Quoting Mike Travis in "x86: cleanup early per cpu variables/accesses v4"
(23ca4bba3e):
The DEFINE macro defines the per_cpu variable as well as the early
map and pointer. It also initializes the per_cpu variable and map
elements to "_initvalue". The early_* macros provide access to
the initial map (usually setup during system init) and the early
pointer. This pointer is initialized to point to the early map
but is then NULL'ed when the actual per_cpu areas are setup. After
that the per_cpu variable is the correct access to the variable.
As these variables are NULL'ed before __init sections are dropped
(in setup_per_cpu_maps), they can be safely annotated as __ref.
This change silences following section mismatch warnings:
WARNING: vmlinux.o(.data+0x46c0): Section mismatch in reference from the variable x86_cpu_to_apicid_early_ptr to the variable .init.data:x86_cpu_to_apicid_early_map
The variable x86_cpu_to_apicid_early_ptr references
the variable __initdata x86_cpu_to_apicid_early_map
If the reference is valid then annotate the
variable with __init* (see linux/init.h) or name the variable:
*driver, *_template, *_timer, *_sht, *_ops, *_probe, *_probe_one, *_console,
WARNING: vmlinux.o(.data+0x46c8): Section mismatch in reference from the variable x86_bios_cpu_apicid_early_ptr to the variable .init.data:x86_bios_cpu_apicid_early_map
The variable x86_bios_cpu_apicid_early_ptr references
the variable __initdata x86_bios_cpu_apicid_early_map
If the reference is valid then annotate the
variable with __init* (see linux/init.h) or name the variable:
*driver, *_template, *_timer, *_sht, *_ops, *_probe, *_probe_one, *_console,
WARNING: vmlinux.o(.data+0x46d0): Section mismatch in reference from the variable x86_cpu_to_node_map_early_ptr to the variable .init.data:x86_cpu_to_node_map_early_map
The variable x86_cpu_to_node_map_early_ptr references
the variable __initdata x86_cpu_to_node_map_early_map
If the reference is valid then annotate the
variable with __init* (see linux/init.h) or name the variable:
*driver, *_template, *_timer, *_sht, *_ops, *_probe, *_probe_one, *_console,
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
As a stopgap until Mike Travis's x86-64 gs-based percpu patches are
ready, provide workaround functions for x86_read/write_percpu for
Xen's use.
Specifically, this means that we can't really make use of vcpu
placement, because we can't use a single gs-based memory access to get
to vcpu fields. So disable all that for now.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Stephen Tweedie <sct@redhat.com>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Introduce a new PER_CPU macro called "EARLY_PER_CPU". This is
used by some per_cpu variables that are initialized and accessed
before there are per_cpu areas allocated.
["Early" in respect to per_cpu variables is "earlier than the per_cpu
areas have been setup".]
This patchset adds these new macros:
DEFINE_EARLY_PER_CPU(_type, _name, _initvalue)
EXPORT_EARLY_PER_CPU_SYMBOL(_name)
DECLARE_EARLY_PER_CPU(_type, _name)
early_per_cpu_ptr(_name)
early_per_cpu_map(_name, _idx)
early_per_cpu(_name, _cpu)
The DEFINE macro defines the per_cpu variable as well as the early
map and pointer. It also initializes the per_cpu variable and map
elements to "_initvalue". The early_* macros provide access to
the initial map (usually setup during system init) and the early
pointer. This pointer is initialized to point to the early map
but is then NULL'ed when the actual per_cpu areas are setup. After
that the per_cpu variable is the correct access to the variable.
The early_per_cpu() macro is not very efficient but does show how to
access the variable if you have a function that can be called both
"early" and "late". It tests the early ptr to be NULL, and if not
then it's still valid. Otherwise, the per_cpu variable is used
instead:
#define early_per_cpu(_name, _cpu) \
(early_per_cpu_ptr(_name) ? \
early_per_cpu_ptr(_name)[_cpu] : \
per_cpu(_name, _cpu))
A better method is to actually check the pointer manually. In the
case below, numa_set_node can be called both "early" and "late":
void __cpuinit numa_set_node(int cpu, int node)
{
int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
if (cpu_to_node_map)
cpu_to_node_map[cpu] = node;
else
per_cpu(x86_cpu_to_node_map, cpu) = node;
}
* Add a flag "arch_provides_topology_pointers" that indicates pointers
to topology cpumask_t maps are available. Otherwise, use the function
returning the cpumask_t value. This is useful if cpumask_t set size
is very large to avoid copying data on to/off of the stack.
* The coverage of CONFIG_DEBUG_PER_CPU_MAPS has been increased while
the non-debug case has been optimized a bit.
* Remove an unreferenced compiler warning in drivers/base/topology.c
* Clean up #ifdef in setup.c
For inclusion into sched-devel/latest tree.
Based on:
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
+ sched-devel/latest .../mingo/linux-2.6-sched-devel.git
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Form a single percpu.h from percpu_32.h and percpu_64.h. Both are now pretty
small so this is simply adding them together.
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Move the headers to include/asm-x86 and fixup the
header install make rules
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>