Bill Gatliff & David Brownell pointed out we were missing some
copyrights, and licensing terms in some of the files in
./arch/blackfin, so this fixes things, and cleans them up.
It also removes:
- verbose GPL text(refer to the top level ./COPYING file)
- file names (you are looking at the file)
- bug url (it's in the ./MAINTAINERS file)
- "or later" on GPL-2, when we did not have that right
It also allows some Blackfin-specific assembly files to be under a BSD
like license (for people to use them outside of Linux).
Signed-off-by: Robin Getz <robin.getz@analog.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Make sure our interrupt entry code with exact hardware errors handles
anomaly 05000283 (infinite stall in system MMR kill) so we don't stall
while under load.
Signed-off-by: Robin Getz <robin.getz@analog.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Hardware errors on the Blackfin architecture are queued by nature of the
hardware design. Things that could generate a hardware level queue up at
the system interface and might not process until much later, at which
point the system would send a notification back to the core.
As such, it is possible for user space code to do something that would
trigger a hardware error, but have it delay long enough for the process
context to switch. So when the hardware error does signal, we mistakenly
evaluate it as a different process or as kernel context and panic (erp!).
This makes it pretty difficult to find the offending context. But wait,
there is good news somewhere.
By forcing a SSYNC in the interrupt entry, we force all pending queues at
the system level to be processed and all hardware errors to be signaled.
Then we check the current interrupt state to see if the hardware error is
now signaled. If so, we re-queue the current interrupt and return thus
allowing the higher priority hardware error interrupt to process properly.
Since we haven't done any other context processing yet, the right context
will be selected and killed. There is still the possibility that the
exact offending instruction will be unknown, but at least we'll have a
much better idea of where to look.
The downside of course is that this causes system-wide syncs at every
interrupt point which results in significant performance degradation.
Since this situation should not occur in any properly configured system
(as hardware errors are triggered by things like bad pointers), make it a
debug configuration option and disable it by default.
Signed-off-by: Robin Getz <robin.getz@analog.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
[Mike Frysinger <vapier.adi@gmail.com>:
- handle bf531/bf532/bf534/bf536 variants in ipipe.h
- cleanup IPIPE logic for bfin_set_irq_handler()
- cleanup ipipe asm code a bit and add missing ENDPROC()
- simplify IPIPE code in trap_c
- unify some of the IPIPE code and fix style
- simplify DO_IRQ_L1 handling with ipipe code
- revert IRQ_SW_INT# addition from ipipe merge
- remove duplicate get_{c,s}clk() prototypes
]
Signed-off-by: Yi Li <yi.li@analog.com>
Signed-off-by: Mike Frysinger <vapier.adi@gmail.com>
Signed-off-by: Bryan Wu <cooloney@kernel.org>
This is a mixture ofcMichael McTernan's patch and the existing cplb-mpu code.
We ditch the old cplb-nompu implementation, which is a good example of
why a good algorithm in a HLL is preferrable to a bad algorithm written in
assembly. Rather than try to construct a table of all posible CPLBs and
search it, we just create a (smaller) table of memory regions and
their attributes. Some of the data structures are now unified for both
the mpu and nompu cases. A lot of needless complexity in cplbinit.c is
removed.
Further optimizations:
* compile cplbmgr.c with a lot of -ffixed-reg options, and omit saving
these registers on the stack when entering a CPLB exception.
* lose cli/nop/nop/sti sequences for some workarounds - these don't
* make
sense in an exception context
Additional code unification should be possible after this.
[Mike Frysinger <vapier.adi@gmail.com>:
- convert CPP if statements to C if statements
- remove redundant statements
- use a do...while loop rather than a for loop to get slightly better
optimization and to avoid gcc "may be used uninitialized" warnings ...
we know that the [id]cplb_nr_bounds variables will never be 0, so this
is OK
- the no-mpu code was the last user of MAX_MEM_SIZE and with that rewritten,
we can punt it
- add some BUG_ON() checks to make sure we dont overflow the small
cplb_bounds array
- add i/d cplb entries for the bootrom because there is functions/data in
there we want to access
- we do not need a NULL trailing entry as any time we access the bounds
arrays, we use the nr_bounds variable
]
Signed-off-by: Michael McTernan <mmcternan@airvana.com>
Signed-off-by: Mike Frysinger <vapier.adi@gmail.com>
Signed-off-by: Bernd Schmidt <bernds_cb1@t-online.de>
Signed-off-by: Bryan Wu <cooloney@kernel.org>