- ACPICA update to upstream version 20140424. That includes a
number of fixes and improvements related to things like GPE
handling, table loading, headers, memory mapping and unmapping,
DSDT/SSDT overriding, and the Unload() operator. The acpidump
utility from upstream ACPICA is included too. From Bob Moore,
Lv Zheng, David Box, David Binderman, and Colin Ian King.
- Fixes and cleanups related to ACPI video and backlight interfaces
from Hans de Goede. That includes blacklist entries for some new
machines and using native backlight by default.
- ACPI device enumeration changes to create platform devices
rather than PNP devices for ACPI device objects with _HID by
default. PNP devices will still be created for the ACPI device
object with device IDs corresponding to real PNP devices, so
that change should not break things left and right, and we're
expecting to see more and more ACPI-enumerated platform devices
in the future. From Zhang Rui and Rafael J Wysocki.
- Updates for the ACPI LPSS (Low-Power Subsystem) driver allowing
it to handle system suspend/resume on Asus T100 correctly.
From Heikki Krogerus and Rafael J Wysocki.
- PM core update introducing a mechanism to allow runtime-suspended
devices to stay suspended over system suspend/resume transitions
if certain additional conditions related to coordination within
device hierarchy are met. Related PM documentation update and
ACPI PM domain support for the new feature. From Rafael J Wysocki.
- Fixes and improvements related to the "freeze" sleep state. They
affect several places including cpuidle, PM core, ACPI core, and
the ACPI battery driver. From Rafael J Wysocki and Zhang Rui.
- Miscellaneous fixes and updates of the ACPI core from Aaron Lu,
Bjørn Mork, Hanjun Guo, Lan Tianyu, and Rafael J Wysocki.
- Fixes and cleanups for the ACPI processor and ACPI PAD (Processor
Aggregator Device) drivers from Baoquan He, Manuel Schölling,
Tony Camuso, and Toshi Kani.
- System suspend/resume optimization in the ACPI battery driver from
Lan Tianyu.
- OPP (Operating Performance Points) subsystem updates from
Chander Kashyap, Mark Brown, and Nishanth Menon.
- cpufreq core fixes, updates and cleanups from Srivatsa S Bhat,
Stratos Karafotis, and Viresh Kumar.
- Updates, fixes and cleanups for the Tegra, powernow-k8, imx6q,
s5pv210, nforce2, and powernv cpufreq drivers from Brian Norris,
Jingoo Han, Paul Bolle, Philipp Zabel, Stratos Karafotis, and
Viresh Kumar.
- intel_pstate driver fixes and cleanups from Dirk Brandewie,
Doug Smythies, and Stratos Karafotis.
- Enabling the big.LITTLE cpufreq driver on arm64 from Mark Brown.
- Fix for the cpuidle menu governor from Chander Kashyap.
- New ARM clps711x cpuidle driver from Alexander Shiyan.
- Hibernate core fixes and cleanups from Chen Gang, Dan Carpenter,
Fabian Frederick, Pali Rohár, and Sebastian Capella.
- Intel RAPL (Running Average Power Limit) driver updates from
Jacob Pan.
- PNP subsystem updates from Bjorn Helgaas and Fabian Frederick.
- devfreq core updates from Chanwoo Choi and Paul Bolle.
- devfreq updates for exynos4 and exynos5 from Chanwoo Choi and
Bartlomiej Zolnierkiewicz.
- turbostat tool fix from Jean Delvare.
- cpupower tool updates from Prarit Bhargava, Ramkumar Ramachandra
and Thomas Renninger.
- New ACPI ec_access.c tool for poking at the EC in a safe way
from Thomas Renninger.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJTjl16AAoJEILEb/54YlRxeKgP/RRQSV7lFtf582Dw/5M/iWOg
qYeNtuYFLArEmJ7SpxHdKsU1ZRm3CahAS1j7grvQMQasUxTzoavMcSBNZefeaoNK
d01LVNqcyKCZs3+izRezk5N1IY+AjdrOcqCdIk8rfgFnc6kOttYUrVcIzKuIKAvJ
MsJ5s/uqP8G69FsAA3Ttdtr0HKiQhN4skSt424wntQRDeJNZPBs74mPKBGh8bxlO
Zr/VCDibKQ2Z8jS7x+TzwZrOxgE1/9x0Cub6GAdTvAfS8A+utPwSkneUyopNqpQ+
tJ5rz5R+HpmPMerizBuU+5s+tvjDPtH4/OZvOPSpYraQSFLOwx3hAm+a5k7fOGmc
XWjXnXWT0i0V3iQkwrspTNjX1RgywbsHbmXrcWn192HResvMQ9zk2gH2ch6m8JhN
yTV5V51dOZicpPuaTCvIkJpsV33p6vRz+EdPBiXoEdua5KKtOg8EnQ470dNaMR92
3ZtWmIvSgGlyPyHlSHLfGXbPUwTYvDNV3aheIoXp9E6WY3WJN9J3WXm4EHKBNVaI
H83kwuk1s92cgqh22H5Pcb0CmDcrbkUdP6hhsPS/aL80/EJMljRP2AYW1Y+l1LAf
pzMLmekHFqQEDjFQltwGvFV/EjFeMHnqOgQONx9ygMaayCGGTYSDx3FbRDesf8t9
qhoFcTPSxoo0XjrGrR6b
=tpdF
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm into next
Pull ACPI and power management updates from Rafael Wysocki:
"ACPICA is the leader this time (63 commits), followed by cpufreq (28
commits), devfreq (15 commits), system suspend/hibernation (12
commits), ACPI video and ACPI device enumeration (10 commits each).
We have no major new features this time, but there are a few
significant changes of how things work. The most visible one will
probably be that we are now going to create platform devices rather
than PNP devices by default for ACPI device objects with _HID. That
was long overdue and will be really necessary to be able to use the
same drivers for the same hardware blocks on ACPI and DT-based systems
going forward. We're not expecting fallout from this one (as usual),
but it's something to watch nevertheless.
The second change having a chance to be visible is that ACPI video
will now default to using native backlight rather than the ACPI
backlight interface which should generally help systems with broken
Win8 BIOSes. We're hoping that all problems with the native backlight
handling that we had previously have been addressed and we are in a
good enough shape to flip the default, but this change should be easy
enough to revert if need be.
In addition to that, the system suspend core has a new mechanism to
allow runtime-suspended devices to stay suspended throughout system
suspend/resume transitions if some extra conditions are met
(generally, they are related to coordination within device hierarchy).
However, enabling this feature requires cooperation from the bus type
layer and for now it has only been implemented for the ACPI PM domain
(used by ACPI-enumerated platform devices mostly today).
Also, the acpidump utility that was previously shipped as a separate
tool will now be provided by the upstream ACPICA along with the rest
of ACPICA code, which will allow it to be more up to date and better
supported, and we have one new cpuidle driver (ARM clps711x).
The rest is improvements related to certain specific use cases,
cleanups and fixes all over the place.
Specifics:
- ACPICA update to upstream version 20140424. That includes a number
of fixes and improvements related to things like GPE handling,
table loading, headers, memory mapping and unmapping, DSDT/SSDT
overriding, and the Unload() operator. The acpidump utility from
upstream ACPICA is included too. From Bob Moore, Lv Zheng, David
Box, David Binderman, and Colin Ian King.
- Fixes and cleanups related to ACPI video and backlight interfaces
from Hans de Goede. That includes blacklist entries for some new
machines and using native backlight by default.
- ACPI device enumeration changes to create platform devices rather
than PNP devices for ACPI device objects with _HID by default. PNP
devices will still be created for the ACPI device object with
device IDs corresponding to real PNP devices, so that change should
not break things left and right, and we're expecting to see more
and more ACPI-enumerated platform devices in the future. From
Zhang Rui and Rafael J Wysocki.
- Updates for the ACPI LPSS (Low-Power Subsystem) driver allowing it
to handle system suspend/resume on Asus T100 correctly. From
Heikki Krogerus and Rafael J Wysocki.
- PM core update introducing a mechanism to allow runtime-suspended
devices to stay suspended over system suspend/resume transitions if
certain additional conditions related to coordination within device
hierarchy are met. Related PM documentation update and ACPI PM
domain support for the new feature. From Rafael J Wysocki.
- Fixes and improvements related to the "freeze" sleep state. They
affect several places including cpuidle, PM core, ACPI core, and
the ACPI battery driver. From Rafael J Wysocki and Zhang Rui.
- Miscellaneous fixes and updates of the ACPI core from Aaron Lu,
Bjørn Mork, Hanjun Guo, Lan Tianyu, and Rafael J Wysocki.
- Fixes and cleanups for the ACPI processor and ACPI PAD (Processor
Aggregator Device) drivers from Baoquan He, Manuel Schölling, Tony
Camuso, and Toshi Kani.
- System suspend/resume optimization in the ACPI battery driver from
Lan Tianyu.
- OPP (Operating Performance Points) subsystem updates from Chander
Kashyap, Mark Brown, and Nishanth Menon.
- cpufreq core fixes, updates and cleanups from Srivatsa S Bhat,
Stratos Karafotis, and Viresh Kumar.
- Updates, fixes and cleanups for the Tegra, powernow-k8, imx6q,
s5pv210, nforce2, and powernv cpufreq drivers from Brian Norris,
Jingoo Han, Paul Bolle, Philipp Zabel, Stratos Karafotis, and
Viresh Kumar.
- intel_pstate driver fixes and cleanups from Dirk Brandewie, Doug
Smythies, and Stratos Karafotis.
- Enabling the big.LITTLE cpufreq driver on arm64 from Mark Brown.
- Fix for the cpuidle menu governor from Chander Kashyap.
- New ARM clps711x cpuidle driver from Alexander Shiyan.
- Hibernate core fixes and cleanups from Chen Gang, Dan Carpenter,
Fabian Frederick, Pali Rohár, and Sebastian Capella.
- Intel RAPL (Running Average Power Limit) driver updates from Jacob
Pan.
- PNP subsystem updates from Bjorn Helgaas and Fabian Frederick.
- devfreq core updates from Chanwoo Choi and Paul Bolle.
- devfreq updates for exynos4 and exynos5 from Chanwoo Choi and
Bartlomiej Zolnierkiewicz.
- turbostat tool fix from Jean Delvare.
- cpupower tool updates from Prarit Bhargava, Ramkumar Ramachandra
and Thomas Renninger.
- New ACPI ec_access.c tool for poking at the EC in a safe way from
Thomas Renninger"
* tag 'pm+acpi-3.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (187 commits)
ACPICA: Namespace: Remove _PRP method support.
intel_pstate: Improve initial busy calculation
intel_pstate: add sample time scaling
intel_pstate: Correct rounding in busy calculation
intel_pstate: Remove C0 tracking
PM / hibernate: fixed typo in comment
ACPI: Fix x86 regression related to early mapping size limitation
ACPICA: Tables: Add mechanism to control early table checksum verification.
ACPI / scan: use platform bus type by default for _HID enumeration
ACPI / scan: always register ACPI LPSS scan handler
ACPI / scan: always register memory hotplug scan handler
ACPI / scan: always register container scan handler
ACPI / scan: Change the meaning of missing .attach() in scan handlers
ACPI / scan: introduce platform_id device PNP type flag
ACPI / scan: drop unsupported serial IDs from PNP ACPI scan handler ID list
ACPI / scan: drop IDs that do not comply with the ACPI PNP ID rule
ACPI / PNP: use device ID list for PNPACPI device enumeration
ACPI / scan: .match() callback for ACPI scan handlers
ACPI / battery: wakeup the system only when necessary
power_supply: allow power supply devices registered w/o wakeup source
...
* acpi-video:
ACPI / video: Add 4 new models to the use_native_backlight DMI list
ACPI / video: Add use native backlight quirk for the ThinkPad W530
ACPI / video: Unregister the backlight device if a raw one shows up later
backlight: Add backlight device (un)registration notification
nouveau: Don't check acpi_video_backlight_support() before registering backlight
acer-wmi: Add Aspire 5741 to video_vendor_dmi_table
acer-wmi: Switch to acpi_video_unregister_backlight
ACPI / video: Add an acpi_video_unregister_backlight function
ACPI / video: Don't register acpi_video_resume notifier without backlight devices
ACPI / video: change acpi-video brightness_switch_enabled default to 0
* acpica: (63 commits)
ACPICA: Namespace: Remove _PRP method support.
ACPI: Fix x86 regression related to early mapping size limitation
ACPICA: Tables: Add mechanism to control early table checksum verification.
ACPICA: acpidump: Fix repetitive table dump in -n mode.
ACPI: Clean up acpi_os_map/unmap_memory() to eliminate __iomem.
ACPICA: Clean up redudant definitions already defined elsewhere
ACPICA: Linux headers: Add <asm/acenv.h> to remove mis-ordered inclusion of <asm/acpi.h>
ACPICA: Linux headers: Add <acpi/platform/aclinuxex.h>
ACPICA: Linux headers: Remove ACPI_PREEMPTION_POINT() due to no usages.
ACPICA: Update version to 20140424.
ACPICA: Comment/format update, no functional change.
ACPICA: Events: Update GPE handling and initialization code.
ACPICA: Remove extraneous error message for large number of GPEs.
ACPICA: Tables: Remove old mechanism to validate if XSDT contains NULL entries.
ACPICA: Tables: Add new mechanism to skip NULL entries in RSDT and XSDT.
ACPICA: acpidump: Add support to force using RSDT.
ACPICA: Back port of improvements on exception code.
ACPICA: Back port of _PRP update.
ACPICA: acpidump: Fix truncated RSDP signature validation.
ACPICA: Linux header: Add support for stubbed externals.
...
* acpi-enumeration:
ACPI / scan: use platform bus type by default for _HID enumeration
ACPI / scan: always register ACPI LPSS scan handler
ACPI / scan: always register memory hotplug scan handler
ACPI / scan: always register container scan handler
ACPI / scan: Change the meaning of missing .attach() in scan handlers
ACPI / scan: introduce platform_id device PNP type flag
ACPI / scan: drop unsupported serial IDs from PNP ACPI scan handler ID list
ACPI / scan: drop IDs that do not comply with the ACPI PNP ID rule
ACPI / PNP: use device ID list for PNPACPI device enumeration
ACPI / scan: .match() callback for ACPI scan handlers
* acpi-pm:
ACPI / PM: Export rest of the subsys PM callbacks
ACPI / PM: Avoid resuming devices in ACPI PM domain during system suspend
ACPI / PM: Hold ACPI scan lock over the "freeze" sleep state
ACPI / PM: Export acpi_target_system_state() to modules
* acpi-battery:
ACPI / battery: wakeup the system only when necessary
power_supply: allow power supply devices registered w/o wakeup source
ACPI / battery: introduce support for POWER_SUPPLY_PROP_CAPACITY_LEVEL
ACPI / battery: Accelerate battery resume callback
* acpi-tables:
ACPI: Fix conflict between customized DSDT and DSDT local copy
* acpi-general:
ACPI: Add acpi_bus_attach_private_data() to attach data to ACPI handle
* acpi-processor:
ACPI / processor: Fix STARTING/DYING action in acpi_cpu_soft_notify()
ACPI / processor: Check if LAPIC is present during initialization
ACPI / ia64: introduce variable acpi_lapic into ia64
* acpi-pad:
ACPI / PAD: Use time_before() for time comparison
ACPI / PAD: call schedule() when need_resched() is true
* acpi-scan:
ACPI / scan: do not scan fixed hardware on HW-reduced platform
* acpi-hotplug:
ACPI: add dynamic_debug support
ACPI / notify: Clean up handling of hotplug events
* acpi-pci:
ACPI / PCI: Stub out pci_acpi_crs_quirks() and make it x86 specific
development cycle:
- Antoine Tenart made the get_group_pins() vtable entry
optional.
- Antoine also provides an entirely new driver for the
Marvell Berlin SoC. This is unrelated to the existing
MVEBU hardware driver and warrants its own separate
driver.
- Reflected from the GPIO subsystem there is a number of
refactorings to make pin control drivers with gpiochips
use the new gpiolib irqchip helpers. The following
drivers were converted to use the new infrastructure:
- ST Microelectronics STiH416 and friends
- The Atmel AT91
- The CSR SiRF (Prima2)
- The Qualcomm MSM series
- Massive improvements in the Qualcomm MSM driver from
Bjorn Andersson, Andy Gross and Kumar Gala. Among those
new support for the IPQ8064 and MSM8x74 SoC variants.
- Support for the Freescale i.MX6 SoloX SoC variant.
- Massive improvements in the Allwinner sunxi driver from
Boris Brezillon, Maxime Ripard and Chen-Yu Tsai.
- Renesas PFC updates from Laurent Pinchart, Kuninori
Morimoto, Wolfram Sang and Magnus Damm.
- Cleanups and refactorings of the nVidia Tegra driver from
Stepgen Warren.
- The Exynos driver now supports the Exynos3250 SoC.
- Intel BayTrail updates from Jin Yao, Mika Westerberg.
- The MVEBU driver now supports the Orion5x SoC
variants, which is part of the effort of getting rid of
the old Marvell kludges in arch/arm/mach-orion5x
- Rockchip driver updates from Heiko Stuebner.
- A ton of cleanups and janitorial patches from Axel Lin.
- Some minor fixes and improvements here and there.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJTjXDAAAoJEEEQszewGV1z8zsP/i+7o5sU+rm3ZwfpCyuVih7E
90nHTMzV2Se+8gX4D0jLZUYkxMQn9pkqG616IyT5kP5sx9co8raoAUC1Qmv6b7rI
kIlfCaDvjPzEWgH9KZNjMP8P0rqdj8TelDRSZ0EPzHdfyUwxFmLRnFo7ywguPCG2
SOM1uo7XhjXmphoUP7ZZWs3doflYxBAL3ZdK77QQcLEQjlNxSz/vbls6ldkKie7C
XF7DKvGqphB8GdGKkdFvyhjQNy26rBanZRy94yU53Ak5zc0mTtmO+WEjiByAW1m7
Fy6AVdZZhl6BLxzn9rUzsKdrWzaWzUkQNilhEO1u7OfZtNQbuYWcv7GJ7h37lIzI
P0jegOy+7d4JxPyROphtJXx6AwV1pFFimMnWS4rHwUdjwMBVRnlOKQW/G7ulEBsn
wD5MhD76nHySKtjYquI+iVHbmE06hG8iDUUxFm2saVG8O7Siw+E2aCXPLm9+Lp5R
fBNuj8lnTy8/F6sHyPs8Bw6u8Ra5uSmRhV4j3B/jZG8pAksqUK6xOmjdVdE7JmoH
qIZxuQhqrAhjmGkAg/ys5SUuMMbegxTI2f+rDy7rpWonbVOtaItMpgbYwyiQpIR4
BDmlwZi5BNupiEW7Yzp6utWYIyYA0ntuMGpnqnPBDBCn5jZOCUTMjZXAPCDK5dEN
Ktyu+5jCBZgpqS+KgTXl
=wGE5
-----END PGP SIGNATURE-----
Merge tag 'pinctrl-v3.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-pinctrl into next
Pull pin control changes from Linus Walleij:
"This is the bulk of pin control changes for the v3.16 development
cycle:
- Antoine Tenart made the get_group_pins() vtable entry optional.
- Antoine also provides an entirely new driver for the Marvell Berlin
SoC. This is unrelated to the existing MVEBU hardware driver and
warrants its own separate driver.
- reflected from the GPIO subsystem there is a number of refactorings
to make pin control drivers with gpiochips use the new gpiolib
irqchip helpers. The following drivers were converted to use the
new infrastructure:
* ST Microelectronics STiH416 and friends
* The Atmel AT91
* The CSR SiRF (Prima2)
* The Qualcomm MSM series
- massive improvements in the Qualcomm MSM driver from Bjorn
Andersson, Andy Gross and Kumar Gala. Among those new support for
the IPQ8064 and MSM8x74 SoC variants.
- support for the Freescale i.MX6 SoloX SoC variant.
- massive improvements in the Allwinner sunxi driver from Boris
Brezillon, Maxime Ripard and Chen-Yu Tsai.
- Renesas PFC updates from Laurent Pinchart, Kuninori Morimoto,
Wolfram Sang and Magnus Damm.
- Cleanups and refactorings of the nVidia Tegra driver from Stepgen
Warren.
- the Exynos driver now supports the Exynos3250 SoC.
- Intel BayTrail updates from Jin Yao, Mika Westerberg.
- the MVEBU driver now supports the Orion5x SoC variants, which is
part of the effort of getting rid of the old Marvell kludges in
arch/arm/mach-orion5x
- Rockchip driver updates from Heiko Stuebner.
- a ton of cleanups and janitorial patches from Axel Lin.
- some minor fixes and improvements here and there"
* tag 'pinctrl-v3.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-pinctrl: (93 commits)
pinctrl: sirf: fix a bad conflict resolution
pinctrl: msm: Add more MSM8X74 pin definitions
pinctrl: qcom: ipq8064: Fix naming convention
pinctrl: msm: Add missing sdc1 and sdc3 groups
pinctrl: sirf: switch to using allocated state container
pinctrl: Enable "power-source" to be extracted from DT files
pinctrl: sunxi: create irq/pin mapping during init
pinctrl: pinconf-generic: Use kmemdup instead of kmalloc + memcpy
pinctrl: berlin: Use devm_ioremap_resource()
pinctrl: sirf: fix typo for GPIO bank number
pinctrl: sunxi: depend on RESET_CONTROLLER
pinctrl: sunxi: fix pin numbers passed to register offset helpers
pinctrl: add pinctrl driver for imx6sx
pinctrl/at91: Fix lockup when IRQ on PIOC and PIOD occurs
pinctrl: msm: switch to using generic GPIO irqchip helpers
pinctrl: sunxi: Fix multiple registration issue
pinctrl: sunxi: Fix recursive dependency
pinctrl: berlin: add the BG2CD pinctrl driver
pinctrl: berlin: add the BG2 pinctrl driver
pinctrl: berlin: add the BG2Q pinctrl driver
...
The _PRP method is not going to be a part of the ACPI standard. This patch
removes its support code introduced by the following commits:
1. ACPICA: Predefined names: Add support for the _PRP method.
2. ACPICA: Update for _PRP predefined name.
3. ACPICA: Add support for _LPD and _PRP methods.
4. ACPICA: Back port of _PRP update.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The following warning message is triggered:
WARNING: CPU: 0 PID: 0 at mm/early_ioremap.c:136 __early_ioremap+0x11f/0x1f2()
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 3.15.0-rc1-00017-g86dfc6f3-dirty #298
Hardware name: Intel Corporation S2600CP/S2600CP, BIOS SE5C600.86B.99.99.x036.091920111209 09/19/2011
0000000000000009 ffffffff81b75c40 ffffffff817c627b 0000000000000000
ffffffff81b75c78 ffffffff81067b5d 000000000000007b 8000000000000563
00000000b96b20dc 0000000000000001 ffffffffff300e0c ffffffff81b75c88
Call Trace:
[<ffffffff817c627b>] dump_stack+0x45/0x56
[<ffffffff81067b5d>] warn_slowpath_common+0x7d/0xa0
[<ffffffff81067c3a>] warn_slowpath_null+0x1a/0x20
[<ffffffff81d4b9d5>] __early_ioremap+0x11f/0x1f2
[<ffffffff81d4bc5b>] early_ioremap+0x13/0x15
[<ffffffff81d2b8f3>] __acpi_map_table+0x13/0x18
[<ffffffff817b8d1a>] acpi_os_map_memory+0x26/0x14e
[<ffffffff813ff018>] acpi_tb_acquire_table+0x42/0x70
[<ffffffff813ff086>] acpi_tb_validate_table+0x27/0x37
[<ffffffff813ff0e5>] acpi_tb_verify_table+0x22/0xd8
[<ffffffff813ff6a8>] acpi_tb_install_non_fixed_table+0x60/0x1c9
[<ffffffff81d61024>] acpi_tb_parse_root_table+0x218/0x26a
[<ffffffff81d1b120>] ? early_idt_handlers+0x120/0x120
[<ffffffff81d610cd>] acpi_initialize_tables+0x57/0x59
[<ffffffff81d5f25d>] acpi_table_init+0x1b/0x99
[<ffffffff81d2bca0>] acpi_boot_table_init+0x1e/0x85
[<ffffffff81d23043>] setup_arch+0x99d/0xcc6
[<ffffffff81d1b120>] ? early_idt_handlers+0x120/0x120
[<ffffffff81d1bbbe>] start_kernel+0x8b/0x415
[<ffffffff81d1b120>] ? early_idt_handlers+0x120/0x120
[<ffffffff81d1b5ee>] x86_64_start_reservations+0x2a/0x2c
[<ffffffff81d1b72e>] x86_64_start_kernel+0x13e/0x14d
---[ end trace 11ae599a1898f4e7 ]---
when installing the following table during early stage:
ACPI: SSDT 0x00000000B9638018 07A0C4 (v02 INTEL S2600CP 00004000 INTL 20100331)
The regression is caused by the size limitation of the x86 early IO mapping.
The root cause is:
1. ACPICA doesn't split IO memory mapping and table mapping;
2. Linux x86 OSL implements acpi_os_map_memory() using a size limited fix-map
mechanism during early boot stage, which is more suitable for only IO
mappings.
This patch fixes this issue by utilizing acpi_gbl_verify_table_checksum to
disable the table mapping during early stage and enabling it again for the
late stage. In this way, the normal code path is not affected. Then after
the code related to the root cause is cleaned up, the early checksum
verification can be easily re-enabled.
A new boot parameter - acpi_force_table_verification is introduced for
the platforms that require the checksum verification to stop loading bad
tables.
This fix also covers the checksum verification for the table overrides. Now
large tables can also be overridden using the initrd override mechanism.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Reported-and-tested-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
It is reported that Linux x86 kernel cannot map large tables. The following
large SSDT table on such platform fails to pass checksum verification and
cannot be installed:
ACPI: SSDT 0x00000000B9638018 07A0C4 (v02 INTEL S2600CP 00004000 INTL 20100331)
It sounds strange that in the 64-bit virtual memory address space, we
cannot map a single ACPI table to do checksum verification. The root cause
is:
1. ACPICA doesn't split IO memory mapping and table mapping;
2. Linux x86 OSL implements acpi_os_map_memory() using a size limited fix-map
mechanism during early boot stage, which is more suitable for only IO
mappings.
ACPICA originally only mapped table header for signature validation, and
this header mapping is required by OSL override mechanism. There was no
checksum verification because we could not map the whole table using this
OSL. While the following ACPICA commit enforces checksum verification by
mapping the whole table during Linux boot stage and it finally triggers
this issue on some platforms:
Commit: 86dfc6f339
Subject: ACPICA: Tables: Fix table checksums verification before installation.
Before doing further cleanups for the OSL table mapping and override
implementation, this patch introduces an option for such OSPMs to
temporarily discard the checksum verification feature. It then can be
re-enabled easily when the ACPICA and the underlying OSL is ready.
This patch also deletes a comment around the limitation of mappings because
it is not correct. The limitation is not how many times we can map in the
early stage, but the OSL mapping facility may not be suitable for mapping
the ACPI tables and thus may complain us the size limitation.
The acpi_tb_verify_table() is renamed to acpi_tb_verify_temp_table() due to the
work around added, it now only applies to the table descriptor that hasn't
been installed and cannot be used in other cases. Lv Zheng.
Tested-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Because of the growing demand for enumerating ACPI devices to
platform bus, change the code to enumerate ACPI device objects to
platform bus by default. Namely, create platform devices for the
ACPI device objects that
1. Have pnp.type.platform_id set (device objects with _HID currently).
2. Do not have a scan handler attached.
3. Are not SPI/I2C slave devices (that should be enumerated to the
appropriate buses bus by their parent).
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
[rjw: Subject and changelog, rebase and code cleanup]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Prevent platform devices from being created for ACPI LPSS devices
if CONFIG_X86_INTEL_LPSS is unset by compiling out the LPSS scan
handler's callbacks only in that case and still compiling its device
ID list in and registering the scan handler in either case.
This change is based on a prototype from Zhang Rui.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Prevent platform devices from being created for ACPI memory device
objects if CONFIG_ACPI_HOTPLUG_MEMORY is unset by compiling out the
memory hotplug scan handler's callbacks only in that case and still
compiling its device ID list in and registering the scan handler in
either case.
Also unset the memory hotplug scan handler's .attach() callback
if acpi_no_memhotplug is set, but still register the scan handler to
avoid creating platform devices for ACPI memory devices in that case
too.
This change is based on a prototype from Zhang Rui.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Prevent platform devices from being created for ACPI containers
if CONFIG_ACPI_CONTAINER is unset by compiling out the container
scan handler's callbacks only in that case and still compiling
its device ID list in and registering the scan handler in either
case.
This change is based on a prototype from Zhang Rui.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Currently, some scan handlers can be compiled out entirely, which
leaves the device objects they normally attach to without a scan
handler. This isn't a problem as long as we don't have any default
enumeration mechanism that applies to all devices without a scan
handler. However, if such a default enumeration is added, it still
should not be applied to devices that are normally attached to by
scan handlers, because that may result in creating "physical" device
objects of a wrong type for them.
Since we are going to create platform device objects for all ACPI
device objects with pnp.type.platform_id set by default, clear
pnp.type.platform_id where there is a matching scan handler without
an .attach() callback and otherwise simply treat that scan handler
as though the .attach() callback was present but always returned 0.
This will allow us to compile out scan handler callbacks and leave
the device ID lists used by them so as to prevent creating platform
device objects for the matching ACPI devices.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Only certain types of ACPI device objects can be enumerated as
platform devices, so in order to distinguish them from the others
introduce a new ACPI device PNP type flag, platform_id, and set it
for devices with a valid _HID to start with.
This change is based on a Zhang Rui's prototype.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
The "serial" PNP driver supports some "unknown" PNP modems
(PNPCXXX/PNPDXXX) by matching magic strings in the PNP device name
or the PNP device card name.
ACPI enumerated PNP devices neither are PNP cards, nor have those
magic strings in device names, so this mechamism never actually works
for ACPI enumerated PNPCXXX/PNPDXXX devices.
Consequently, it is safe to remove those two IDs from the PNP ACPI scan
handler's device ID list.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
[rjw: Subject and changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
The PNP ACPI scan handler device ID list includes all the IDs from
all of the struct pnp_device_id instances in the tree, but some of
them do not follow the ACPI PNP ID rule (3 letters + 4 hex digits).
For those IDs, the coressponding devices will never be enumerated
via ACPI, so it is safe to remove them from the PNP ACPI ID list.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
[rjw: Subject and changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
ACPI can be used to enumerate PNP devices, but the code does not
handle this in the right way currently. Namely, if an ACPI device
object
1. Has a _CRS method,
2. Has an identification of
"three capital characters followed by four hex digits",
3. Is not in the excluded IDs list,
it will be enumerated to PNP bus (that is, a PNP device object will
be create for it). This means that, actually, the PNP bus type is
used as the default bus type for enumerating _HID devices in ACPI.
However, more and more _HID devices need to be enumerated to the
platform bus instead (that is, platform device objects need to be
created for them). As a result, the device ID list in acpi_platform.c
is used to enforce creating platform device objects rather than PNP
device objects for matching devices. That list has been continuously
growing recently, unfortunately, and it is pretty much guaranteed to
grow even more in the future.
To address that problem it is better to enumerate _HID devices
as platform devices by default. To this end, change the way of
enumerating PNP devices by adding a PNP ACPI scan handler that
will use a device ID list to create PNP devices for the ACPI
device objects whose device IDs are present in that list.
The initial device ID list in the PNP ACPI scan handler contains
all of the pnp_device_id strings from all the existing PNP drivers,
so this change should be transparent to the PNP core and all of the
PNP drivers. Still, in the future it should be possible to reduce
its size by converting PNP drivers that need not be PNP for any
technical reasons into platform drivers.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
[rjw: Rewrote the changelog, modified the PNP ACPI scan handler code]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Introduce a .match() callback for ACPI scan handlers to allow them to
use more elaborate matching algorithms if necessary. That is needed
for the upcoming PNP scan handler in particular.
This change is based on a Zhang Rui's prototype.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
ACPI Battery device receives notifications from firmware frequently,
and most of these notifications are some general events, like battery
remaining capacity change, etc, which should not wake the system up
if the system is in suspend/hibernate state.
This causes a problem that the system wakes up from suspend to freeze
shortly, because there is an ACPI battery notification every 10 seconds.
Fix the problem in this patch by registering ACPI battery device'
own wakeup source, and waking up the system only when the battery remaining
capacity is critical low, or lower than the alarm capacity set via _BTP.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=76221
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPI battery device receives notifications when
1. the remaining battery capacity becomes critical low
2. the trip point set by the _BTP (Design capacity of Warning by default)
is reached or crossed.
So it is able to support POWER_SUPPLY_PROP_CAPACITY_LEVEL to report
POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
POWER_SUPPLY_CAPACITY_LEVEL_LOW,
POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
POWER_SUPPLY_CAPACITY_LEVEL_FULL,
capacity levels to power supply core and user space.
Introduce support for POWER_SUPPLY_PROP_CAPACITY_LEVEL in this patch.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA doesn't include protections around address space checking, Linux
build tests always complain increased sparse warnings around ACPICA
internal acpi_os_map/unmap_memory() invocations. This patch tries to fix
this issue permanently.
There are 2 choices left for us to solve this issue:
1. Add __iomem address space awareness into ACPICA.
2. Remove sparse checker of __iomem from ACPICA source code.
This patch chooses solution 2, because:
1. Most of the acpi_os_map/unmap_memory() invocations are used for ACPICA.
table mappings, which in fact are not IO addresses.
2. The only IO addresses usage is for "system memory space" mapping code in:
drivers/acpi/acpica/exregion.c
drivers/acpi/acpica/evrgnini.c
drivers/acpi/acpica/exregion.c
The mapped address is accessed in the handler of "system memory space"
- acpi_ex_system_memory_space_handler(). This function in fact can be
changed to invoke acpi_os_read/write_memory() so that __iomem can
always be type-casted in the OSL layer.
According to the above investigation, we drew the following conclusion:
It is not a good idea to introduce __iomem address space awareness into
ACPICA mostly in order to protect non-IO addresses.
We can simply remove __iomem for acpi_os_map/unmap_memory() to remove
__iomem checker for ACPICA code. Then we need to enforce external usages
to invoke other APIs that are aware of __iomem address space.
The external usages are:
drivers/acpi/apei/einj.c
drivers/acpi/acpi_extlog.c
drivers/char/tpm/tpm_acpi.c
drivers/acpi/nvs.c
This patch thus performs cleanups in this way:
1. Add acpi_os_map/unmap_iomem() to be invoked by non-ACPICA code.
2. Remove __iomem from acpi_os_map/unmap_memory().
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
To be future-proof and for better readability the time comparisons are
modified to use time_before() instead of plain, error-prone math.
Signed-off-by: Manuel Schölling <manuel.schoelling@gmx.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Like all of the other *30 ThinkPad models, the W530 has a broken acpi-video
backlight control. Note in order for this to actually fix things on the
ThinkPad W530 the commit titled:
"nouveau: Don't check acpi_video_backlight_support() before registering backlight"
is also needed.
References: https://bugzilla.redhat.com/show_bug.cgi?id=1093171
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When video.use_native_backlight=1 and non intel gfx are in use, the raw
backlight device of the gfx driver will show up after acpi-video has done its
acpi_video_verify_backlight_support() check.
This causes video.use_native_backlight=1 to not have the desired result.
This patch fixes this by adding a backlight notifier and when a raw
backlight is registered or unregistered re-doing the
acpi_video_verify_backlight_support() check.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Use acpi_bus_attach_private_data() to attach private data
instead of acpi_attach_data().
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There is already acpi_bus_get_private_data() to get ACPI handle data
which is associated with acpi_bus_private_data_handler(). This patch
is to add acpi_bus_attach_private_data() to make a pair and facilitate
to attach and get data to/from ACPI handle.
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit 1a699476e2 ("ACPI / hotplug / PCI: Hotplug notifications
from acpi_bus_notify()") added debug messages for a few common
events. These debug messages are unconditionally enabled if
CONFIG_DYNAMIC_DEBUG is defined, contrary to the documented
meaning, making the ACPI system spew lots of unwanted noise on
any kernel with dynamic debugging.
The bug was introduced by commit fbfddae696 ("ACPI: Add
acpi_handle_<level>() interfaces"), which added the
CONFIG_DYNAMIC_DEBUG dependency without respecting its meaning.
Fix by adding real support for dynamic_debug.
Fixes: fbfddae696 ("ACPI: Add acpi_handle_<level>() interfaces")
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When the thermal module is to be removed, we should destroy the wq
acpi_thermal_pm_queue after the ACPI driver's remove callback is
executed as we will need to flush the workqueue there, or a NULL pointer
access will be hit.
Reported-and-tested-by: Kui Zhang <kuizhang@gmail.com>
References: http://www.spinics.net/lists/kernel/msg1747251.html
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This creates fractional divider type clock for the ones that
have it. It is needed by the UART driver as the clock rate must
accommodate to the requested baud rate.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
A power domain where we save the context of the additional
LPSS registers. We need to do this or all LPSS devices are
left in reset state when resuming from D3 on some Baytrails.
The devices with the fractional clock divider also have
zeros for N and M values after resuming unless they are
reset.
Li Aubrey found the root cause for the issue. The idea of
using power domain for LPSS came from Mika Westerberg.
Reported-by: Jin Yao <yao.jin@linux.intel.com>
Suggested-by: Li Aubrey <aubrey.li@linux.intel.com>
Suggested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
[rjw: Added the .complete() callback to the PM domain, fixed build
warning on 32-bit.]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
To seed up suspend and resume of devices included into Intel SoCs
handled by the ACPI LPSS driver during system suspend, make
acpi_lpss_create_device() call device_enable_async_suspend() for
every device created by it.
This requires acpi_create_platform_device() to be modified to return
a pointer to struct platform_device instead of an int. As a result,
acpi_create_platform_device() cannot be pointed to by the .attach
pointer in platform_handler directly any more, so a simple wrapper
around it is necessary for this purpose. That, in turn, allows the
second unused argument of acpi_create_platform_device() to be
dropped, which is an improvement.
Tested-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Now that the x86 dynamic IRQ allocation problem has been resolved with
commmit 62a08ae2a5 (genirq: x86: Ensure that dynamic irq allocation does
not conflict), we can add back Baytrail-T ACPI ID to the pinctrl driver.
This makes the driver to work on Asus T100 where it is needed for several
things like ACPI GPIO events and SD card detection.
References: https://bugzilla.kernel.org/show_bug.cgi?id=68291
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jin Yao <yao.jin@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Add an acpi_video_unregister_backlight function, which only unregisters
the backlight device, and leaves the acpi_notifier in place. Some acpi_vendor
driver need this as they don't want the acpi_video# backlight device, but do
need the acpi-video driver for hotkey handling.
Chances are that this new acpi_video_unregister_backlight() is actually
what existing acpi_vendor drivers have wanted all along. Currently acpi_vendor
drivers which want to disable the acpi_video# backlight device, make 2 calls:
acpi_video_dmi_promote_vendor();
acpi_video_unregister();
The intention here is to make things independent of when acpi_video_register()
gets called. As acpi_video_register() will get called on acpi-video load time
on non intel gfx machines, while it gets called on i915 load time on intel
gfx machines.
This leads to the following 2 interesting scenarios:
a) intel gfx:
1) acpi-video module gets loaded (as it is a dependency of acpi_vendor
and i915)
2) acpi-video does NOT call acpi_video_register()
3) acpi_vendor loads (lets assume it loads before i915), calls
acpi_video_dmi_promote_vendor(); which sets
ACPI_VIDEO_BACKLIGHT_DMI_VENDOR
4) calls acpi_video_unregister -> not registered, nop
5) i915 loads, calls acpi_video_register
6) acpi_video_register registers the acpi_notifier for the hotkeys,
does NOT register a backlight device because of
ACPI_VIDEO_BACKLIGHT_DMI_VENDOR
b) non intel gfx
1) acpi-video module gets loaded (as it is a dependency acpi_vendor)
2) acpi-video calls acpi_video_register()
3) acpi_video_register registers the acpi_notifier for the hotkeys,
and a backlight device
4) acpi_vendor loads, calls acpi_video_dmi_promote_vendor()
5) calls acpi_video_unregister, this unregisters BOTH the acpi_notifier
for the hotkeys AND the backlight device
So here we have possibly the same acpi_vendor module, making the same calls,
but with different results, in one cases acpi-video does handle hotkeys,
in the other it does not.
Note that the a) scenario turns into b) if we assume the i915 module loads
before the vendor_acpi module, so we also have different behavior depending
on module loading order!
So as said I believe that quite a few existing acpi_vendor modules really
always want the behavior of a), hence this patch adds a new
acpi_video_unregister_backlight() which gives the behavior of a) independent
of module loading order.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
No reason for excluding the remaining ones.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
[rjw: Rebased and exported the new acpi_subsys_complete() too.]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Rework the ACPI PM domain's PM callbacks to avoid resuming devices
during system suspend (in order to modify their wakeup settings etc.)
if that isn't necessary.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch fixes the following issue:
If DSDT is customized, no local DSDT copy is needed.
References: https://bugzilla.kernel.org/show_bug.cgi?id=69711
Signed-off-by: Enrico Etxe Arte <goitizena.generoa@gmail.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Cc: 2.6.35+ <stable@vger.kernel.org> # 2.6.35+
[rjw: Subject]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>