Some 64-bit machines don't support the NX flag in ptes.
Check for NX before constructing the kernel pagetables.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Xen leaves XSAVE set in cpuid, but doesn't allow cr4.OSXSAVE
to be set. This confuses the kernel and it ends up crashing on
an xsetbv instruction.
At boot time, try to set cr4.OSXSAVE, and mask XSAVE out of
cpuid it we can't. This will produce a spurious error from Xen,
but allows us to support XSAVE if/when Xen does.
This also factors out the cpuid mask decisions to boot time.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Remove use of multicall machinery which is unused (gdt loading
is never performance critical). This removes the implicit use
of percpu variables, which simplifies understanding how
the percpu code's use of load_gdt interacts with this code.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
The virtually mapped percpu space causes us two problems:
- for hypercalls which take an mfn, we need to do a full pagetable
walk to convert the percpu va into an mfn, and
- when a hypercall requires a page to be mapped RO via all its aliases,
we need to make sure its RO in both the percpu mapping and in the
linear mapping
This primarily affects the gdt and the vcpu info structure.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Xen-devel <xen-devel@lists.xensource.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tejun Heo <htejun@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This avoids a lockdep warning from:
if (DEBUG_LOCKS_WARN_ON(unlikely(!early_boot_irqs_enabled)))
return;
in trace_hardirqs_on_caller();
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Mark McLoughlin <markmc@redhat.com>
Cc: Xen-devel <xen-devel@lists.xensource.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
make it simpler, don't need have one extra struct.
v2: fix the sgi_uv build
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: pt_regs changed, lazy gs handling made optional, add slight
overhead to SAVE_ALL, simplifies error_code path a bit
On x86_32, %gs hasn't been used by kernel and handled lazily. pt_regs
doesn't have place for it and gs is saved/loaded only when necessary.
In preparation for stack protector support, this patch makes lazy %gs
handling optional by doing the followings.
* Add CONFIG_X86_32_LAZY_GS and place for gs in pt_regs.
* Save and restore %gs along with other registers in entry_32.S unless
LAZY_GS. Note that this unfortunately adds "pushl $0" on SAVE_ALL
even when LAZY_GS. However, it adds no overhead to common exit path
and simplifies entry path with error code.
* Define different user_gs accessors depending on LAZY_GS and add
lazy_save_gs() and lazy_load_gs() which are noop if !LAZY_GS. The
lazy_*_gs() ops are used to save, load and clear %gs lazily.
* Define ELF_CORE_COPY_KERNEL_REGS() which always read %gs directly.
xen and lguest changes need to be verified.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jeremy Fitzhardinge <jeremy@xensource.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Enable the use of the direct vcpu-access operations on 64-bit.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We need to access percpu data fairly early, so set up the percpu
registers as soon as possible. We only need to load the appropriate
segment register. We already have a GDT, but its hard to change it
early because we need to manipulate the pagetable to do so, and that
hasn't been set up yet.
Also, set the kernel stack when bringing up secondary CPUs. If we
don't they all end up sharing the same stack...
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Impact: fix xen booting
We need to access percpu data fairly early, so set up the percpu
registers as soon as possible. We only need to load the appropriate
segment register. We already have a GDT, but its hard to change it
early because we need to manipulate the pagetable to do so, and that
hasn't been set up yet.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Impact: Optimization
One of the problems with inserting a pile of C calls where previously
there were none is that the register pressure is greatly increased.
The C calling convention says that the caller must expect a certain
set of registers may be trashed by the callee, and that the callee can
use those registers without restriction. This includes the function
argument registers, and several others.
This patch seeks to alleviate this pressure by introducing wrapper
thunks that will do the register saving/restoring, so that the
callsite doesn't need to worry about it, but the callee function can
be conventional compiler-generated code. In many cases (particularly
performance-sensitive cases) the callee will be in assembler anyway,
and need not use the compiler's calling convention.
Standard calling convention is:
arguments return scratch
x86-32 eax edx ecx eax ?
x86-64 rdi rsi rdx rcx rax r8 r9 r10 r11
The thunk preserves all argument and scratch registers. The return
register is not preserved, and is available as a scratch register for
unwrapped callee code (and of course the return value).
Wrapped function pointers are themselves wrapped in a struct
paravirt_callee_save structure, in order to get some warning from the
compiler when functions with mismatched calling conventions are used.
The most common paravirt ops, both statically and dynamically, are
interrupt enable/disable/save/restore, so handle them first. This is
particularly easy since their calls are handled specially anyway.
XXX Deal with VMI. What's their calling convention?
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Impact: Cleanup
Move remaining mmu-related stuff into mmu.c.
A general cleanup, and lay the groundwork for later patches.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
pte_flags() was introduced as a new pvop in order to extract just the
flags portion of a pte, which is a potentially cheaper operation than
extracting the page number as well. It turns out this operation is
not needed, because simply using a mask to extract the flags from a
pte is sufficient for all current users.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
Copy the code to cpu_init() to satisfy the requirement that the cpu
be reinitialized. Remove all other calls, since the segments are
already initialized in head_64.S.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
It is an optimization and a cleanup, and adds the following new
generic percpu methods:
percpu_read()
percpu_write()
percpu_add()
percpu_sub()
percpu_and()
percpu_or()
percpu_xor()
and implements support for them on x86. (other architectures will fall
back to a default implementation)
The advantage is that for example to read a local percpu variable,
instead of this sequence:
return __get_cpu_var(var);
ffffffff8102ca2b: 48 8b 14 fd 80 09 74 mov -0x7e8bf680(,%rdi,8),%rdx
ffffffff8102ca32: 81
ffffffff8102ca33: 48 c7 c0 d8 59 00 00 mov $0x59d8,%rax
ffffffff8102ca3a: 48 8b 04 10 mov (%rax,%rdx,1),%rax
We can get a single instruction by using the optimized variants:
return percpu_read(var);
ffffffff8102ca3f: 65 48 8b 05 91 8f fd mov %gs:0x7efd8f91(%rip),%rax
I also cleaned up the x86-specific APIs and made the x86 code use
these new generic percpu primitives.
tj: * fixed generic percpu_sub() definition as Roel Kluin pointed out
* added percpu_and() for completeness's sake
* made generic percpu ops atomic against preemption
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Tejun Heo <tj@kernel.org>
Do the following cleanups:
* kill x86_64_init_pda() which now is equivalent to pda_init()
* use per_cpu_offset() instead of cpu_pda() when initializing
initial_gs
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: reduce stack usage, use new cpumask API.
This is made a little more tricky by uv_flush_tlb_others which
actually alters its argument, for an IPI to be sent to the remaining
cpus in the mask.
I solve this by allocating a cpumask_var_t for this case and falling back
to IPI should this fail.
To eliminate temporaries in the caller, all flush_tlb_others implementations
now do the this-cpu-elimination step themselves.
Note also the curious "cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask)"
which has been there since pre-git and yet f->flush_cpumask is always zero
at this point.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Impact: cleanup
hypervisor.h had accumulated a lot of crud, including lots of spurious
#includes. Clean it all up, and go around fixing up everything else
accordingly.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Xen requires that all mappings of pagetable pages are read-only, so
that they can't be updated illegally. As a result, if a page is being
turned into a pagetable page, we need to make sure all its mappings
are RO.
If the page had been used for ioremap or vmalloc, it may still have
left over mappings as a result of not having been lazily unmapped.
This change makes sure we explicitly mop them all up before pinning
the page.
Unlike aliases created by kmap, the there can be vmalloc aliases even
for non-high pages, so we must do the flush unconditionally.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Linux Memory Management List <linux-mm@kvack.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and
provide a fast, scalable percpu frontend for small vmaps (requires a
slightly different API, though).
The biggest problem with vmap is actually vunmap. Presently this requires
a global kernel TLB flush, which on most architectures is a broadcast IPI
to all CPUs to flush the cache. This is all done under a global lock. As
the number of CPUs increases, so will the number of vunmaps a scaled
workload will want to perform, and so will the cost of a global TLB flush.
This gives terrible quadratic scalability characteristics.
Another problem is that the entire vmap subsystem works under a single
lock. It is a rwlock, but it is actually taken for write in all the fast
paths, and the read locking would likely never be run concurrently anyway,
so it's just pointless.
This is a rewrite of vmap subsystem to solve those problems. The existing
vmalloc API is implemented on top of the rewritten subsystem.
The TLB flushing problem is solved by using lazy TLB unmapping. vmap
addresses do not have to be flushed immediately when they are vunmapped,
because the kernel will not reuse them again (would be a use-after-free)
until they are reallocated. So the addresses aren't allocated again until
a subsequent TLB flush. A single TLB flush then can flush multiple
vunmaps from each CPU.
XEN and PAT and such do not like deferred TLB flushing because they can't
always handle multiple aliasing virtual addresses to a physical address.
They now call vm_unmap_aliases() in order to flush any deferred mappings.
That call is very expensive (well, actually not a lot more expensive than
a single vunmap under the old scheme), however it should be OK if not
called too often.
The virtual memory extent information is stored in an rbtree rather than a
linked list to improve the algorithmic scalability.
There is a per-CPU allocator for small vmaps, which amortizes or avoids
global locking.
To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces
must be used in place of vmap and vunmap. Vmalloc does not use these
interfaces at the moment, so it will not be quite so scalable (although it
will use lazy TLB flushing).
As a quick test of performance, I ran a test that loops in the kernel,
linearly mapping then touching then unmapping 4 pages. Different numbers
of tests were run in parallel on an 4 core, 2 socket opteron. Results are
in nanoseconds per map+touch+unmap.
threads vanilla vmap rewrite
1 14700 2900
2 33600 3000
4 49500 2800
8 70631 2900
So with a 8 cores, the rewritten version is already 25x faster.
In a slightly more realistic test (although with an older and less
scalable version of the patch), I ripped the not-very-good vunmap batching
code out of XFS, and implemented the large buffer mapping with vm_map_ram
and vm_unmap_ram... along with a couple of other tricks, I was able to
speed up a large directory workload by 20x on a 64 CPU system. I believe
vmap/vunmap is actually sped up a lot more than 20x on such a system, but
I'm running into other locks now. vmap is pretty well blown off the
profiles.
Before:
1352059 total 0.1401
798784 _write_lock 8320.6667 <- vmlist_lock
529313 default_idle 1181.5022
15242 smp_call_function 15.8771 <- vmap tlb flushing
2472 __get_vm_area_node 1.9312 <- vmap
1762 remove_vm_area 4.5885 <- vunmap
316 map_vm_area 0.2297 <- vmap
312 kfree 0.1950
300 _spin_lock 3.1250
252 sn_send_IPI_phys 0.4375 <- tlb flushing
238 vmap 0.8264 <- vmap
216 find_lock_page 0.5192
196 find_next_bit 0.3603
136 sn2_send_IPI 0.2024
130 pio_phys_write_mmr 2.0312
118 unmap_kernel_range 0.1229
After:
78406 total 0.0081
40053 default_idle 89.4040
33576 ia64_spinlock_contention 349.7500
1650 _spin_lock 17.1875
319 __reg_op 0.5538
281 _atomic_dec_and_lock 1.0977
153 mutex_unlock 1.5938
123 iget_locked 0.1671
117 xfs_dir_lookup 0.1662
117 dput 0.1406
114 xfs_iget_core 0.0268
92 xfs_da_hashname 0.1917
75 d_alloc 0.0670
68 vmap_page_range 0.0462 <- vmap
58 kmem_cache_alloc 0.0604
57 memset 0.0540
52 rb_next 0.1625
50 __copy_user 0.0208
49 bitmap_find_free_region 0.2188 <- vmap
46 ia64_sn_udelay 0.1106
45 find_inode_fast 0.1406
42 memcmp 0.2188
42 finish_task_switch 0.1094
42 __d_lookup 0.0410
40 radix_tree_lookup_slot 0.1250
37 _spin_unlock_irqrestore 0.3854
36 xfs_bmapi 0.0050
36 kmem_cache_free 0.0256
35 xfs_vn_getattr 0.0322
34 radix_tree_lookup 0.1062
33 __link_path_walk 0.0035
31 xfs_da_do_buf 0.0091
30 _xfs_buf_find 0.0204
28 find_get_page 0.0875
27 xfs_iread 0.0241
27 __strncpy_from_user 0.2812
26 _xfs_buf_initialize 0.0406
24 _xfs_buf_lookup_pages 0.0179
24 vunmap_page_range 0.0250 <- vunmap
23 find_lock_page 0.0799
22 vm_map_ram 0.0087 <- vmap
20 kfree 0.0125
19 put_page 0.0330
18 __kmalloc 0.0176
17 xfs_da_node_lookup_int 0.0086
17 _read_lock 0.0885
17 page_waitqueue 0.0664
vmap has gone from being the top 5 on the profiles and flushing the crap
out of all TLBs, to using less than 1% of kernel time.
[akpm@linux-foundation.org: cleanups, section fix]
[akpm@linux-foundation.org: fix build on alpha]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Krzysztof Helt <krzysztof.h1@poczta.fm>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When reserving space for the hypervisor the Xen paravirt backend adds
an extra two pages (this was carried forward from the 2.6.18-xen tree
which had them "for safety"). Depending on various CONFIG options this
can cause the boot time fixmaps to span multiple PMDs which is not
supported and triggers a WARN in early_ioremap_init().
This was exposed by 2216d199b1 which
moved the dmi table parsing earlier.
x86: fix CONFIG_X86_RESERVE_LOW_64K=y
The bad_bios_dmi_table() quirk never triggered because we do DMI setup
too late. Move it a bit earlier.
There is no real reason to reserve these two extra pages and the
fixmap already incorporates FIX_HOLE which serves the same
purpose. None of the other callers of reserve_top_address do this.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There are a couple of Xen features which rely on directly accessing
per-cpu data via a segment register, which is not yet available on
x86-64. In the meantime, just disable direct access to the vcpu info
structure; this leaves some of the code as dead, but it will come to
life in time, and the warnings are suppressed.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We only pin PTE pages when using split PTE locks, so don't do the
pin/unpin when attaching/detaching pte pages to a pinned pagetable.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Using native_pte_val triggers the BUG_ON() in the paravirt_ops
version of pte_flags().
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch changes the pfn args from 'u32' to 'unsigned long'
on alloc_p*() functions on paravirt_ops, and the corresponding
implementations for Xen and VMI. The prototypes for CONFIG_PARAVIRT=n
are already using unsigned long, so paravirt.h now matches the prototypes
on asm-x86/pgalloc.h.
It shouldn't result in any changes on generated code on 32-bit, with
or without CONFIG_PARAVIRT. On both cases, 'codiff -f' didn't show any
change after applying this patch.
On 64-bit, there are (expected) binary changes only when CONFIG_PARAVIRT
is enabled, as the patch is really supposed to change the size of the
pfn args.
[ v2: KVM_GUEST: use the right parameter type on kvm_release_pt() ]
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Acked-by: Jeremy Fitzhardinge <jeremy@goop.org>
Acked-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There are four operating modes Xen code may find itself running in:
- native
- hvm domain
- pv dom0
- pv domU
Clean up predicates for testing for these states to make them more consistent.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Xen-devel <xen-devel@lists.xensource.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently paravirt_ops alloc_p*() uses u32 for the pfn args. We should
change that later, but while the pfn parameter is still u32, we need to
cast the PFN_PHYS() argument at xen_alloc_ptpage() to unsigned long,
otherwise it will lose bits on the shift.
I think PFN_PHYS() should behave better when fed with smaller integers,
but a cast to unsigned long won't be enough for all cases on 32-bit PAE,
and a cast to u64 would be overkill for most users of PFN_PHYS().
We could have two different flavors of PFN_PHYS: one for low pages
only (unsigned long) and another that works for any page (u64)),
but while we don't have it, we will need the cast to unsigned long on
xen_alloc_ptpage().
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add a proper comment for set_aliased_prot() and fix an
unsigned long/void * warning.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For some reason I managed to miss a bunch of irq-related functions
which also need to be compiled without -pg when using ftrace. This
patch moves them into their own file, and starts a cleanup process
I've been meaning to do anyway.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: "Alex Nixon (Intern)" <Alex.Nixon@eu.citrix.com>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In general, Xen doesn't support wrmsr from an unprivileged domain; it
just ends up ignoring the instruction and printing a message on the
console.
Given that there are sets of MSRs we know the kernel will try to write
to, but we don't care, just eat them in xen_write_msr to cut down on
console noise.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When the ldt gets to more than 1 page in size, the kernel uses vmalloc
to allocate it. This means that:
- when making the ldt RO, we must update the pages in both the vmalloc
mapping and the linear mapping to make sure there are no RW aliases.
- we need to use arbitrary_virt_to_machine to compute the machine addr
for each update
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Using native_pte_val triggers the BUG_ON() in the paravirt_ops
version of pte_flags().
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
LTP testing showed that Xen does not properly implement
sys_modify_ldt(). This patch does the final little bits needed to
make the ldt work properly.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Rusty, in his peevish way, complained that macros defining constants
should have a name which somewhat accurately reflects the actual
purpose of the constant.
Aside from the fact that PTE_MASK gives no clue as to what's actually
being masked, and is misleadingly similar to the functionally entirely
different PMD_MASK, PUD_MASK and PGD_MASK, I don't really see what the
problem is.
But if this patch silences the incessent noise, then it will have
achieved its goal (TODO: write test-case).
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix:
arch/x86/xen/enlighten.c:615: error: variable ‘xen_basic_apic_ops’ has initializer but incomplete type
arch/x86/xen/enlighten.c:616: error: unknown field ‘read’ specified in initializer
[...]
Signed-off-by: Ingo Molnar <mingo@elte.hu>