Commit graph

8 commits

Author SHA1 Message Date
Linus Torvalds
526ea064f9 Merge branch 'oprofile-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'oprofile-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  oprofile: select RING_BUFFER
  ring_buffer: adding EXPORT_SYMBOLs
  oprofile: fix lost sample counter
  oprofile: remove nr_available_slots()
  oprofile: port to the new ring_buffer
  ring_buffer: add remaining cpu functions to ring_buffer.h
  oprofile: moving cpu_buffer_reset() to cpu_buffer.h
  oprofile: adding cpu_buffer_entries()
  oprofile: adding cpu_buffer_write_commit()
  oprofile: adding cpu buffer r/w access functions
  ftrace: remove unused function arg in trace_iterator_increment()
  ring_buffer: update description for ring_buffer_alloc()
  oprofile: set values to default when creating oprofilefs
  oprofile: implement switch/case in buffer_sync.c
  x86/oprofile: cleanup IBS init/exit functions in op_model_amd.c
  x86/oprofile: reordering IBS code in op_model_amd.c
  oprofile: fix typo
  oprofile: whitspace changes only
  oprofile: update comment for oprofile_add_sample()
  oprofile: comment cleanup
2008-12-30 17:31:25 -08:00
Robert Richter
e09373f22e ring_buffer: add remaining cpu functions to ring_buffer.h
These functions are not yet in ring_buffer.h though they seems to be
part of the API.

Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Robert Richter <robert.richter@amd.com>
2008-12-10 14:20:17 +01:00
Lai Jiangshan
361b73d5c3 ring_buffer: fix comments
Impact: comments cleanup

fix incorrect comments for enum ring_buffer_type

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-08 13:54:05 +01:00
Steven Rostedt
8789a9e7df ring-buffer: read page interface
Impact: new API to ring buffer

This patch adds a new interface into the ring buffer that allows a
page to be read from the ring buffer on a given CPU. For every page
read, one must also be given to allow for a "swap" of the pages.

 rpage = ring_buffer_alloc_read_page(buffer);
 if (!rpage)
	goto err;
 ret = ring_buffer_read_page(buffer, &rpage, cpu, full);
 if (!ret)
	goto empty;
 process_page(rpage);
 ring_buffer_free_read_page(rpage);

The caller of these functions must handle any waits that are
needed to wait for new data. The ring_buffer_read_page will simply
return 0 if there is no data, or if "full" is set and the writer
is still on the current page.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-03 08:56:21 +01:00
Steven Rostedt
033601a32b ring-buffer: add tracing_off_permanent
Impact: feature to permanently disable ring buffer

This patch adds a API to the ring buffer code that will permanently
disable the ring buffer from ever recording. This should only be
called when some serious anomaly is detected, and the system
may be in an unstable state. When that happens, shutting down the
recording to the ring buffers may be appropriate.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-23 11:44:37 +01:00
Steven Rostedt
a358324466 ring-buffer: buffer record on/off switch
Impact: enable/disable ring buffer recording API added

Several kernel developers have requested that there be a way to stop
recording into the ring buffers with a simple switch that can also
be enabled from userspace. This patch addes a new kernel API to the
ring buffers called:

 tracing_on()
 tracing_off()

When tracing_off() is called, all ring buffers will not be able to record
into their buffers.

tracing_on() will enable the ring buffers again.

These two act like an on/off switch. That is, there is no counting of the
number of times tracing_off or tracing_on has been called.

A new file is added to the debugfs/tracing directory called

  tracing_on

This allows for userspace applications to also flip the switch.

  echo 0 > debugfs/tracing/tracing_on

disables the tracing.

  echo 1 > /debugfs/tracing/tracing_on

enables it.

Note, this does not disable or enable any tracers. It only sets or clears
a flag that needs to be set in order for the ring buffers to write to
their buffers. It is a global flag, and affects all ring buffers.

The buffers start out with tracing_on enabled.

There are now three flags that control recording into the buffers:

 tracing_on: which affects all ring buffer tracers.

 buffer->record_disabled: which affects an allocated buffer, which may be set
     if an anomaly is detected, and tracing is disabled.

 cpu_buffer->record_disabled: which is set by tracing_stop() or if an
     anomaly is detected. tracing_start can not reenable this if
     an anomaly occurred.

The userspace debugfs/tracing/tracing_enabled is implemented with
tracing_stop() but the user space code can not enable it if the kernel
called tracing_stop().

Userspace can enable the tracing_on even if the kernel disabled it.
It is just a switch used to stop tracing if a condition was hit.
tracing_on is not for protecting critical areas in the kernel nor is
it for stopping tracing if an anomaly occurred. This is because userspace
can reenable it at any time.

Side effect: With this patch, I discovered a dead variable in ftrace.c
  called tracing_on. This patch removes it.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2008-11-11 15:02:04 -05:00
Steven Rostedt
d769041f86 ring_buffer: implement new locking
The old "lock always" scheme had issues with lockdep, and was not very
efficient anyways.

This patch does a new design to be partially lockless on writes.
Writes will add new entries to the per cpu pages by simply disabling
interrupts. When a write needs to go to another page than it will
grab the lock.

A new "read page" has been added so that the reader can pull out a page
from the ring buffer to read without worrying about the writer writing over
it. This allows us to not take the lock for all reads. The lock is
now only taken when a read needs to go to a new page.

This is far from lockless, and interrupts still need to be disabled,
but it is a step towards a more lockless solution, and it also
solves a lot of the issues that were noticed by the first conversion
of ftrace to the ring buffers.

Note: the ring_buffer_{un}lock API has been removed.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-14 10:39:05 +02:00
Steven Rostedt
7a8e76a382 tracing: unified trace buffer
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.

The events recorded into the buffer have the following structure:

  struct ring_buffer_event {
	u32 type:2, len:3, time_delta:27;
	u32 array[];
  };

The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.

There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).

 RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
	of a buffer page.

 RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
	is greater than the 27 bit delta can hold. We add another
	32 bits, and record that in its own event (8 byte size).

 RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
	help keep the buffer timestamps in sync.

RINGBUF_TYPE_DATA: The event actually holds user data.

The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.

Example, data size of 7 bytes:

	type = RINGBUF_TYPE_DATA
	len = 2
	time_delta: <time-stamp> - <prev_event-time-stamp>
	array[0..1]: <7 bytes of data> <1 byte empty>

This event is saved in 12 bytes of the buffer.

An event with 82 bytes of data:

	type = RINGBUF_TYPE_DATA
	len = 0
	time_delta: <time-stamp> - <prev_event-time-stamp>
	array[0]: 84 (Note the alignment)
	array[1..14]: <82 bytes of data> <2 bytes empty>

The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.

Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.

ring_buffer_event_length(event): get the length of the event.
	This is the size of the memory used to record this
	event, and not the size of the data pay load.

ring_buffer_time_delta(event): get the time delta of the event
	This returns the delta time stamp since the last event.
	Note: Even though this is in the header, there should
		be no reason to access this directly, accept
		for debugging.

ring_buffer_event_data(event): get the data from the event
	This is the function to use to get the actual data
	from the event. Note, it is only a pointer to the
	data inside the buffer. This data must be copied to
	another location otherwise you risk it being written
	over in the buffer.

ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.

ring_buffer_alloc: create a new ring buffer. Can choose between
	overwrite or consumer/producer mode. Overwrite will
	overwrite old data, where as consumer producer will
	throw away new data if the consumer catches up with the
	producer.  The consumer/producer is the default.

ring_buffer_free: free the ring buffer.

ring_buffer_resize: resize the buffer. Changes the size of each cpu
	buffer. Note, it is up to the caller to provide that
	the buffer is not being used while this is happening.
	This requirement may go away but do not count on it.

ring_buffer_lock_reserve: locks the ring buffer and allocates an
	entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
	the buffer.

ring_buffer_write: writes some data into the ring buffer.

ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
	consume it. That is, this function increments the head
	pointer.

ring_buffer_read_start: Start an iterator of a cpu buffer.
	For now, this disables the cpu buffer, until you issue
	a finish. This is just because we do not want the iterator
	to be overwritten. This restriction may change in the future.
	But note, this is used for static reading of a buffer which
	is usually done "after" a trace. Live readings would want
	to use the ring_buffer_consume above, which will not
	disable the ring buffer.

ring_buffer_read_finish: Finishes the read iterator and reenables
	the ring buffer.

ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
	of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
	of the cpu buffer.

ring_buffer_size: returns the size in bytes of each cpu buffer.
	Note, the real size is this times the number of CPUs.

ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty

ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
	cpu buffer of another buffer. This is handy when you
	want to take a snap shot of a running trace on just one
	cpu. Having a backup buffer, to swap with facilitates this.
	Ftrace max latencies use this.

ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.

ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.

ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.

ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
	into nanosecs.

I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure.  But this can be done at a later
time without affecting the ring buffer interface.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-14 10:38:54 +02:00