Currently the powerpc kernel has a 64-bit only feature,
COHERENT_ICACHE used for those CPUS which maintain icache/dcache
coherency in hardware (POWER5, essentially). It also has a feature,
SPLIT_ID_CACHE, which is used on CPUs which have separate i and
d-caches, which is to say everything except 601 and Freescale E200.
In nearly all the places we check the SPLIT_ID_CACHE, what we actually
care about is whether the i and d-caches are coherent (which they will
be, trivially, if they're the same cache).
This tries to clarify the situation a little. The COHERENT_ICACHE
feature becomes availble on 32-bit and is set for all CPUs where i and
d-cache are effectively coherent, whether this is due to special logic
(POWER5) or because they're unified. We check this, instead of
SPLIT_ID_CACHE nearly everywhere.
The SPLIT_ID_CACHE feature itself is replaced by a UNIFIED_ID_CACHE
feature with reversed sense, set only on 601 and Freescale E200. In
the two places (one Freescale BookE specific) where we really care
whether it's a unified cache, not whether they're coherent, we check
this feature. The CPUs with unified cache are so few, we could
consider replacing this feature bit with explicit checks against the
PVR.
This will make unifying the 32-bit and 64-bit cache flush code a
little more straightforward.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
There are currently two versions of the functions for applying the
feature fixups, one for CPU features and one for firmware features. In
addition, they are both in assembly and with separate implementations
for 32 and 64 bits. identify_cpu() is also implemented in assembly and
separately for 32 and 64 bits.
This patch replaces them with a pair of C functions. The call sites are
slightly moved on ppc64 as well to be called from C instead of from
assembly, though it's a very small change, and thus shouldn't cause any
problem.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds the new kernel_execve function on all architectures that were using
_syscall3() to implement execve.
The implementation uses code from the _syscall3 macros provided in the
unistd.h header file. I don't have cross-compilers for any of these
architectures, so the patch is untested with the exception of i386.
Most architectures can probably implement this in a nicer way in assembly or
by combining it with the sys_execve implementation itself, but this should do
it for now.
[bunk@stusta.de: m68knommu build fix]
[markh@osdl.org: build fix]
[bero@arklinux.org: build fix]
[ralf@linux-mips.org: mips fix]
[schwidefsky@de.ibm.com: s390 fix]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andi Kleen <ak@muc.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ian Molton <spyro@f2s.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Hirokazu Takata <takata.hirokazu@renesas.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Richard Curnow <rc@rc0.org.uk>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp>
Cc: Chris Zankel <chris@zankel.net>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Bernhard Rosenkraenzer <bero@arklinux.org>
Signed-off-by: Mark Haverkamp <markh@osdl.org>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
With this, new system calls only have to be wired up in one place
for ARCH=ppc and ARCH=powerpc, rather than 2.
Signed-off-by: Paul Mackerras <paulus@samba.org>
This makes it possible to build kernels for PReP and/or CHRP
with ARCH=ppc by removing the (non-building) powermac support.
It's now also possible to select PReP and CHRP independently.
Powermac users should now build with ARCH=powerpc instead of
ARCH=ppc. (This does mean that it is no longer possible to
build a 32-bit kernel for a G5.)
Signed-off-by: Paul Mackerras <paulus@samba.org>
This makes ARCH=ppc build in your powerpc tree again, with the new
syscall entry/exit path.
Still doesn't actually boot on my Pegasos; the last thing I see is
'MMU:exit'. But at least it builds -- I'll look at why it doesn't boot
later, so that I can see if the mv643xx_eth actually works with ARCH=ppc
(it doesn't with ARCH=powerpc; two in every three packets I receive are
offset by 4 bytes).
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The ppc32 and ppc64 versions of cacheflush.h were almost identical.
The two versions of cache.h are fairly similar, except for a bunch of
register definitions in the ppc32 version which probably belong better
elsewhere. This patch, therefore, merges both headers. Notable
points:
- there are several functions in cacheflush.h which exist only
on ppc32 or only on ppc64. These are handled by #ifdef for now, but
these should probably be consolidated, along with the actual code
behind them later.
- Confusingly, both ppc32 and ppc64 have a
flush_dcache_range(), but they're subtly different: it uses dcbf on
ppc32 and dcbst on ppc64, ppc64 has a flush_inval_dcache_range() which
uses dcbf. These too should be merged and consolidated later.
- Also flush_dcache_range() was defined in cacheflush.h on
ppc64, and in cache.h on ppc32. In the merged version it's in
cacheflush.h
- On ppc32 flush_icache_range() is a normal function from
misc.S. On ppc64, it was wrapper, testing a feature bit before
calling __flush_icache_range() which does the actual flush. This
patch takes the ppc64 approach, which amounts to no change on ppc32,
since CPU_FTR_COHERENT_ICACHE will never be set there, but does mean
renaming flush_icache_range() to __flush_icache_range() in
arch/ppc/kernel/misc.S and arch/powerpc/kernel/misc_32.S
- The PReP register info from asm-ppc/cache.h has moved to
arch/ppc/platforms/prep_setup.c
- The 8xx register info from asm-ppc/cache.h has moved to a
new asm-powerpc/reg_8xx.h, included from reg.h
- flush_dcache_all() was defined on ppc32 (only), but was
never called (although it was exported). Thus this patch removes it
from cacheflush.h and from ARCH=powerpc (misc_32.S) entirely. It's
left in ARCH=ppc for now, with the prototype moved to ppc_ksyms.c.
Built for Walnut (ARCH=ppc), 32-bit multiplatform (pmac, CHRP and PReP
ARCH=ppc, pmac and CHRP ARCH=powerpc). Built and booted on POWER5
LPAR (ARCH=powerpc and ARCH=ppc64).
Built for 32-bit powermac (ARCH=ppc and ARCH=powerpc). Built and
booted on POWER5 LPAR (ARCH=powerpc and ARCH=ppc64). Built and booted
on G5 (ARCH=powerpc)
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds exception table entries for I/O instructions on and
changes MachineCheckException() slightly to cover 8xx specifics (on
8xx the MCE can be generated while executing the IO access instruction
itself, which is not the case on PowerMac's, as the comment on traps.c
details).
Signed-off-by: Marcelo Tosatti <marcelo.tosatti@cyclades.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The recent merge of fpu.S broken the handling of fpscr for
ARCH=powerpc and CONFIG_PPC64=y. FP registers could be corrupted,
leading to strange random application crashes.
The confusion arises, because the thread_struct has (and requires) a
64-bit area to save the fpscr, because we use load/store double
instructions to get it in to/out of the FPU. However, only the low
32-bits are actually used, so we want to treat it as a 32-bit quantity
when manipulating its bits to avoid extra load/stores on 32-bit. This
patch replaces the current definition with a structure of two 32-bit
quantities (pad and val), to clarify things as much as is possible.
The 'val' field is used when manipulating bits, the structure itself
is used when obtaining the address for loading/unloading the value
from the FPU.
While we're at it, consolidate the 4 (!) almost identical versions of
cvt_fd() and cvt_df() (arch/ppc/kernel/misc.S,
arch/ppc64/kernel/misc.S, arch/powerpc/kernel/misc_32.S,
arch/powerpc/kernel/misc_64.S) into a single version in fpu.S. The
new version takes a pointer to thread_struct and applies the correct
offset itself, rather than a pointer to the fpscr field itself, again
to avoid confusion as to which is the correct field to use.
Finally, this patch makes ARCH=ppc64 also use the consolidated fpu.S
code, which it previously did not.
Built for G5 (ARCH=ppc64 and ARCH=powerpc), 32-bit powermac (ARCH=ppc
and ARCH=powerpc) and Walnut (ARCH=ppc, CONFIG_MATH_EMULATION=y).
Booted on G5 (ARCH=powerpc) and things which previously fell over no
longer do.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Changed ppc32 so that cur_cpu_spec is just a single pointer for all CPUs.
Additionally, made call_setup_cpu check to see if the cpu_setup pointer
is NULL or not before calling the function. This lets remove the dummy
cpu_setup calls that just return.
Signed-off-by: Kumar Gala <kumar.gala@freescale.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
We always use the inlined versions of local_irq_enable, local_irq_disable,
local_save_flags_ptr, and local_irq_restore on ppc32 so the non-inlined
versions where just taking up space.
Signed-off-by: Kumar Gala <kumar.gala@freescale.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Add PPC440EP core support. PPC440EP is a PPC440-based SoC with a classic PPC
FPU and another set of peripherals.
Signed-off-by: Wade Farnsworth <wfarnsworth@mvista.com>
Signed-off-by: Matt Porter <mporter@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add inotify system call stubs to PPC32.
Signed-off-by: Robert Love <rml@novell.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This updates the CFQ io scheduler to the new time sliced design (cfq
v3). It provides full process fairness, while giving excellent
aggregate system throughput even for many competing processes. It
supports io priorities, either inherited from the cpu nice value or set
directly with the ioprio_get/set syscalls. The latter closely mimic
set/getpriority.
This import is based on my latest from -mm.
Signed-off-by: Jens Axboe <axboe@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
I have tweaked this patch slightly to handle an empty list
of pages to relocate passed to relocate_new_kernel. And
I have added ppc_md.machine_crash_shutdown. To keep up with
the changes in the generic kexec infrastructure.
From: Albert Herranz <albert_herranz@yahoo.es>
The following patch adds support for kexec on the ppc32 platform.
Non-OpenFirmware based platforms are likely to work directly without
additional changes on the kernel side. The kexec-tools userland package
may need to be slightly updated, though.
For OpenFirmware based machines, additional work is still needed on the
kernel side before kexec support is ready. Benjamin Herrenschmidt is
kindly working on that part.
In order for a ppc platform to use the kexec kernel services it must
implement some ppc_md hooks. Otherwise, kexec will be explicitly disabled,
as suggested by benh.
There are 3+1 new ppc_md hooks that a platform supporting kexec may
implement. Two of them are mandatory for kexec to work. See
include/asm-ppc/machdep.h for details.
- machine_kexec_prepare(image)
This function is called to make any arrangements to the image before it
is loaded.
This hook _MUST_ be provided by a platform in order to activate kexec
support for that platform. Otherwise, the platform is considered to not
support kexec and the kexec_load system call will fail (that makes all
existing platforms by default non-kexec'able).
- machine_kexec_cleanup(image)
This function is called to make any cleanups on image after the loaded
image data it is freed. This hook is optional. A platform may or may
not provide this hook.
- machine_kexec(image)
This function is called to perform the _actual_ kexec. This hook
_MUST_ be provided by a platform in order to activate kexec support for
that platform.
If a platform provides machine_kexec_prepare but forgets to provide
machine_kexec, a kexec will fall back to a reboot.
A ready-to-use machine_kexec_simple() generic function is provided to,
hopefully, simplify kexec adoption for embedded platforms. A platform
may call this function from its specific machine_kexec hook, like this:
void myplatform_kexec(struct kimage *image)
{
machine_kexec_simple(image);
}
- machine_shutdown()
This function is called to perform any machine specific shutdowns, not
already done by drivers. This hook is optional. A platform may or may
not provide this hook.
An example (trimmed) platform specific module for a platform supporting
kexec through the existing machine_kexec_simple follows:
/* ... */
#ifdef CONFIG_KEXEC
int myplatform_kexec_prepare(struct kimage *image)
{
/* here, we can place additional preparations
*/
return 0; /* yes, we support kexec */
}
void myplatform_kexec(struct kimage *image)
{
machine_kexec_simple(image);
}
#endif /* CONFIG_KEXEC */
/* ... */
void __init
platform_init(unsigned long r3, unsigned long r4,
unsigned long r5,
unsigned long r6, unsigned long r7)
{
/* ... */
#ifdef CONFIG_KEXEC
ppc_md.machine_kexec_prepare =
myplatform_kexec_prepare;
ppc_md.machine_kexec =
myplatform_kexec;
#endif /* CONFIG_KEXEC */
/* ... */
}
The kexec ppc kernel support has been heavily tested on the GameCube Linux
port, and, as reported in the fastboot mailing list, it has been tested too
on a Moto 82xx ppc by Rick Richardson.
Signed-off-by: Albert Herranz <albert_herranz@yahoo.es>
Signed-off-by: Eric Biederman <ebiederm@xmission.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The e200 core is a Book-E core (similar to e500) that has a unified L1 cache
and is not cache coherent on the bus. The e200 core also adds a separate
exception level for debug exceptions. Part of this patch helps to cleanup a
few cases that are true for all Freescale Book-E parts, not just e500.
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Kumar Gala <kumar.gala@freescale.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Runtime feature support for unified caches was testing a userland feature
flag (PPC_FEATURE_UNIFIED_CACHE) instead of a cpu feature flag
(CPU_FTR_SPLIT_ID_CACHE). Luckily the current defined bit mask for cpu
features and userland features do not overlap so this only causes an issue
on machines with a unified cache, which is extremely rare on PPC today.
Signed-off-by: Kumar Gala <kumar.gala@freescale.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Moved common FPU exception handling code out of head.S so it can be used by
several of the sub-architectures that might of a full PowerPC FPU.
Also, uses new CONFIG_PPC_FPU define to fix alignment exception handling
for floating point load/store instructions to only occur if we have a
hardware FPU.
Signed-off-by: Jason McMullan <jason.mcmullan@timesys.com>
Signed-off-by: Kumar Gala <kumar.gala@freescale.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!