Show more debugging information if cachefiles_mark_object_active() is asked to
activate an active object.
This may happen, for instance, if the netfs tries to register an object with
the same key multiple times.
The code is changed to (a) get the appropriate object lock to protect the
cookie pointer whilst we dereference it, and (b) get and display the cookie key
if available.
Signed-off-by: David Howells <dhowells@redhat.com>
cachefiles_write_page() writes a full page to the backing file for the last
page of the netfs file, even if the netfs file's last page is only a partial
page.
This causes the EOF on the backing file to be extended beyond the EOF of the
netfs, and thus the backing file will be truncated by cachefiles_attr_changed()
called from cachefiles_lookup_object().
So we need to limit the write we make to the backing file on that last page
such that it doesn't push the EOF too far.
Also, if a backing file that has a partial page at the end is expanded, we
discard the partial page and refetch it on the basis that we then have a hole
in the file with invalid data, and should the power go out... A better way to
deal with this could be to record a note that the partial page contains invalid
data until the correct data is written into it.
This isn't a problem for netfs's that discard the whole backing file if the
file size changes (such as NFS).
Signed-off-by: David Howells <dhowells@redhat.com>
FS-Cache objects have an FSCACHE_OBJECT_EV_REQUEUE event that can theoretically
be raised to ask the state machine to requeue the object for further processing
before the work function returns to the slow-work facility.
However, fscache_object_work_execute() was clearing that bit before checking
the event mask to see whether the object has any pending events that require it
to be requeued immediately.
Instead, the bit should be cleared after the check and enqueue.
Signed-off-by: David Howells <dhowells@redhat.com>
Start processing an object's operations when that object moves into the DYING
state as the object cannot be destroyed until all its outstanding operations
have completed.
Furthermore, make sure that read and allocation operations handle being woken
up on a dead object. Such events are recorded in the Allocs.abt and
Retrvls.abt statistics as viewable through /proc/fs/fscache/stats.
The code for waiting for object activation for the read and allocation
operations is also extracted into its own function as it is much the same in
all cases, differing only in the stats incremented.
Signed-off-by: David Howells <dhowells@redhat.com>
We must make sure that FSCACHE_COOKIE_LOOKING_UP is cleared on lookup failure
(if an object reaches the LC_DYING state), and we should clear it before
clearing FSCACHE_COOKIE_CREATING.
If this doesn't happen then fscache_wait_for_deferred_lookup() may hold
allocation and retrieval operations indefinitely until they're interrupted by
signals - which in turn pins the dying object until they go away.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a stat counter to count retirement events rather than ordinary release
events (the retire argument to fscache_relinquish_cookie()).
Signed-off-by: David Howells <dhowells@redhat.com>
Handle netfs pages that the vmscan algorithm wants to evict from the pagecache
under OOM conditions, but that are waiting for write to the cache. Under these
conditions, vmscan calls the releasepage() function of the netfs, asking if a
page can be discarded.
The problem is typified by the following trace of a stuck process:
kslowd005 D 0000000000000000 0 4253 2 0x00000080
ffff88001b14f370 0000000000000046 ffff880020d0d000 0000000000000007
0000000000000006 0000000000000001 ffff88001b14ffd8 ffff880020d0d2a8
000000000000ddf0 00000000000118c0 00000000000118c0 ffff880020d0d2a8
Call Trace:
[<ffffffffa00782d8>] __fscache_wait_on_page_write+0x8b/0xa7 [fscache]
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffffa0078240>] ? __fscache_check_page_write+0x63/0x70 [fscache]
[<ffffffffa00b671d>] nfs_fscache_release_page+0x4e/0xc4 [nfs]
[<ffffffffa00927f0>] nfs_release_page+0x3c/0x41 [nfs]
[<ffffffff810885d3>] try_to_release_page+0x32/0x3b
[<ffffffff81093203>] shrink_page_list+0x316/0x4ac
[<ffffffff8109372b>] shrink_inactive_list+0x392/0x67c
[<ffffffff813532fa>] ? __mutex_unlock_slowpath+0x100/0x10b
[<ffffffff81058df0>] ? trace_hardirqs_on_caller+0x10c/0x130
[<ffffffff8135330e>] ? mutex_unlock+0x9/0xb
[<ffffffff81093aa2>] shrink_list+0x8d/0x8f
[<ffffffff81093d1c>] shrink_zone+0x278/0x33c
[<ffffffff81052d6c>] ? ktime_get_ts+0xad/0xba
[<ffffffff81094b13>] try_to_free_pages+0x22e/0x392
[<ffffffff81091e24>] ? isolate_pages_global+0x0/0x212
[<ffffffff8108e743>] __alloc_pages_nodemask+0x3dc/0x5cf
[<ffffffff81089529>] grab_cache_page_write_begin+0x65/0xaa
[<ffffffff8110f8c0>] ext3_write_begin+0x78/0x1eb
[<ffffffff81089ec5>] generic_file_buffered_write+0x109/0x28c
[<ffffffff8103cb69>] ? current_fs_time+0x22/0x29
[<ffffffff8108a509>] __generic_file_aio_write+0x350/0x385
[<ffffffff8108a588>] ? generic_file_aio_write+0x4a/0xae
[<ffffffff8108a59e>] generic_file_aio_write+0x60/0xae
[<ffffffff810b2e82>] do_sync_write+0xe3/0x120
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810b18e1>] ? __dentry_open+0x1a5/0x2b8
[<ffffffff810b1a76>] ? dentry_open+0x82/0x89
[<ffffffffa00e693c>] cachefiles_write_page+0x298/0x335 [cachefiles]
[<ffffffffa0077147>] fscache_write_op+0x178/0x2c2 [fscache]
[<ffffffffa0075656>] fscache_op_execute+0x7a/0xd1 [fscache]
[<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
[<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
[<ffffffff8104be91>] kthread+0x7a/0x82
[<ffffffff8100beda>] child_rip+0xa/0x20
[<ffffffff8100b87c>] ? restore_args+0x0/0x30
[<ffffffff8102ef83>] ? tg_shares_up+0x171/0x227
[<ffffffff8104be17>] ? kthread+0x0/0x82
[<ffffffff8100bed0>] ? child_rip+0x0/0x20
In the above backtrace, the following is happening:
(1) A page storage operation is being executed by a slow-work thread
(fscache_write_op()).
(2) FS-Cache farms the operation out to the cache to perform
(cachefiles_write_page()).
(3) CacheFiles is then calling Ext3 to perform the actual write, using Ext3's
standard write (do_sync_write()) under KERNEL_DS directly from the netfs
page.
(4) However, for Ext3 to perform the write, it must allocate some memory, in
particular, it must allocate at least one page cache page into which it
can copy the data from the netfs page.
(5) Under OOM conditions, the memory allocator can't immediately come up with
a page, so it uses vmscan to find something to discard
(try_to_free_pages()).
(6) vmscan finds a clean netfs page it might be able to discard (possibly the
one it's trying to write out).
(7) The netfs is called to throw the page away (nfs_release_page()) - but it's
called with __GFP_WAIT, so the netfs decides to wait for the store to
complete (__fscache_wait_on_page_write()).
(8) This blocks a slow-work processing thread - possibly against itself.
The system ends up stuck because it can't write out any netfs pages to the
cache without allocating more memory.
To avoid this, we make FS-Cache cancel some writes that aren't in the middle of
actually being performed. This means that some data won't make it into the
cache this time. To support this, a new FS-Cache function is added
fscache_maybe_release_page() that replaces what the netfs releasepage()
functions used to do with respect to the cache.
The decisions fscache_maybe_release_page() makes are counted and displayed
through /proc/fs/fscache/stats on a line labelled "VmScan". There are four
counters provided: "nos=N" - pages that weren't pending storage; "gon=N" -
pages that were pending storage when we first looked, but weren't by the time
we got the object lock; "bsy=N" - pages that we ignored as they were actively
being written when we looked; and "can=N" - pages that we cancelled the storage
of.
What I'd really like to do is alter the behaviour of the cancellation
heuristics, depending on how necessary it is to expel pages. If there are
plenty of other pages that aren't waiting to be written to the cache that
could be ejected first, then it would be nice to hold up on immediate
cancellation of cache writes - but I don't see a way of doing that.
Signed-off-by: David Howells <dhowells@redhat.com>
FS-Cache doesn't correctly handle the netfs requesting a read from the cache
on an object that failed or was withdrawn by the cache. A trace similar to
the following might be seen:
CacheFiles: Lookup failed error -105
[exe ] unexpected submission OP165afe [OBJ6cac OBJECT_LC_DYING]
[exe ] objstate=OBJECT_LC_DYING [OBJECT_LC_DYING]
[exe ] objflags=0
[exe ] objevent=9 [fffffffffffffffb]
[exe ] ops=0 inp=0 exc=0
Pid: 6970, comm: exe Not tainted 2.6.32-rc6-cachefs #50
Call Trace:
[<ffffffffa0076477>] fscache_submit_op+0x3ff/0x45a [fscache]
[<ffffffffa0077997>] __fscache_read_or_alloc_pages+0x187/0x3c4 [fscache]
[<ffffffffa00b6480>] ? nfs_readpage_from_fscache_complete+0x0/0x66 [nfs]
[<ffffffffa00b6388>] __nfs_readpages_from_fscache+0x7e/0x176 [nfs]
[<ffffffff8108e483>] ? __alloc_pages_nodemask+0x11c/0x5cf
[<ffffffffa009d796>] nfs_readpages+0x114/0x1d7 [nfs]
[<ffffffff81090314>] __do_page_cache_readahead+0x15f/0x1ec
[<ffffffff81090228>] ? __do_page_cache_readahead+0x73/0x1ec
[<ffffffff810903bd>] ra_submit+0x1c/0x20
[<ffffffff810906bb>] ondemand_readahead+0x227/0x23a
[<ffffffff81090762>] page_cache_sync_readahead+0x17/0x19
[<ffffffff8108a99e>] generic_file_aio_read+0x236/0x5a0
[<ffffffffa00937bd>] nfs_file_read+0xe4/0xf3 [nfs]
[<ffffffff810b2fa2>] do_sync_read+0xe3/0x120
[<ffffffff81354cc3>] ? _spin_unlock_irq+0x2b/0x31
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff811848e5>] ? selinux_file_permission+0x5d/0x10f
[<ffffffff81352bdb>] ? thread_return+0x3e/0x101
[<ffffffff8117d7b0>] ? security_file_permission+0x11/0x13
[<ffffffff810b3b06>] vfs_read+0xaa/0x16f
[<ffffffff81058df0>] ? trace_hardirqs_on_caller+0x10c/0x130
[<ffffffff810b3c84>] sys_read+0x45/0x6c
[<ffffffff8100ae2b>] system_call_fastpath+0x16/0x1b
The object state might also be OBJECT_DYING or OBJECT_WITHDRAWING.
This should be handled by simply rejecting the new operation with ENOBUFS.
There's no need to log an error for it. Events of this type now appear in the
stats file under Ops:rej.
Signed-off-by: David Howells <dhowells@redhat.com>
Don't delete pending pages from the page-store tracking tree, but rather send
them for another write as they've presumably been updated.
Signed-off-by: David Howells <dhowells@redhat.com>
FS-Cache has two structs internally for keeping track of the internal state of
a cached file: the fscache_cookie struct, which represents the netfs's state,
and fscache_object struct, which represents the cache's state. Each has a
pointer that points to the other (when both are in existence), and each has a
spinlock for pointer maintenance.
Since netfs operations approach these structures from the cookie side, they get
the cookie lock first, then the object lock. Cache operations, on the other
hand, approach from the object side, and get the object lock first. It is not
then permitted for a cache operation to get the cookie lock whilst it is
holding the object lock lest deadlock occur; instead, it must do one of two
things:
(1) increment the cookie usage counter, drop the object lock and then get both
locks in order, or
(2) simply hold the object lock as certain parts of the cookie may not be
altered whilst the object lock is held.
It is also not permitted to follow either pointer without holding the lock at
the end you start with. To break the pointers between the cookie and the
object, both locks must be held.
fscache_write_op(), however, violates the locking rules: It attempts to get the
cookie lock without (a) checking that the cookie pointer is a valid pointer,
and (b) holding the object lock to protect the cookie pointer whilst it follows
it. This is so that it can access the pending page store tree without
interference from __fscache_write_page().
This is fixed by splitting the cookie lock, such that the page store tracking
tree is protected by its own lock, and checking that the cookie pointer is
non-NULL before we attempt to follow it whilst holding the object lock.
The new lock is subordinate to both the cookie lock and the object lock, and so
should be taken after those.
Signed-off-by: David Howells <dhowells@redhat.com>
The object-available state in the object processing state machine (as
processed by fscache_object_available()) can't rely on the cookie to be
available because the FSCACHE_COOKIE_CREATING bit may have been cleared by
fscache_obtained_object() prior to the object being put into the
FSCACHE_OBJECT_AVAILABLE state.
Clearing the FSCACHE_COOKIE_CREATING bit on a cookie permits
__fscache_relinquish_cookie() to proceed and detach the cookie from the
object.
To deal with this, we don't dereference object->cookie in
fscache_object_available() if the object has already been detached.
In addition, a couple of assertions are added into fscache_drop_object() to
make sure the object is unbound from the cookie before it gets there.
Signed-off-by: David Howells <dhowells@redhat.com>
Permit the operations to retrieve data from the cache or to allocate space in
the cache for future writes to be interrupted whilst they're waiting for
permission for the operation to proceed. Typically this wait occurs whilst the
cache object is being looked up on disk in the background.
If an interruption occurs, and the operation has not yet been given the
go-ahead to run, the operation is dequeued and cancelled, and control returns
to the read operation of the netfs routine with none of the requested pages
having been read or in any way marked as known by the cache.
This means that the initial wait is done interruptibly rather than
uninterruptibly.
In addition, extra stats values are made available to show the number of ops
cancelled and the number of cache space allocations interrupted.
Signed-off-by: David Howells <dhowells@redhat.com>
__fscache_write_page() attempts to load the radix tree preallocation pool for
the CPU it is on before calling radix_tree_insert(), as the insertion must be
done inside a pair of spinlocks.
Use of the preallocation pool, however, is contingent on the radix tree being
initialised without __GFP_WAIT specified. __fscache_acquire_cookie() was
passing GFP_NOFS to INIT_RADIX_TREE() - but that includes __GFP_WAIT.
The solution is to AND out __GFP_WAIT.
Additionally, the banner comment to radix_tree_preload() is altered to make
note of this prerequisite. Possibly there should be a WARN_ON() too.
Without this fix, I have seen the following recursive deadlock caused by
radix_tree_insert() attempting to allocate memory inside the spinlocked
region, which resulted in FS-Cache being called back into to release memory -
which required the spinlock already held.
=============================================
[ INFO: possible recursive locking detected ]
2.6.32-rc6-cachefs #24
---------------------------------------------
nfsiod/7916 is trying to acquire lock:
(&cookie->lock){+.+.-.}, at: [<ffffffffa0076872>] __fscache_uncache_page+0xdb/0x160 [fscache]
but task is already holding lock:
(&cookie->lock){+.+.-.}, at: [<ffffffffa0076acc>] __fscache_write_page+0x15c/0x3f3 [fscache]
other info that might help us debug this:
5 locks held by nfsiod/7916:
#0: (nfsiod){+.+.+.}, at: [<ffffffff81048290>] worker_thread+0x19a/0x2e2
#1: (&task->u.tk_work#2){+.+.+.}, at: [<ffffffff81048290>] worker_thread+0x19a/0x2e2
#2: (&cookie->lock){+.+.-.}, at: [<ffffffffa0076acc>] __fscache_write_page+0x15c/0x3f3 [fscache]
#3: (&object->lock#2){+.+.-.}, at: [<ffffffffa0076b07>] __fscache_write_page+0x197/0x3f3 [fscache]
#4: (&cookie->stores_lock){+.+...}, at: [<ffffffffa0076b0f>] __fscache_write_page+0x19f/0x3f3 [fscache]
stack backtrace:
Pid: 7916, comm: nfsiod Not tainted 2.6.32-rc6-cachefs #24
Call Trace:
[<ffffffff8105ac7f>] __lock_acquire+0x1649/0x16e3
[<ffffffff81059ded>] ? __lock_acquire+0x7b7/0x16e3
[<ffffffff8100e27d>] ? dump_trace+0x248/0x257
[<ffffffff8105ad70>] lock_acquire+0x57/0x6d
[<ffffffffa0076872>] ? __fscache_uncache_page+0xdb/0x160 [fscache]
[<ffffffff8135467c>] _spin_lock+0x2c/0x3b
[<ffffffffa0076872>] ? __fscache_uncache_page+0xdb/0x160 [fscache]
[<ffffffffa0076872>] __fscache_uncache_page+0xdb/0x160 [fscache]
[<ffffffffa0077eb7>] ? __fscache_check_page_write+0x0/0x71 [fscache]
[<ffffffffa00b4755>] nfs_fscache_release_page+0x86/0xc4 [nfs]
[<ffffffffa00907f0>] nfs_release_page+0x3c/0x41 [nfs]
[<ffffffff81087ffb>] try_to_release_page+0x32/0x3b
[<ffffffff81092c2b>] shrink_page_list+0x316/0x4ac
[<ffffffff81058a9b>] ? mark_held_locks+0x52/0x70
[<ffffffff8135451b>] ? _spin_unlock_irq+0x2b/0x31
[<ffffffff81093153>] shrink_inactive_list+0x392/0x67c
[<ffffffff81058a9b>] ? mark_held_locks+0x52/0x70
[<ffffffff810934ca>] shrink_list+0x8d/0x8f
[<ffffffff81093744>] shrink_zone+0x278/0x33c
[<ffffffff81052c70>] ? ktime_get_ts+0xad/0xba
[<ffffffff8109453b>] try_to_free_pages+0x22e/0x392
[<ffffffff8109184c>] ? isolate_pages_global+0x0/0x212
[<ffffffff8108e16b>] __alloc_pages_nodemask+0x3dc/0x5cf
[<ffffffff810ae24a>] cache_alloc_refill+0x34d/0x6c1
[<ffffffff811bcf74>] ? radix_tree_node_alloc+0x52/0x5c
[<ffffffff810ae929>] kmem_cache_alloc+0xb2/0x118
[<ffffffff811bcf74>] radix_tree_node_alloc+0x52/0x5c
[<ffffffff811bcfd5>] radix_tree_insert+0x57/0x19c
[<ffffffffa0076b53>] __fscache_write_page+0x1e3/0x3f3 [fscache]
[<ffffffffa00b4248>] __nfs_readpage_to_fscache+0x58/0x11e [nfs]
[<ffffffffa009bb77>] nfs_readpage_release+0x34/0x9b [nfs]
[<ffffffffa009c0d9>] nfs_readpage_release_full+0x32/0x4b [nfs]
[<ffffffffa0006cff>] rpc_release_calldata+0x12/0x14 [sunrpc]
[<ffffffffa0006e2d>] rpc_free_task+0x59/0x61 [sunrpc]
[<ffffffffa0006f03>] rpc_async_release+0x10/0x12 [sunrpc]
[<ffffffff810482e5>] worker_thread+0x1ef/0x2e2
[<ffffffff81048290>] ? worker_thread+0x19a/0x2e2
[<ffffffff81352433>] ? thread_return+0x3e/0x101
[<ffffffffa0006ef3>] ? rpc_async_release+0x0/0x12 [sunrpc]
[<ffffffff8104bff5>] ? autoremove_wake_function+0x0/0x34
[<ffffffff81058d25>] ? trace_hardirqs_on+0xd/0xf
[<ffffffff810480f6>] ? worker_thread+0x0/0x2e2
[<ffffffff8104bd21>] kthread+0x7a/0x82
[<ffffffff8100beda>] child_rip+0xa/0x20
[<ffffffff8100b87c>] ? restore_args+0x0/0x30
[<ffffffff8104c2b9>] ? add_wait_queue+0x15/0x44
[<ffffffff8104bca7>] ? kthread+0x0/0x82
[<ffffffff8100bed0>] ? child_rip+0x0/0x20
Signed-off-by: David Howells <dhowells@redhat.com>
Clear the pointers from the fscache_cookie struct to netfs private data after
clearing the pointer to the cookie from the fscache_object struct and
releasing the object lock, rather than before.
This allows the netfs private data pointers to be relied on simply by holding
the object lock, rather than having to hold the cookie lock. This is makes
things simpler as the cookie lock has to be taken before the object lock, but
sometimes the object pointer is all that the code has.
Signed-off-by: David Howells <dhowells@redhat.com>
Count entries to and exits from cache operation table functions. Maintain
these as a single counter that's added to or removed from as appropriate.
Signed-off-by: David Howells <dhowells@redhat.com>
Allow the current state of all fscache objects to be dumped by doing:
cat /proc/fs/fscache/objects
By default, all objects and all fields will be shown. This can be restricted
by adding a suitable key to one of the caller's keyrings (such as the session
keyring):
keyctl add user fscache:objlist "<restrictions>" @s
The <restrictions> are:
K Show hexdump of object key (don't show if not given)
A Show hexdump of object aux data (don't show if not given)
And paired restrictions:
C Show objects that have a cookie
c Show objects that don't have a cookie
B Show objects that are busy
b Show objects that aren't busy
W Show objects that have pending writes
w Show objects that don't have pending writes
R Show objects that have outstanding reads
r Show objects that don't have outstanding reads
S Show objects that have slow work queued
s Show objects that don't have slow work queued
If neither side of a restriction pair is given, then both are implied. For
example:
keyctl add user fscache:objlist KB @s
shows objects that are busy, and lists their object keys, but does not dump
their auxiliary data. It also implies "CcWwRrSs", but as 'B' is given, 'b' is
not implied.
Signed-off-by: David Howells <dhowells@redhat.com>
Annotate slow-work runqueue proc lines for FS-Cache work items. Objects
include the object ID and the state. Operations include the object ID, the
operation ID and the operation type and state.
Signed-off-by: David Howells <dhowells@redhat.com>
Wait for outstanding slow work items belonging to a module to clear when
unregistering that module as a user of the facility. This prevents the put_ref
code of a work item from being taken away before it returns.
Signed-off-by: David Howells <dhowells@redhat.com>
This is for consistency with various ioctl() operations that include the
suffix "PGRP" in their names, and also for consistency with PRIO_PGRP,
used with setpriority() and getpriority(). Also, using PGRP instead of
GID avoids confusion with the common abbreviation of "group ID".
I'm fine with anything that makes it more consistent, and if PGRP is what
is the predominant abbreviation then I see no need to further confuse
matters by adding a third one.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a small issue for the stack pointer in /proc/<pid>/stat. In case of a
kernel thread the value of the printed stack pointer should be 0.
Signed-off-by: Stefani Seibold <stefani@seibold.net>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Access to log items on the AIL is generally protected by m_ail_lock;
this is particularly needed when we're getting or setting the 64-bit
li_lsn on a 32-bit platform. This patch fixes a couple places where we
were accessing the log item after dropping the AIL lock on 32-bit
machines.
This can result in a partially-zeroed log->l_tail_lsn if
xfs_trans_ail_delete is racing with xfs_trans_ail_update, and in at
least some cases, this can leave the l_tail_lsn with a zero cycle
number, which means xlog_space_left will think the log is full (unless
CONFIG_XFS_DEBUG is set, in which case we'll trip an ASSERT), leading to
processes stuck forever in xlog_grant_log_space.
Thanks to Adrian VanderSpek for first spotting the race potential and to
Dave Chinner for debug assistance.
Signed-off-by: Nathaniel W. Turner <nate@houseofnate.net>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Hi,
I was hit by a bug in linux 2.6.31 when XFS is not able to recover the
log after a crash if fs was mounted with quotas. Gory details in XFS
bugzilla: http://oss.sgi.com/bugzilla/show_bug.cgi?id=855.
It looks like wrong struct is used in buffer length check, and the following
patch should fix the problem.
xfs_dqblk_t has a size of 104+32 bytes, while xfs_disk_dquot_t is 104 bytes
long, and this is exactly what I see in system logs - "XFS: dquot too small
(104) in xlog_recover_do_dquot_trans."
Signed-off-by: Jan Rekorajski <baggins@sith.mimuw.edu.pl>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Fix the commit ec06aedd44 that intended to turn off querying for server inode
numbers when server doesn't consistently support inode numbers. Presumably
the commit didn't actually clear the CIFS_MOUNT_SERVER_INUM flag, perhaps a
typo.
Signed-off-by: Suresh Jayaraman <sjayaraman@suse.de>
Acked-by: Jeff Layton <jlayton@redhat.com>
Cc: Stable <stable@kernel.org>
Signed-off-by: Steve French <sfrench@us.ibm.com>
The comment says, "Caller of this function MUST lock s_inode_lock",
however just above the comment, it locks s_inode_lock in the function.
Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Commit 8177e6d6df ("nfsd: clean up
readdirplus encoding") introduced single character typo in nfs3 readdir+
implementation. Unfortunately that typo has quite bad side effects:
random memory corruption, followed (on my box) with immediate
spontaneous box reboot.
Using 'p1' instead of 'p' fixes my Linux box rebooting whenever VMware
ESXi box tries to list contents of my home directory.
Signed-off-by: Petr Vandrovec <petr@vandrovec.name>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mainline commit 53ef99cad9 removed the
JBD compatibility layer from OCFS2. This patch removes the last remaining
remnants of that.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Because of an integer overflow on start_blk, various kind of wrong results
would be returned by the generic_block_fiemap() handler, such as no
extents when there is a 4GB+ hole at the beginning of the file, or wrong
fe_logical when an extent starts after the first 4GB.
Signed-off-by: Mike Hommey <mh@glandium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Eric Sandeen <sandeen@sgi.com>
Cc: Josef Bacik <jbacik@redhat.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In setup_arg_pages we work hard to assign a value to ret, but on exit we
always return 0.
Also remove a now duplicated exit path and branch to out_unlock instead.
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For FS_IOC_RESVSP and FS_IOC_RESVSP64 compat_sys_ioctl() uses its
arg argument as a pointer to userspace. However it is missing a
a call to compat_ptr() which will do a proper pointer conversion.
This was introduced with 3e63cbb1 "fs: Add new pre-allocation ioctls
to vfs for compatibility with legacy xfs ioctls".
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ankit Jain <me@ankitjain.org>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Arnd Bergmann <arndbergmann@googlemail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: <stable@kernel.org> [2.6.31.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Daniel Lezcano reported a leak in 'struct pid' and 'struct pid_namespace'
that is discussed in:
http://lkml.org/lkml/2009/10/2/159.
To summarize the thread, when container-init is terminated, it sets the
PF_EXITING flag, zaps other processes in the container and waits to reap
them. As a part of reaping, the container-init should flush any /proc
dentries associated with the processes. But because the container-init is
itself exiting and the following PF_EXITING check, the dentries are not
flushed, resulting in leak in /proc inodes and dentries.
This fix reverts the commit 7766755a2f ("Fix /proc dcache deadlock
in do_exit") which introduced the check for PF_EXITING. At the time of
the commit, shrink_dcache_parent() flushed dentries from other filesystems
also and could have caused a deadlock which the commit fixed. But as
pointed out by Eric Biederman, after commit 0feae5c47a,
shrink_dcache_parent() no longer affects other filesystems. So reverting
the commit is now safe.
As pointed out by Jan Kara, the leak is not as critical since the
unclaimed space will be reclaimed under memory pressure or by:
echo 3 > /proc/sys/vm/drop_caches
But since this check is no longer required, its best to remove it.
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Reported-by: Daniel Lezcano <dlezcano@fr.ibm.com>
Acked-by: Eric W. Biederman <ebiederm@xmission.com>
Acked-by: Jan Kara <jack@ucw.cz>
Cc: Andrea Arcangeli <andrea@cpushare.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: fix panic when trying to destroy a newly allocated
Btrfs: allow more metadata chunk preallocation
Btrfs: fallback on uncompressed io if compressed io fails
Btrfs: find ideal block group for caching
Btrfs: avoid null deref in unpin_extent_cache()
Btrfs: skip btrfs_release_path in btrfs_update_root and btrfs_del_root
Btrfs: fix some metadata enospc issues
Btrfs: fix how we set max_size for free space clusters
Btrfs: cleanup transaction starting and fix journal_info usage
Btrfs: fix data allocation hint start
There is a problem where iget5_locked will look for an inode, not find it, and
then subsequently try to allocate it. Another CPU will have raced in and
allocated the inode instead, so when iget5_locked gets the inode spin lock again
and does a search, it finds the new inode. So it goes ahead and calls
destroy_inode on the inode it just allocated. The problem is we don't set
BTRFS_I(inode)->root until the new inode is completely initialized. This patch
makes us set root to NULL when alloc'ing a new inode, so when we get to
btrfs_destroy_inode and we see that root is NULL we can just free up the memory
and continue on. This fixes the panic
http://www.kerneloops.org/submitresult.php?number=812690
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs-2.6:
JBD/JBD2: free j_wbuf if journal init fails.
ext3: Wait for proper transaction commit on fsync
ext3: retry failed direct IO allocations
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
ext4: partial revert to fix double brelse WARNING()
ext4: Fix return value of ext4_split_unwritten_extents() to fix direct I/O
ext4: code clean up for dio fallocate handling
ext4: skip conversion of uninit extents after direct IO if there isn't any
ext4: fix ext4_ext_direct_IO()'s return value after converting uninit extents
ext4: discard preallocation when restarting a transaction during truncate
On an FS where all of the space has not been allocated into chunks yet,
the enospc can return enospc just because the existing metadata chunks
are full.
We get around this by allowing more metadata chunks to be allocated up
to a certain limit, and finding the right limit is a little fuzzy. The
problem is the reservations for delalloc would preallocate way too much
of the FS as metadata. We need to start saying no and just force some
IO to happen.
But we also need to let a reasonable amount of the FS become metadata.
This bumps the hard limit up, later releases will have a better system.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Currently compressed IO does not deal with not having its entire extent able to
be allocated. So if we have enough free space to allocate for the extent, but
its not contiguous, it will fail spectacularly. This patch fixes this by
falling back on uncompressed IO which lets us spread the delalloc extent across
multiple extents. I tested this by making us randomly think the reservation had
failed to make it fallback on the uncompressed io way and it seemed to work
fine. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch changes a few things. Hopefully the comments are helpfull, but
I'll try and be as verbose here.
Problem:
My fedora box was taking 1 minute and 21 seconds to boot with btrfs as root.
Part of this problem was we pick the first block group we can find and start
caching it, even if it may not have enough free space. The other problem is
we only search for cached block groups the first time around, which we won't
find any cached block groups because this is a newly mounted fs, so we end up
caching several block groups during bootup, which with alot of fragmentation
takes around 30-45 seconds to complete, which bogs down the system. So
Solution:
1) Don't cache block groups willy-nilly at first. Instead try and figure out
which block group has the most free, and therefore will take the least amount
of time to cache.
2) Don't be so picky about cached block groups. The other problem is once
we've filled up a cluster, if the block group isn't finished caching the next
time we try and do the allocation we'll completely ignore the cluster and
start searching from the beginning of the space, which makes us cache more
block groups, which slows us down even more. So instead of skipping block
groups that are not finished caching when we have a hint, only skip the block
group if it hasn't started caching yet.
There is one other tweak in here. Before if we allocated a chunk and still
couldn't find new space, we'd end up switching the space info to force another
chunk allocation. This could make us end up with way too many chunks, so keep
track of this particular case.
With this patch and my previous cluster fixes my fedora box now boots in 43
seconds, and according to the bootchart is not held up by our block group
caching at all.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
I re-orderred the checks to avoid dereferencing "em" if it was null.
Found by smatch static checker.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We don't need to call btrfs_release_path because btrfs_free_path will do
that for us.
Signed-off-by: Li Dongyang <Jerry87905@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We weren't reserving metadata space for rename, rmdir and unlink, which could
cause problems.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch fixes a problem where max_size can be set to 0 even though we
filled the cluster properly. We set max_size to 0 if we restart the cluster
window, but if the new start entry is big enough to be our new cluster then we
could return with a max_size set to 0, which will mean the next time we try to
allocate from this cluster it will fail. So set max_extent to the entry's
size. Tested this on my box and now we actually allocate from the cluster
after we fill it. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We use journal_info to tell if we're in a nested transaction to make sure we
don't commit the transaction within a nested transaction. We use another
method to see if there are any outstanding ioctl trans handles, so if we're
starting one do not set current->journal_info, since it will screw with other
filesystems. This patch also cleans up the starting stuff so there aren't any
magic numbers.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Sometimes our start allocation hint when we cow a file can be either
EXTENT_HOLE or some other such place holder, which is not optimal. So if we
find that our em->block_start is one of these special values, check to see
where the first block of the inode is stored, and use that as a hint. If that
block is also a special value, just fallback on a hint of 0 and let the
allocator figure out a good place to put the data.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If journal init fails, we need to free j_wbuf.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Jan Kara <jack@suse.cz>
We cannot rely on buffer dirty bits during fsync because pdflush can come
before fsync is called and clear dirty bits without forcing a transaction
commit. What we do is that we track which transaction has last changed
the inode and which transaction last changed allocation and force it to
disk on fsync.
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
On a 256M 4k block filesystem, doing this in a loop:
dd if=/dev/zero of=test oflag=direct bs=1M count=64
rm -f test
eventually leads to spurious ENOSPC:
dd: writing `test': No space left on device
As with other block allocation callers, it looks like we need to
potentially retry the allocations on the initial ENOSPC.
A similar patch went into ext4 (commit
fbbf694566)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Changeset a65318bf3a (NFSv4: Simplify some
cache consistency post-op GETATTRs) incorrectly changed the getattr
bitmap for readdir().
This causes the readdir() function to fail to return a
fileid/inode number, which again exposed a bug in the NFS readdir code that
causes spurious ENOENT errors to appear in applications (see
http://bugzilla.kernel.org/show_bug.cgi?id=14541).
The immediate band aid is to revert the incorrect bitmap change, but more
long term, we should change the NFS readdir code to cope with the
fact that NFSv4 servers are not required to support fileids/inode numbers.
Reported-by: Daniel J Blueman <daniel.blueman@gmail.com>
Cc: stable@kernel.org
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ryusuke/nilfs2:
nilfs2: fix missing cleanup of gc cache on error cases
nilfs2: fix kernel oops in error case of nilfs_ioctl_move_blocks
This is a partial revert of commit 6487a9d (only the changes made to
fs/ext4/namei.c), since it is causing the following brelse()
double-free warning when running fsstress on a file system with 1k
blocksize and we run into a block allocation failure while converting
a single-block directory to a multi-block hash-tree indexed directory.
WARNING: at fs/buffer.c:1197 __brelse+0x2e/0x33()
Hardware name:
VFS: brelse: Trying to free free buffer
Modules linked in:
Pid: 2226, comm: jbd2/sdd-8 Not tainted 2.6.32-rc6-00577-g0003f55 #101
Call Trace:
[<c01587fb>] warn_slowpath_common+0x65/0x95
[<c0158869>] warn_slowpath_fmt+0x29/0x2c
[<c021168e>] __brelse+0x2e/0x33
[<c0288a9f>] jbd2_journal_refile_buffer+0x67/0x6c
[<c028a9ed>] jbd2_journal_commit_transaction+0x319/0x14d8
[<c0164d73>] ? try_to_del_timer_sync+0x58/0x60
[<c0175bcc>] ? sched_clock_cpu+0x12a/0x13e
[<c017f6b4>] ? trace_hardirqs_off+0xb/0xd
[<c0175c1f>] ? cpu_clock+0x3f/0x5b
[<c017f6ec>] ? lock_release_holdtime+0x36/0x137
[<c0664ad0>] ? _spin_unlock_irqrestore+0x44/0x51
[<c0180af3>] ? trace_hardirqs_on_caller+0x103/0x124
[<c0180b1f>] ? trace_hardirqs_on+0xb/0xd
[<c0164d73>] ? try_to_del_timer_sync+0x58/0x60
[<c0290d1c>] kjournald2+0x11a/0x310
[<c017118e>] ? autoremove_wake_function+0x0/0x38
[<c0290c02>] ? kjournald2+0x0/0x310
[<c0170ee6>] kthread+0x66/0x6b
[<c0170e80>] ? kthread+0x0/0x6b
[<c01251b3>] kernel_thread_helper+0x7/0x10
---[ end trace 5579351b86af61e3 ]---
Commit 6487a9d was an attempt some buffer head leaks in an ENOSPC
error path, but in some cases it actually results in an excess ENOSPC,
as shown above. Fixing this means cleaning up who is responsible for
releasing the buffer heads from the callee to the caller of
add_dirent_to_buf().
Since that's a relatively complex change, and we're late in the rcX
development cycle, I'm reverting this now, and holding back a more
complete fix until after 2.6.32 ships. We've lived with this
buffer_head leak on ENOSPC in ext3 and ext4 for a very long time; a
few more months won't kill us.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: Curt Wohlgemuth <curtw@google.com>
This fixes an -rc1 regression brought by the commit:
1cf58fa840 ("nilfs2: shorten freeze
period due to GC in write operation v3").
Although the patch moved out a function call of
nilfs_ioctl_move_blocks() to nilfs_ioctl_clean_segments() from
nilfs_ioctl_prepare_clean_segments(), it didn't move corresponding
cleanup job needed for the error case.
This will move the missing cleanup job to the destination function.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Acked-by: Jiro SEKIBA <jir@unicus.jp>
This fixes a kernel oops reported by Markus Trippelsdorf in the email
titled "[NILFS users] kernel Oops while running nilfs_cleanerd".
The oops was caused by a bug of error path in
nilfs_ioctl_move_blocks() function, which was inlined in
nilfs_ioctl_clean_segments().
nilfs_ioctl_move_blocks checks duplication of blocks which will be
moved in garbage collection. But, the check should have be done
within nilfs_ioctl_move_inode_block() to prevent list corruption among
buffers storing the target blocks.
To fix the kernel oops, this moves forward the duplication check
before the list insertion.
I also tested this for stable trees [2.6.30, 2.6.31].
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: stable <stable@kernel.org>
Because it's lighter weight, CIFS tries to use CIFSGetSrvInodeNumber to
verify the accessibility of the root inode and then falls back to doing a
full QPathInfo if that fails with -EOPNOTSUPP. I have at least a report
of a server that returns NT_STATUS_INTERNAL_ERROR rather than something
that translates to EOPNOTSUPP.
Rather than trying to be clever with that call, just have
is_path_accessible do a normal QPathInfo. That call is widely
supported and it shouldn't increase the overhead significantly.
Cc: Stable <stable@kernel.org>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
It's possible that a server will return a valid FileID when we query the
FILE_INTERNAL_INFO for the root inode, but then zeroed out inode numbers
when we do a FindFile with an infolevel of
SMB_FIND_FILE_ID_FULL_DIR_INFO.
In this situation turn off querying for server inode numbers, generate a
warning for the user and just generate an inode number using iunique.
Once we generate any inode number with iunique we can no longer use any
server inode numbers or we risk collisions, so ensure that we don't do
that in cifs_get_inode_info either.
Cc: Stable <stable@kernel.org>
Reported-by: Timothy Normand Miller <theosib@gmail.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
To prepare for a direct I/O write, we need to split the unwritten
extents before submitting the I/O. When no extents needed to be
split, ext4_split_unwritten_extents() was incorrectly returning 0
instead of the size of uninitialized extents. This bug caused the
wrong return value sent back to VFS code when it gets called from
async IO path, leading to an unnecessary fall back to buffered IO.
This bug also hid the fact that the check to see whether or not a
split would be necessary was incorrect; we can only skip splitting the
extent if the write completely covers the uninitialized extent.
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse:
fuse: invalidate target of rename
fuse: fix kunmap in fuse_ioctl_copy_user
fuse: prevent fuse_put_request on invalid pointer
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, fs: Fix x86 procfs stack information for threads on 64-bit
x86: Add reboot quirk for 3 series Mac mini
x86: Fix printk message typo in mtrr cleanup code
dma-debug: Fix compile warning with PAE enabled
x86/amd-iommu: Un__init function required on shutdown
x86/amd-iommu: Workaround for erratum 63
While refreshing my sysfs patches I noticed a leak in the secdata
implementation. We don't free the secdata when we free the
sysfs dirent.
This is a bug in 2.6.32-rc5 that we really should close.
Signed-off-by: Eric W. Biederman <ebiederm@aristanetworks.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
This patch fixes two issues in the procfs stack information on
x86-64 linux.
The 32 bit loader compat_do_execve did not store stack
start. (this was figured out by Alexey Dobriyan).
The stack information on a x64_64 kernel always shows 0 kbyte
stack usage, because of a missing implementation of the KSTK_ESP
macro which always returned -1.
The new implementation now returns the right value.
Signed-off-by: Stefani Seibold <stefani@seibold.net>
Cc: Americo Wang <xiyou.wangcong@gmail.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
LKML-Reference: <1257240160.4889.24.camel@wall-e>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Invalidate the target's attributes, which may have changed (such as
nlink, change time) so that they are refreshed on the next getattr().
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Looks like another victim of the confusing kmap() vs kmap_atomic() API
differences.
Reported-by: Todor Gyumyushev <yodor1@gmail.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: stable@kernel.org
fuse_direct_io() has a loop where requests are allocated in each
iteration. if allocation fails, the loop is broken out and follows
into an unconditional fuse_put_request() on that invalid pointer.
Signed-off-by: Anand V. Avati <avati@gluster.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: stable@kernel.org
* 'for-linus' of git://git.kernel.dk/linux-2.6-block:
cfq-iosched: limit coop preemption
cfq-iosched: fix bad return value cfq_should_preempt()
backing-dev: bdi sb prune should be in the unregister path, not destroy
Fix bio_alloc() and bio_kmalloc() documentation
bio_put(): add bio_clone() to the list of functions in the comment
The ext4_debug() call in ext4_end_io_dio() should be moved after the
check to make sure that io_end is non-NULL.
The comment above ext4_get_block_dio_write() ("Maximum number of
blocks...") is a duplicate; the original and correct comment is above
the #define DIO_MAX_BLOCKS up above.
Based on review comments from Curt Wohlgemuth.
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
At the end of direct I/O operation, ext4_ext_direct_IO() always called
ext4_convert_unwritten_extents(), regardless of whether there were any
unwritten extents involved in the I/O or not.
This commit adds a state flag so that ext4_ext_direct_IO() only calls
ext4_convert_unwritten_extents() when necessary.
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
After a direct I/O request covering an uninitalized extent (i.e.,
created using the fallocate system call) or a hole in a file, ext4
will convert the uninitialized extent so it is marked as initialized
by calling ext4_convert_unwritten_extents(). This function returns
zero on success.
This return value was getting returned by ext4_direct_IO(); however
the file system's direct_IO function is supposed to return the number
of bytes read or written on a success. By returning zero, it confused
the direct I/O code into falling back to buffered I/O unnecessarily.
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Adds missing initialization of newly allocated b-tree node buffers.
This avoids garbage data to be mixed in b-tree node blocks.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
When nilfs flushes out dirty data to reduce memory pressure, creation
of checkpoints is wrongly postponed. This bug causes irregular
checkpoint creation especially in small footprint systems.
To correct this issue, a timer for the checkpoint creation has to be
continued if a log writer does not create a checkpoint.
This will do the correction.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Bruno Prémont and Dunphy, Bill noticed me that NILFS will certainly
hang on ARM-based targets.
I found this was caused by an underflow of dirty pages counter. A
b-tree cache routine was marking page dirty without adjusting page
account information.
This fixes the dirty page accounting leak and resolves the hang on
arm-based targets.
Reported-by: Bruno Prémont <bonbons@linux-vserver.org>
Reported-by: Dunphy, Bill <WDunphy@tandbergdata.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Tested-by: Bruno Prémont <bonbons@linux-vserver.org>
Cc: stable <stable@kernel.org>
When restart a transaction during a truncate operation, we drop and
reacquire i_data_sem. After reacquiring i_data_sem, we need to
discard any inode-based preallocation that might have been grabbed
while we released i_data_sem (for example, if pdflush is allocating
blocks and racing against the truncate).
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ericvh/v9fs:
9p: fix readdir corner cases
9p: fix readlink
9p: fix a small bug in readdir for long directories
This reverts commit d0646f7b63, as
requested by Eric Sandeen.
It can basically cause an ext4 filesystem to miss recovery (and thus get
mounted with errors) if the journal checksum does not match.
Quoth Eric:
"My hand-wavy hunch about what is happening is that we're finding a
bad checksum on the last partially-written transaction, which is
not surprising, but if we have a wrapped log and we're doing the
initial scan for head/tail, and we abort scanning on that bad
checksum, then we are essentially running an unrecovered filesystem.
But that's hand-wavy and I need to go look at the code.
We lived without journal checksums on by default until now, and at
this point they're doing more harm than good, so we should revert
the default-changing commit until we can fix it and do some good
power-fail testing with the fixes in place."
See
http://bugzilla.kernel.org/show_bug.cgi?id=14354
for all the gory details.
Requested-by: Eric Sandeen <sandeen@redhat.com>
Cc: Theodore Tso <tytso@mit.edu>
Cc: Alexey Fisher <bug-track@fisher-privat.net>
Cc: Maxim Levitsky <maximlevitsky@gmail.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Mathias Burén <mathias.buren@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The patch below also addresses a couple of other corner cases in readdir
seen with a large (e.g. 64k) msize. I'm not sure what people think of
my co-opting of fid->aux here. I'd be happy to rework if there's a better
way.
When the size of the user supplied buffer passed to readdir is smaller
than the data returned in one go by the 9P read request, v9fs_dir_readdir()
currently discards extra data so that, on the next call, a 9P read
request will be issued with offset < previous offset + bytes returned,
which voilates the constraint described in paragraph 3 of read(5) description.
This patch preseves the leftover data in fid->aux for use in the next call.
Signed-off-by: Jim Garlick <garlick@llnl.gov>
Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
I do not know if you've looked on the patch, but unfortunately it is
incorrect. A suggested better version is in this email (the old
version didn't work in case the user provided buffer was not long
enough - it incorrectly appended null byte on a position of last char,
and thus broke the contract of the readlink method). However, I'm
still not sure this is 100% correct thing to do, I think readlink is
supposed to return buffer without last null byte in all cases, but we
do return last null byte (even the old version).. on the other hand it
is likely unspecified what is in the remaining part of the buffer, so
null character may be fine there ;):
Signed-off-by: Martin Stava <martin.stava@gmail.com>
Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
Here is a proposed patch for bug in readdir. Listing of dirs with
many files fails without this patch.
Signed-off-by: Martin Stava <martin.stava@gmail.com>
Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
Commit 451a9ebf accidentally broke bio_alloc() and bio_kmalloc() comments by
(almost) swapping them.
This patch fixes that, by placing the comments in the right place.
Signed-off-by: Alberto Bertogli <albertito@blitiri.com.ar>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
In bio_put()'s comment, add bio_clone() to the list of functions that can
give you a bio reference.
Signed-off-by: Alberto Bertogli <albertito@blitiri.com.ar>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
The xfs_quota returns ENOSYS when remove command is executed.
Reproducable with following steps.
# mount -t xfs -o uquota /dev/sda7 /mnt/mp1
# xfs_quota -x -c off -c remove
XFS_QUOTARM: Function not implemented.
The remove command is allowed during quotaoff, but xfs_fs_set_xstate()
checks whether quota is running, and it leads to ENOSYS.
To solve this problem, add a check for X_QUOTARM.
Signed-off-by: Ryota Yamauchi <r-yamauchi@vf.jp.nec.com>
Signed-off-by: Utako Kusaka <u-kusaka@wm.jp.nec.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Commit bd16956599 seems
to have a slight regression where this code path:
if (!--searchdistance) {
/*
* Not in range - save last search
* location and allocate a new inode
*/
...
goto newino;
}
doesn't free the temporary cursor (tcur) that got dup'd in
this function.
This leaks an item in the xfs_btree_cur zone, and it's caught
on module unload:
===========================================================
BUG xfs_btree_cur: Objects remaining on kmem_cache_close()
-----------------------------------------------------------
It seems like maybe a single free at the end of the function might
be cleaner, but for now put a del_cursor right in this code block
similar to the handling in the rest of the function.
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Currently the f_fsid of struct kstatfs returned from ocfs2_statfs() is
undefined (vfs layer fills in 0 as default). Since in some conditions,
f_fsid value might be used in a (f_fsid, ino) pair to uniquely identify
a file, ocfs2 should return a unique defined f_fsid value from
ocfs2_statfs().
Because uuid_str is the same on big or litlle endian machine, it's
endian consistent to use osb->uuid_str to generate f_fsid value.
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Sunil Mushran <sunil.mushran@oracle.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
* 'for-linus' of git://git.kernel.dk/linux-2.6-block:
backing-dev: ensure that a removed bdi no longer has super_block referencing it
block: use after free bug in __blkdev_get
block: silently error unsupported empty barriers too
* 'bugfixes' of git://git.linux-nfs.org/projects/trondmy/nfs-2.6:
NFSv4: The link() operation should return any delegation on the file
NFSv4: Fix two unbalanced put_rpccred() issues.
NFSv4: Fix a bug when the server returns NFS4ERR_RESOURCE
nfs: Panic when commit fails
* 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc:
powerpc/ppc64: Use preempt_schedule_irq instead of preempt_schedule
powerpc: Minor cleanup to lib/Kconfig.debug
powerpc: Minor cleanup to sound/ppc/Kconfig
powerpc: Minor cleanup to init/Kconfig
powerpc: Limit memory hotplug support to PPC64 Book-3S machines
powerpc: Limit hugetlbfs support to PPC64 Book-3S machines
powerpc: Fix compile errors found by new ppc64e_defconfig
powerpc: Add a Book-3E 64-bit defconfig
powerpc/booke: Fix xmon single step on PowerPC Book-E
powerpc: Align vDSO base address
powerpc: Fix segment mapping in vdso32
powerpc/iseries: Remove compiler version dependent hack
powerpc/perf_events: Fix priority of MSR HV vs PR bits
powerpc/5200: Update defconfigs
drivers/serial/mpc52xx_uart.c: Use UPIO_MEM rather than SERIAL_IO_MEM
powerpc/boot/dts: drop obsolete 'fsl5200-clocking'
of: Remove nested function
mpc5200: support for the MAN mpc5200 based board mucmc52
mpc5200: support for the MAN mpc5200 based board uc101
A particular fsfuzzer run caused an hfs file system to crash on mount.
This is due to a corrupted MDB extent record causing a miscalculation of
HFS_I(inode)->first_blocks for the extent tree. If the extent records are
zereod out, it won't trigger the first_blocks special case. Instead it
falls through to the extent code which we're still in the middle of
initializing.
This patch catches the 0 size extent records, reports the corruption, and
fails the mount.
Reported-by: Ramon de Carvalho Valle <rcvalle@linux.vnet.ibm.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As found in <http://bugs.debian.org/550010>, hfsplus is using type u32
rather than sector_t for some sector number calculations.
In particular, hfsplus_get_block() does:
u32 ablock, dblock, mask;
...
map_bh(bh_result, sb, (dblock << HFSPLUS_SB(sb).fs_shift) + HFSPLUS_SB(sb).blockoffset + (iblock & mask));
I am not confident that I can find and fix all cases where a sector number
may be truncated. For now, avoid data loss by refusing to mount HFS+
volumes with more than 2^32 sectors (2TB).
[akpm@linux-foundation.org: fix 32 and 64-bit issues]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Eric Sesterhenn <snakebyte@gmx.de>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Given such a long name, the kB count in /proc/meminfo's HardwareCorrupted
line is being shown too far right (it does align with x86_64's VmallocChunk
above, but I hope nobody will ever have that much corrupted!). Align it.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The old reflink fails to handle inodes with inline data and will oops
if it encounters them. This patch copies inline data to the new inode.
Extended attributes may still be refcounted.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Tested-by: Tristan Ye <tristan.ye@oracle.com>