Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 02:02:27 +02:00
Thierry Escande
8c0695e499 NFC Digital: Add NFC-F technology support
This adds polling support for NFC-F technology at 212 kbits/s and 424
kbits/s. A user space application like neard can send type 3 tag
commands through the NFC core.

Process flow for NFC-F detection is as follow:

1 - The digital stack sends the SENSF_REQ command to the NFC device.
2 - A peer device replies with a SENSF_RES response.
3   - The digital stack notifies the NFC core of the presence of a
      target in the operation field and passes the target NFCID2.

This also adds support for CRC calculation of type CRC-F. The CRC
calculation is handled by the digital stack if the NFC device doesn't
support it.

Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 02:02:25 +02:00
Thierry Escande
2c66daecc4 NFC Digital: Add NFC-A technology support
This adds support for NFC-A technology at 106 kbits/s. The stack can
detect tags of type 1 and 2. There is no support for collision
detection. Tags can be read and written by using a user space
application or a daemon like neard.

The flow of polling operations for NFC-A detection is as follow:

1 - The digital stack sends the SENS_REQ command to the NFC device.
2 - The NFC device receives a SENS_RES response from a peer device and
    passes it to the digital stack.
3   - If the SENS_RES response identifies a type 1 tag, detection ends.
      NFC core is notified through nfc_targets_found().
4   - Otherwise, the digital stack sets the cascade level of NFCID1 to
      CL1 and sends the SDD_REQ command.
5 - The digital stack selects SEL_CMD and SEL_PAR according to the
    cascade level and sends the SDD_REQ command.
4 - The digital stack receives a SDD_RES response for the cascade level
    passed in the SDD_REQ command.
5 - The digital stack analyses (part of) NFCID1 and verify BCC.
6 - The digital stack sends the SEL_REQ command with the NFCID1
    received in the SDD_RES.
6 - The peer device replies with a SEL_RES response
7   - Detection ends if NFCID1 is complete. NFC core notified of new
      target by nfc_targets_found().
8   - If NFCID1 is not complete, the cascade level is incremented (up
      to and including CL3) and the execution continues at step 5 to
      get the remaining bytes of NFCID1.

Once target detection is done, type 1 and 2 tag commands must be
handled by a user space application (i.e neard) through the NFC core.
Responses for type 1 tag are returned directly to user space via NFC
core.
Responses of type 2 commands are handled differently. The digital stack
doesn't analyse the type of commands sent through im_transceive() and
must differentiate valid responses from error ones.
The response process flow is as follow:

1 - If the response length is 16 bytes, it is a valid response of a
    READ command. the packet is returned to the NFC core through the
    callback passed to im_transceive(). Processing stops.
2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a
    valid response of a WRITE command for example. First packet byte
    is set to 0 for no-error and passed back to the NFC core.
    Processing stops.
3 - Any other response is treated as an error and -EIO error code is
    returned to the NFC core through the response callback.

Moreover, since the driver can't differentiate success response from a
NACK response, the digital stack has to handle CRC calculation.

Thus, this patch also adds support for CRC calculation. If the driver
doesn't handle it, the digital stack will calculate CRC and will add it
to sent frames. CRC will also be checked and removed from received
frames. Pointers to the correct CRC calculation functions are stored in
the digital stack device structure when a target is detected. This
avoids the need to check the current target type for every call to
im_transceive() and for every response received from a peer device.

Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 02:02:23 +02:00
Thierry Escande
59ee2361c9 NFC Digital: Implement driver commands mechanism
This implements the mechanism used to send commands to the driver in
initiator mode through in_send_cmd().

Commands are serialized and sent to the driver by using a work item
on the system workqueue. Responses are handled asynchronously by
another work item. Once the digital stack receives the response through
the command_complete callback, the next command is sent to the driver.

This also implements the polling mechanism. It's handled by a work item
cycling on all supported protocols. The start poll command for a given
protocol is sent to the driver using the mechanism described above.
The process continues until a peer is discovered or stop_poll is
called. This patch implements the poll function for NFC-A that sends a
SENS_REQ command and waits for the SENS_RES response.

Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 02:02:07 +02:00
Thierry Escande
4b10884eb4 NFC: Digital Protocol stack implementation
This is the initial commit of the NFC Digital Protocol stack
implementation.

It offers an interface for devices that don't have an embedded NFC
Digital protocol stack. The driver instantiates the digital stack by
calling nfc_digital_allocate_device(). Within the nfc_digital_ops
structure, the driver specifies a set of function pointers for driver
operations. These functions must be implemented by the driver and are:

in_configure_hw:
Hardware configuration for RF technology and communication framing in
initiator mode. This is a synchronous function.

in_send_cmd:
Initiator mode data exchange using RF technology and framing previously
set with in_configure_hw. The peer response is returned through
callback cb. If an io error occurs or the peer didn't reply within the
specified timeout (ms), the error code is passed back through the resp
pointer. This is an asynchronous function.

tg_configure_hw:
Hardware configuration for RF technology and communication framing in
target mode. This is a synchronous function.

tg_send_cmd:
Target mode data exchange using RF technology and framing previously
set with tg_configure_hw. The peer next command is returned through
callback cb. If an io error occurs or the peer didn't reply within the
specified timeout (ms), the error code is passed back through the resp
pointer. This is an asynchronous function.

tg_listen:
Put the device in listen mode waiting for data from the peer device.
This is an asynchronous function.

tg_listen_mdaa:
If supported, put the device in automatic listen mode with mode
detection and automatic anti-collision. In this mode, the device
automatically detects the RF technology and executes the
anti-collision detection using the command responses specified in
mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and
SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and
424F. The driver returns the NFC-DEP ATR_REQ command through cb. The
digital stack deducts the RF tech by analyzing the SoD of the frame
containing the ATR_REQ command. This is an asynchronous function.

switch_rf:
Turns device radio on or off. The stack does not call explicitly
switch_rf to turn the radio on. A call to in|tg_configure_hw must turn
the device radio on.

abort_cmd:
Discard the last sent command.

Then the driver registers itself against the digital stack by using
nfc_digital_register_device() which in turn registers the digital stack
against the NFC core layer. The digital stack implements common NFC
operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc.

This patch is only a skeleton and NFC operations are just stubs.

Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 01:35:42 +02:00
Samuel Ortiz
e29a9e2ae1 NFC: Set active target upon DEP up event reception
As we can potentially get DEP up events without having sent a netlink
command, we need to set the active target properly from dep_link_is_up.
Spontaneous DEP up events can come from devices that detected an active
p2p target. In that case there is no need to call the netlink DEP up
command as the link is already up and running.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 01:35:41 +02:00
Eric Lapuyade
fa544fff62 NFC: NCI: Simplify NCI SPI to become a simple framing/checking layer
NCI SPI layer should not manage the nci dev, this is the job of the nci
chipset driver. This layer should be limited to frame/deframe nci
packets, and optionnaly check integrity (crc) and manage the ack/nak
protocol.

The NCI SPI must not be mixed up with an NCI dev. spi_[dev|device] are
therefore renamed to a simple spi for more clarity.
The header and crc sizes are moved to nci.h so that drivers can use
them to reserve space in outgoing skbs.
nci_spi_send() is exported to be accessible by drivers.

Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 01:35:41 +02:00
Eric Lapuyade
d593751129 NFC: NCI: Rename spi ndev -> nsdev and nci_dev -> ndev for consistency
An hci dev is an hdev. An nci dev is an ndev. Calling an nci spi dev an
ndev is misleading since it's not the same thing. The nci dev contained
in the nci spi dev is also named inconsistently.

Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 01:35:40 +02:00
Eric Lapuyade
079797c3b7 NFC: NCI: Fix wrong allocation size in nci_spi_allocate_device()
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 01:35:40 +02:00
Arron Wang
d8eb18eeca NFC: Export nfc_find_se()
This will be needed by all NFC driver implementing the SE ops.

Signed-off-by: Arron Wang <arron.wang@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25 01:35:39 +02:00
Arron Wang
39525ee1dc NFC: Update secure element state
The secure element state was not updated from the enable/disable ops,
leaving the SE state to disabled for ever.

Signed-off-by: Arron Wang <arron.wang@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-08-14 01:13:40 +02:00
Arron Wang
2c3832834b NFC: Fix secure element state check
Another typo from the initial commit where we check for the secure
element type field instead of its state when enabling or disabling it.

Signed-off-by: Arron Wang <arron.wang@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-08-14 01:13:38 +02:00
Dan Carpenter
4eba11e82a NFC: hci: Fix enable/disable confusion
There is a cut and paste bug so we enable a second time instead of
disabling.

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-08-14 01:13:36 +02:00
Eric Lapuyade
352a5f5fb3 NFC: netlink: Add result of firmware operation to completion event
Result is added as an NFC_ATTR_FIRMWARE_DOWNLOAD_STATUS attribute
containing the standard errno positive value of the completion result.
This event will be sent when the firmare download operation is done and
will contain the operation result.

Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-08-14 01:12:58 +02:00
Eric Lapuyade
ef04158e13 NFC: Move nfc_fw_download_done() definition from private to public
This API must be called by NFC drivers, and its prototype was
incorrectly placed.

Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-08-14 01:08:01 +02:00
Samuel Ortiz
ac22ac466a NFC: Add a GET_SE netlink API
In order to fetch the discovered secure elements from an NFC controller,
we need to send a netlink command that will dump the list of available
SEs from NFC.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-08-14 00:35:19 +02:00
Samuel Ortiz
369f4d503a NFC: Fix SE discovery failure warning condition
This is a typo coming from the initial implementation. se_discover fails
when it returns something different than zero and we should only display
a warning in that case.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-08-14 00:35:19 +02:00
Samuel Ortiz
9ea7187c53 NFC: netlink: Rename CMD_FW_UPLOAD to CMD_FW_DOWNLOAD
Loading a firmware into a target is typically called firmware
download, not firmware upload. So we rename the netlink API to
NFC_CMD_FW_DOWNLOAD in order to avoid any terminology confusion from
userspace.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-07-31 01:19:43 +02:00
Frederic Danis
7427b370e0 NFC: Fix NCI over SPI build
kbuild test robot found following error:

     net/built-in.o: In function `nci_spi_send':
  >> spi.c:(.text+0x19a76f): undefined reference to `crc_ccitt'

Add CRC_CCITT module to Kconfig to fix it

Reported-by: kbuild test robot.
Signed-off-by: Frederic Danis <frederic.danis@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-07-19 16:55:26 +02:00
Samuel Ortiz
4ca546e554 NFC: llcp: Fix the well known services endianness
The WKS (Well Known Services) bitmask should be transmitted in big endian
order. Picky implementations will refuse to establish an LLCP link when the
WKS bit 0 is not set to 1. The vast majority of implementations out there
are not that picky though...

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-06-14 13:45:10 +02:00
Samuel Ortiz
f768b34017 NFC: llcp: Set the LLC Link Management well known service bit
In order to advertise our LLCP support properly and to follow the LLCP
specs requirements, we need to initialize the WKS (Well-Known Services)
bitfield to 1 as SAP 0 is the only mandatory supported service.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-06-14 13:45:09 +02:00
Samuel Ortiz
2635a4bdfa NFC: llcp: Do not send pending Tx frames when the remote is not ready
When we receive a RNR, the remote is busy processing the last received
frame. We set a local flag for that, and we should send a SYMM when it
is set instead of sending any pending frame.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-06-14 13:45:08 +02:00
Samuel Ortiz
b4011239a0 NFC: llcp: Fix non blocking sockets connections
Without the new LLCP_CONNECTING state, non blocking sockets will be
woken up with a POLLHUP right after calling connect() because their
state is stuck at LLCP_CLOSED.
That prevents userspace from implementing any proper non blocking
socket based NFC p2p client.

Cc: stable@vger.kernel.org
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-06-14 13:45:07 +02:00
Thierry Escande
f1b79dc891 NFC: Fix a potential memory leak
In nfc_llcp_tx_work() the sk_buff is not freed when the llcp_sock
is null and the PDU is an I one.

Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-06-14 13:45:06 +02:00
Thierry Escande
17f7ae16ae NFC: Keep socket alive until the DISC PDU is actually sent
This patch keeps the socket alive and therefore does not remove
it from the sockets list in the local until the DISC PDU has been
actually sent. Otherwise we would reply with DM PDUs before sending
the DISC one.

Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-06-14 13:45:05 +02:00
Thierry Escande
58e3dd1558 NFC: Rename nfc_llcp_disconnect() to nfc_llcp_send_disconnect()
nfc_llcp_send_disconnect() already exists but is not used.
nfc_llcp_disconnect() naming is not consistent with other PDU
sending functions.
This patch removes nfc_llcp_send_disconnect() and renames
nfc_llcp_disconnect()

Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-06-14 13:45:04 +02:00
Samuel Ortiz
be0856535c NFC: Add secure element enablement netlink API
Enabling or disabling an NFC accessible secure element through netlink
requires giving both an NFC controller and a secure element indexes.
Once enabled the secure element will handle card emulation once polling
starts.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-06-14 13:45:02 +02:00
Samuel Ortiz
c531c9ec29 NFC: Add secure element enablement internal API
Called via netlink, this API will enable or disable a specific secure
element. When a secure element is enabled, it will handle card emulation
and more generically ISO-DEP target mode, i.e. all target mode cases
except for p2p target mode.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-06-14 13:45:01 +02:00
Samuel Ortiz
ee656e9d09 NFC: Remove and free all SEs when releasing an NFC device
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-06-14 13:45:00 +02:00
Samuel Ortiz
2757c3723c NFC: Send netlink events for secure elements additions and removals
When an NFC driver or host controller stack discovers a secure element,
it will call nfc_add_se(). In order for userspace applications to use
these secure elements, a netlink event will then be sent with the SE
index and its type. With that information userspace applications can
decide wether or not to enable SEs, through their indexes.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-06-14 13:44:59 +02:00
Samuel Ortiz
fed7c25ec0 NFC: Add secure elements addition and removal API
This API will allow NFC drivers to add and remove the secure elements
they know about or detect. Typically this should be called (asynchronously
or not) from the driver or the host interface stack detect_se hook.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-06-14 13:44:58 +02:00
Samuel Ortiz
0a946301c2 NFC: Extend and fix the internal secure element API
Secure elements need to be discovered after enabling the NFC controller.
This is typically done by the NCI core and the HCI drivers (HCI does not
specify how to discover SEs, it is left to the specific drivers).
Also, the SE enable/disable API explicitely takes a SE index as its
argument.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-06-14 13:44:53 +02:00