This allows filesystems to use their mount private data to
influence the permssions they return in permission2. It has
been separated into a new call to avoid disrupting current
permission users.
Change-Id: I9d416e3b8b6eca84ef3e336bd2af89ddd51df6ca
Signed-off-by: Daniel Rosenberg <drosen@google.com>
[AmitP: Minor refactoring of original patch to align with
changes from the following upstream commit
4bfd054ae1 ("fs: fold __inode_permission() into inode_permission()").
Also introduce vfs_mkobj2(), because do_create()
moved from using vfs_create() to vfs_mkobj()
eecec19d9e ("mqueue: switch to vfs_mkobj(), quit abusing ->d_fsdata")
do_create() is dropped/cleaned up upstream so a
minor refactoring there as well.
066cc813e9 ("do_mq_open(): move all work prior to dentry_open() into a helper")]
Signed-off-by: Amit Pundir <amit.pundir@linaro.org>
This allows filesystems to use their mount private data to
influence the permssions they use in setattr2. It has
been separated into a new call to avoid disrupting current
setattr users.
Change-Id: I19959038309284448f1b7f232d579674ef546385
Signed-off-by: Daniel Rosenberg <drosen@google.com>
This contains two new features:
1) Stack file operations: this allows removal of several hacks from the
VFS, proper interaction of read-only open files with copy-up,
possibility to implement fs modifying ioctls properly, and others.
2) Metadata only copy-up: when file is on lower layer and only metadata is
modified (except size) then only copy up the metadata and continue to
use the data from the lower file.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSQHSd0lITzzeNWNm3h3BK/laaZPAUCW3srhAAKCRDh3BK/laaZ
PC6tAQCP+KklcN+TvNp502f+O/kATahSpgnun4NY1/p4I8JV+AEAzdlkTN3+MiAO
fn9brN6mBK7h59DO3hqedPLJy2vrgwg=
=QDXH
-----END PGP SIGNATURE-----
Merge tag 'ovl-update-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
Pull overlayfs updates from Miklos Szeredi:
"This contains two new features:
- Stack file operations: this allows removal of several hacks from
the VFS, proper interaction of read-only open files with copy-up,
possibility to implement fs modifying ioctls properly, and others.
- Metadata only copy-up: when file is on lower layer and only
metadata is modified (except size) then only copy up the metadata
and continue to use the data from the lower file"
* tag 'ovl-update-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs: (66 commits)
ovl: Enable metadata only feature
ovl: Do not do metacopy only for ioctl modifying file attr
ovl: Do not do metadata only copy-up for truncate operation
ovl: add helper to force data copy-up
ovl: Check redirect on index as well
ovl: Set redirect on upper inode when it is linked
ovl: Set redirect on metacopy files upon rename
ovl: Do not set dentry type ORIGIN for broken hardlinks
ovl: Add an inode flag OVL_CONST_INO
ovl: Treat metacopy dentries as type OVL_PATH_MERGE
ovl: Check redirects for metacopy files
ovl: Move some dir related ovl_lookup_single() code in else block
ovl: Do not expose metacopy only dentry from d_real()
ovl: Open file with data except for the case of fsync
ovl: Add helper ovl_inode_realdata()
ovl: Store lower data inode in ovl_inode
ovl: Fix ovl_getattr() to get number of blocks from lower
ovl: Add helper ovl_dentry_lowerdata() to get lower data dentry
ovl: Copy up meta inode data from lowest data inode
ovl: Modify ovl_lookup() and friends to lookup metacopy dentry
...
This reverts commit 4d0c5ba2ff.
We now get write access on both overlay and underlying layers so this patch
is no longer needed for correct operation.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
This reverts commit 7c6893e3c9.
Overlayfs no longer relies on the vfs for checking writability of files.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Let overlayfs do its thing when opening a file.
This enables stacking and fixes the corner case when a file is opened for
read, modified through a writable open, and data is read from the read-only
file. After this patch the read-only open will not return stale data even
in this case.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Stacking file operations in overlay will store an extra open file for each
overlay file opened.
The overhead is just that of "struct file" which is about 256bytes, because
overlay already pins an extra dentry and inode when the file is open, which
add up to a much larger overhead.
For fear of breaking working setups, don't start accounting the extra file.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
open a file by given inode, faking ->f_path. Use with shitloads
of caution - at the very least you'd damn better make sure that
some dentry alias of that inode is pinned down by the path in
question. Again, this is no general-purpose interface and I hope
it will eventually go away. Right now overlayfs wants something
like that, but nothing else should.
Any out-of-tree code with bright idea of using this one *will*
eventually get hurt, with zero notice and great delight on my part.
I refuse to use EXPORT_SYMBOL_GPL(), especially in situations when
it's really EXPORT_SYMBOL_DONT_USE_IT(), but don't take that export
as "you are welcome to use it".
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
FMODE_OPENED can be used to distingusish "successful open" from the
"called finish_no_open(), do it yourself" cases. Since finish_no_open()
has been adjusted, no changes in the instances were actually needed.
The caller has been adjusted.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... and don't bother with setting FILE_OPENED at all.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
These checks are better off in do_dentry_open(); the reason we couldn't
put them there used to be that callers couldn't tell what kind of cleanup
would do_dentry_open() failure call for. Now that we have FMODE_OPENED,
cleanup is the same in all cases - it's simply fput(). So let's fold
that into do_dentry_open(), as Christoph's patch tried to.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Just check FMODE_OPENED in __fput() and be done with that...
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
basically, "is that instance set up enough for regular fput(), or
do we want put_filp() for that one".
NOTE: the only alloc_file() caller that could be followed by put_filp()
is in arch/ia64/kernel/perfmon.c, which is (Kconfig-level) broken.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... and rename get_empty_filp() to alloc_empty_file().
dentry_open() gets creds as argument, but the only thing that sees those is
security_file_open() - file->f_cred still ends up with current_cred(). For
almost all callers it's the same thing, but there are several broken cases.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
An ->open() instances really, really should not be doing that. There's
a lot of places e.g. around atomic_open() that could be confused by that,
so let's catch that early.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
it's exactly the same thing as
dentry_open(&file->f_path, file->f_flags, file->f_cred)
... and rename it to file_clone_open(), while we are at it.
'filp' naming convention is bogus; sure, it's "file pointer",
but we generally don't do that kind of Hungarian notation.
Some of the instances have too many callers to touch, but this
one has only two, so let's sanitize it while we can...
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This reverts commit cab64df194.
Having vfs_open() in some cases drop the reference to
struct file combined with
error = vfs_open(path, f, cred);
if (error) {
put_filp(f);
return ERR_PTR(error);
}
return f;
is flat-out wrong. It used to be
error = vfs_open(path, f, cred);
if (!error) {
/* from now on we need fput() to dispose of f */
error = open_check_o_direct(f);
if (error) {
fput(f);
f = ERR_PTR(error);
}
} else {
put_filp(f);
f = ERR_PTR(error);
}
and sure, having that open_check_o_direct() boilerplate gotten rid of is
nice, but not that way...
Worse, another call chain (via finish_open()) is FUBAR now wrt
FILE_OPENED handling - in that case we get error returned, with file
already hit by fput() *AND* FILE_OPENED not set. Guess what happens in
path_openat(), when it hits
if (!(opened & FILE_OPENED)) {
BUG_ON(!error);
put_filp(file);
}
The root cause of all that crap is that the callers of do_dentry_open()
have no way to tell which way did it fail; while that could be fixed up
(by passing something like int *opened to do_dentry_open() and have it
marked if we'd called ->open()), it's probably much too late in the
cycle to do so right now.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using the ksys_fallocate() wrapper allows us to get rid of in-kernel
calls to the sys_fallocate() syscall. The ksys_ prefix denotes that this
function is meant as a drop-in replacement for the syscall. In
particular, it uses the same calling convention as sys_fallocate().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the ksys_truncate() wrapper allows us to get rid of in-kernel
calls to the sys_truncate() syscall. The ksys_ prefix denotes that this
function is meant as a drop-in replacement for the syscall. In
particular, it uses the same calling convention as sys_truncate().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this wrapper allows us to avoid the in-kernel calls to the
sys_open() syscall. The ksys_ prefix denotes that this function is meant
as a drop-in replacement for the syscall. In particular, it uses the
same calling convention as sys_open().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the ksys_close() wrapper allows us to get rid of in-kernel calls
to the sys_close() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_close(), with one subtle
difference:
The few places which checked the return value did not care about the return
value re-writing in sys_close(), so simply use a wrapper around
__close_fd().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the ksys_ftruncate() wrapper allows us to get rid of in-kernel
calls to the sys_ftruncate() syscall. The ksys_ prefix denotes that this
function is meant as a drop-in replacement for the syscall. In
particular, it uses the same calling convention as sys_ftruncate().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the fs-interal do_fchownat() wrapper allows us to get rid of
fs-internal calls to the sys_fchownat() syscall.
Introducing the ksys_fchown() helper and the ksys_{,}chown() wrappers
allows us to avoid the in-kernel calls to the sys_{,l,f}chown() syscalls.
The ksys_ prefix denotes that these functions are meant as a drop-in
replacement for the syscalls. In particular, they use the same calling
convention as sys_{,l,f}chown().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the fs-internal do_faccessat() helper allows us to get rid of
fs-internal calls to the sys_faccessat() syscall.
Introducing the ksys_access() wrapper allows us to avoid the in-kernel
calls to the sys_access() syscall. The ksys_ prefix denotes that this
function is meant as a drop-in replacement for the syscall. In
particular, it uses the same calling convention as sys_access().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using the fs-internal do_fchmodat() helper allows us to get rid of
fs-internal calls to the sys_fchmodat() syscall.
Introducing the ksys_fchmod() helper and the ksys_chmod() wrapper allows
us to avoid the in-kernel calls to the sys_fchmod() and sys_chmod()
syscalls. The ksys_ prefix denotes that these functions are meant as a
drop-in replacement for the syscalls. In particular, they use the same
calling convention as sys_fchmod() and sys_chmod().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the sys_chdir()
syscall. The ksys_ prefix denotes that this function is meant as a drop-in
replacement for the syscall. In particular, it uses the same calling
convention as sys_chdir().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the
sys_chroot() syscall. The ksys_ prefix denotes that this function is
meant as a drop-in replacement for the syscall. In particular, it uses the
same calling convention as sys_chroot().
In the near future, the fs-external callers of ksys_chroot() should be
converted to use kern_path()/set_fs_root() directly. Then ksys_chroot()
can be moved within sys_chroot() again.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
do_dentry_open is where we do the actual open of the file, so this is
where we should do our O_DIRECT sanity check to cover all potential
callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Problem with ioctl() is that it's a file operation, yet often used as an
inode operation (i.e. modify the inode despite the file being opened for
read-only).
mnt_want_write_file() is used by filesystems in such cases to get write
access on an arbitrary open file.
Since overlayfs lets filesystems do all file operations, including ioctl,
this can lead to mnt_want_write_file() returning OK for a lower file and
modification of that lower file.
This patch prevents modification by checking if the file is from an
overlayfs lower layer and returning EPERM in that case.
Need to introduce a mnt_want_write_file_path() variant that still does the
old thing for inode operations that can do the copy up + modification
correctly in such cases (fchown, fsetxattr, fremovexattr).
This does not address the correctness of such ioctls on overlayfs (the
correct way would be to copy up and attempt to perform ioctl on upper
file).
In theory this could be a regression. We very much hope that nobody is
relying on such a hack in any sane setup.
While this patch meddles in VFS code, it has no effect on non-overlayfs
filesystems.
Reported-by: "zhangyi (F)" <yi.zhang@huawei.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZXhmCAAoJEAAOaEEZVoIVpRkP/1qlYn3pq6d5Kuz84pejOmlL
5jbkS/cOmeTxeUU4+B1xG8Lx7bAk8PfSXQOADbSJGiZd0ug95tJxplFYIGJzR/tG
aNMHeu/BVKKhUKORGuKR9rJKtwC839L/qao+yPBo5U3mU4L73rFWX8fxFuhSJ8HR
hvkgBu3Hx6GY59CzxJ8iJzj+B+uPSFrNweAk0+0UeWkBgTzEdiGqaXBX4cHIkq/5
hMoCG+xnmwHKbCBsQ5js+YJT+HedZ4lvfjOqGxgElUyjJ7Bkt/IFYOp8TUiu193T
tA4UinDjN8A7FImmIBIftrECmrAC9HIGhGZroYkMKbb8ReDR2ikE5FhKEpuAGU3a
BXBgX2mPQuArvZWM7qeJCkxV9QJ0u/8Ykbyzo30iPrICyrzbEvIubeB/mDA034+Z
Z0/z8C3v7826F3zP/NyaQEojUgRq30McMOIS8GMnx15HJwRsRKlzjfy9Wm4tWhl0
t3nH1jMqAZ7068s6rfh/oCwdgGOwr5o4hW/bnlITzxbjWQUOnZIe7KBxIezZJ2rv
OcIwd5qE8PNtpagGj5oUbnjGOTkERAgsMfvPk5tjUNt28/qUlVs2V0aeo47dlcsh
oYr8WMOIzw98Rl7Bo70mplLrqLD6nGl0LfXOyUlT4STgLWW4ksmLVuJjWIUxcO/0
yKWjj9wfYRQ0vSUqhsI5
=3Z93
-----END PGP SIGNATURE-----
Merge tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux
Pull Writeback error handling updates from Jeff Layton:
"This pile represents the bulk of the writeback error handling fixes
that I have for this cycle. Some of the earlier patches in this pile
may look trivial but they are prerequisites for later patches in the
series.
The aim of this set is to improve how we track and report writeback
errors to userland. Most applications that care about data integrity
will periodically call fsync/fdatasync/msync to ensure that their
writes have made it to the backing store.
For a very long time, we have tracked writeback errors using two flags
in the address_space: AS_EIO and AS_ENOSPC. Those flags are set when a
writeback error occurs (via mapping_set_error) and are cleared as a
side-effect of filemap_check_errors (as you noted yesterday). This
model really sucks for userland.
Only the first task to call fsync (or msync or fdatasync) will see the
error. Any subsequent task calling fsync on a file will get back 0
(unless another writeback error occurs in the interim). If I have
several tasks writing to a file and calling fsync to ensure that their
writes got stored, then I need to have them coordinate with one
another. That's difficult enough, but in a world of containerized
setups that coordination may even not be possible.
But wait...it gets worse!
The calls to filemap_check_errors can be buried pretty far down in the
call stack, and there are internal callers of filemap_write_and_wait
and the like that also end up clearing those errors. Many of those
callers ignore the error return from that function or return it to
userland at nonsensical times (e.g. truncate() or stat()). If I get
back -EIO on a truncate, there is no reason to think that it was
because some previous writeback failed, and a subsequent fsync() will
(incorrectly) return 0.
This pile aims to do three things:
1) ensure that when a writeback error occurs that that error will be
reported to userland on a subsequent fsync/fdatasync/msync call,
regardless of what internal callers are doing
2) report writeback errors on all file descriptions that were open at
the time that the error occurred. This is a user-visible change,
but I think most applications are written to assume this behavior
anyway. Those that aren't are unlikely to be hurt by it.
3) document what filesystems should do when there is a writeback
error. Today, there is very little consistency between them, and a
lot of cargo-cult copying. We need to make it very clear what
filesystems should do in this situation.
To achieve this, the set adds a new data type (errseq_t) and then
builds new writeback error tracking infrastructure around that. Once
all of that is in place, we change the filesystems to use the new
infrastructure for reporting wb errors to userland.
Note that this is just the initial foray into cleaning up this mess.
There is a lot of work remaining here:
1) convert the rest of the filesystems in a similar fashion. Once the
initial set is in, then I think most other fs' will be fairly
simple to convert. Hopefully most of those can in via individual
filesystem trees.
2) convert internal waiters on writeback to use errseq_t for
detecting errors instead of relying on the AS_* flags. I have some
draft patches for this for ext4, but they are not quite ready for
prime time yet.
This was a discussion topic this year at LSF/MM too. If you're
interested in the gory details, LWN has some good articles about this:
https://lwn.net/Articles/718734/https://lwn.net/Articles/724307/"
* tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux:
btrfs: minimal conversion to errseq_t writeback error reporting on fsync
xfs: minimal conversion to errseq_t writeback error reporting
ext4: use errseq_t based error handling for reporting data writeback errors
fs: convert __generic_file_fsync to use errseq_t based reporting
block: convert to errseq_t based writeback error tracking
dax: set errors in mapping when writeback fails
Documentation: flesh out the section in vfs.txt on storing and reporting writeback errors
mm: set both AS_EIO/AS_ENOSPC and errseq_t in mapping_set_error
fs: new infrastructure for writeback error handling and reporting
lib: add errseq_t type and infrastructure for handling it
mm: don't TestClearPageError in __filemap_fdatawait_range
mm: clear AS_EIO/AS_ENOSPC when writeback initiation fails
jbd2: don't clear and reset errors after waiting on writeback
buffer: set errors in mapping at the time that the error occurs
fs: check for writeback errors after syncing out buffers in generic_file_fsync
buffer: use mapping_set_error instead of setting the flag
mm: fix mapping_set_error call in me_pagecache_dirty
Most filesystems currently use mapping_set_error and
filemap_check_errors for setting and reporting/clearing writeback errors
at the mapping level. filemap_check_errors is indirectly called from
most of the filemap_fdatawait_* functions and from
filemap_write_and_wait*. These functions are called from all sorts of
contexts to wait on writeback to finish -- e.g. mostly in fsync, but
also in truncate calls, getattr, etc.
The non-fsync callers are problematic. We should be reporting writeback
errors during fsync, but many places spread over the tree clear out
errors before they can be properly reported, or report errors at
nonsensical times.
If I get -EIO on a stat() call, there is no reason for me to assume that
it is because some previous writeback failed. The fact that it also
clears out the error such that a subsequent fsync returns 0 is a bug,
and a nasty one since that's potentially silent data corruption.
This patch adds a small bit of new infrastructure for setting and
reporting errors during address_space writeback. While the above was my
original impetus for adding this, I think it's also the case that
current fsync semantics are just problematic for userland. Most
applications that call fsync do so to ensure that the data they wrote
has hit the backing store.
In the case where there are multiple writers to the file at the same
time, this is really hard to determine. The first one to call fsync will
see any stored error, and the rest get back 0. The processes with open
fds may not be associated with one another in any way. They could even
be in different containers, so ensuring coordination between all fsync
callers is not really an option.
One way to remedy this would be to track what file descriptor was used
to dirty the file, but that's rather cumbersome and would likely be
slow. However, there is a simpler way to improve the semantics here
without incurring too much overhead.
This set adds an errseq_t to struct address_space, and a corresponding
one is added to struct file. Writeback errors are recorded in the
mapping's errseq_t, and the one in struct file is used as the "since"
value.
This changes the semantics of the Linux fsync implementation such that
applications can now use it to determine whether there were any
writeback errors since fsync(fd) was last called (or since the file was
opened in the case of fsync having never been called).
Note that those writeback errors may have occurred when writing data
that was dirtied via an entirely different fd, but that's the case now
with the current mapping_set_error/filemap_check_error infrastructure.
This will at least prevent you from getting a false report of success.
The new behavior is still consistent with the POSIX spec, and is more
reliable for application developers. This patch just adds some basic
infrastructure for doing this, and ensures that the f_wb_err "cursor"
is properly set when a file is opened. Later patches will change the
existing code to use this new infrastructure for reporting errors at
fsync time.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Define a set of write life time hints:
RWH_WRITE_LIFE_NOT_SET No hint information set
RWH_WRITE_LIFE_NONE No hints about write life time
RWH_WRITE_LIFE_SHORT Data written has a short life time
RWH_WRITE_LIFE_MEDIUM Data written has a medium life time
RWH_WRITE_LIFE_LONG Data written has a long life time
RWH_WRITE_LIFE_EXTREME Data written has an extremely long life time
The intent is for these values to be relative to each other, no
absolute meaning should be attached to these flag names.
Add an fcntl interface for querying these flags, and also for
setting them as well:
F_GET_RW_HINT Returns the read/write hint set on the
underlying inode.
F_SET_RW_HINT Set one of the above write hints on the
underlying inode.
F_GET_FILE_RW_HINT Returns the read/write hint set on the
file descriptor.
F_SET_FILE_RW_HINT Set one of the above write hints on the
file descriptor.
The user passes in a 64-bit pointer to get/set these values, and
the interface returns 0/-1 on success/error.
Sample program testing/implementing basic setting/getting of write
hints is below.
Add support for storing the write life time hint in the inode flags
and in struct file as well, and pass them to the kiocb flags. If
both a file and its corresponding inode has a write hint, then we
use the one in the file, if available. The file hint can be used
for sync/direct IO, for buffered writeback only the inode hint
is available.
This is in preparation for utilizing these hints in the block layer,
to guide on-media data placement.
/*
* writehint.c: get or set an inode write hint
*/
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdbool.h>
#include <inttypes.h>
#ifndef F_GET_RW_HINT
#define F_LINUX_SPECIFIC_BASE 1024
#define F_GET_RW_HINT (F_LINUX_SPECIFIC_BASE + 11)
#define F_SET_RW_HINT (F_LINUX_SPECIFIC_BASE + 12)
#endif
static char *str[] = { "RWF_WRITE_LIFE_NOT_SET", "RWH_WRITE_LIFE_NONE",
"RWH_WRITE_LIFE_SHORT", "RWH_WRITE_LIFE_MEDIUM",
"RWH_WRITE_LIFE_LONG", "RWH_WRITE_LIFE_EXTREME" };
int main(int argc, char *argv[])
{
uint64_t hint;
int fd, ret;
if (argc < 2) {
fprintf(stderr, "%s: file <hint>\n", argv[0]);
return 1;
}
fd = open(argv[1], O_RDONLY);
if (fd < 0) {
perror("open");
return 2;
}
if (argc > 2) {
hint = atoi(argv[2]);
ret = fcntl(fd, F_SET_RW_HINT, &hint);
if (ret < 0) {
perror("fcntl: F_SET_RW_HINT");
return 4;
}
}
ret = fcntl(fd, F_GET_RW_HINT, &hint);
if (ret < 0) {
perror("fcntl: F_GET_RW_HINT");
return 3;
}
printf("%s: hint %s\n", argv[1], str[hint]);
close(fd);
return 0;
}
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull misc vfs updates from Al Viro:
"Making sure that something like a referral point won't end up as pwd
or root.
The main part is the last commit (fixing mntns_install()); that one
fixes a hard-to-hit race. The fchdir() commit is making fchdir(2) a
bit more robust - it should be impossible to get opened files (even
O_PATH ones) for referral points in the first place, so the existing
checks are OK, but checking the same thing as in chdir(2) is just as
cheap.
The path_init() commit removes a redundant check that shouldn't have
been there in the first place"
* 'work.sane_pwd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
make sure that mntns_install() doesn't end up with referral for root
path_init(): don't bother with checking MAY_EXEC for LOOKUP_ROOT
make sure that fchdir() won't accept referral points, etc.
Pull overlayfs update from Miklos Szeredi:
"The biggest part of this is making st_dev/st_ino on the overlay behave
like a normal filesystem (i.e. st_ino doesn't change on copy up,
st_dev is the same for all files and directories). Currently this only
works if all layers are on the same filesystem, but future work will
move the general case towards more sane behavior.
There are also miscellaneous fixes, including fixes to handling
append-only files. There's a small change in the VFS, but that only
has an effect on overlayfs, since otherwise file->f_path.dentry->inode
and file_inode(file) are always the same"
* 'overlayfs-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
ovl: update documentation w.r.t. constant inode numbers
ovl: persistent inode numbers for upper hardlinks
ovl: merge getattr for dir and nondir
ovl: constant st_ino/st_dev across copy up
ovl: persistent inode number for directories
ovl: set the ORIGIN type flag
ovl: lookup non-dir copy-up-origin by file handle
ovl: use an auxiliary var for overlay root entry
ovl: store file handle of lower inode on copy up
ovl: check if all layers are on the same fs
ovl: do not set overlay.opaque on non-dir create
ovl: check IS_APPEND() on real upper inode
vfs: ftruncate check IS_APPEND() on real upper inode
ovl: Use designated initializers
ovl: lockdep annotate of nested stacked overlayfs inode lock
Pull misc vfs updates from Al Viro:
"Assorted bits and pieces from various people. No common topic in this
pile, sorry"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs/affs: add rename exchange
fs/affs: add rename2 to prepare multiple methods
Make stat/lstat/fstatat pass AT_NO_AUTOMOUNT to vfs_statx()
fs: don't set *REFERENCED on single use objects
fs: compat: Remove warning from COMPATIBLE_IOCTL
remove pointless extern of atime_need_update_rcu()
fs: completely ignore unknown open flags
fs: add a VALID_OPEN_FLAGS
fs: remove _submit_bh()
fs: constify tree_descr arrays passed to simple_fill_super()
fs: drop duplicate header percpu-rwsem.h
fs/affs: bugfix: Write files greater than page size on OFS
fs/affs: bugfix: enable writes on OFS disks
fs/affs: remove node generation check
fs/affs: import amigaffs.h
fs/affs: bugfix: make symbolic links work again
Currently we just stash anything we got into file->f_flags, and the
report it in fcntl(F_GETFD). This patch just clears out all unknown
flags so that we don't pass them to the fs or report them.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
ftruncate an overlayfs inode was checking IS_APPEND() on
overlay inode, but overlay inode does not have the S_APPEND flag.
Check IS_APPEND() on real upper inode instead.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Before calling write f_ops, call file_start_write() instead
of sb_start_write().
Replace {sb,file}_start_write() for {copy,clone}_file_range() and
for fallocate().
Beyond correct semantics, this avoids freeze protection to sb when
operating on special inodes, such as fallocate() on a blockdev.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
There was an obscure use case of fallocate of directory inode
in the vfs helper with the comment:
"Let individual file system decide if it supports preallocation
for directories or not."
But there is no in-tree file system that implements fallocate
for directory operations.
Deny an attempt to fallocate a directory with EISDIR error.
This change is needed prior to converting sb_start_write()
to file_start_write(), so freeze protection is correctly
handled for cases of fallocate file and blockdev.
Cc: linux-api@vger.kernel.org
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
< XFS has gained super CoW powers! >
----------------------------------
\ ^__^
\ (oo)\_______
(__)\ )\/\
||----w |
|| ||
Included in this update:
- unshare range (FALLOC_FL_UNSHARE) support for fallocate
- copy-on-write extent size hints (FS_XFLAG_COWEXTSIZE) for fsxattr interface
- shared extent support for XFS
- copy-on-write support for shared extents
- copy_file_range support
- clone_file_range support (implements reflink)
- dedupe_file_range support
- defrag support for reverse mapping enabled filesystems
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJX/hrZAAoJEK3oKUf0dfodpwcQAKkTerNPhhDcthqWUJ2+jC7w
JIuhKUg2GYojJhIJ4+Ue1knmuBeIusda+PzGls+6gdy7GDGdux/esRIJSe1W7A5G
RNeumiSKVX5iYsZNUEX35O2a/SwUM1Sm5mcIFs4CxUwIRwE/cayNby6vrlVExvz7
Ns6YYOI2bldUHLsxedg8MLG0it1JGTADB9gwGgb98bxQ3bD/UBn3TF9xTlj+ZH22
ebnWsogSJOnUigOOSGeaQsmy1pJAhRIhvt+f481KuZak1pdQcK2feL4RcKw0NpNt
15LCYRqX6RexC684VYgJZxXB4EKyfS2Bma71q41A7dz1x36kw7+wG18xasBqU++p
GZwwL6si02rIGPMz1oD8xxZ0F97ADCGRmkgUHsCJKbP5UmGiP08K6GEN3osr5hAN
xAmn9AxcprXVnV3WmnFxpBeWY/qCEsvSQqJuKSThYqAilqUc8wN2u5g/eEpE6mmg
KEEhzaq5P4ovS/HOIQJWdBu1j5E9Mg2o/ncy87Q6uE+9Fa5AAP6GBWOtGcMwdFSU
adbN7dqjgoHMyNHFrmePqyJYtOZ2hZovDlVndxnYysl5ZBfiBEEDISmr+x6KcSlo
3kyOltYQLjEVu1sLOT3COCddn0jt5Lr1QhGeVepnrMlU2E1h4461viCNMDinJRIp
OYoMOS+J83G2FEFwgXYM
=Sa+Y
-----END PGP SIGNATURE-----
Merge tag 'xfs-reflink-for-linus-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
< XFS has gained super CoW powers! >
----------------------------------
\ ^__^
\ (oo)\_______
(__)\ )\/\
||----w |
|| ||
Pull XFS support for shared data extents from Dave Chinner:
"This is the second part of the XFS updates for this merge cycle. This
pullreq contains the new shared data extents feature for XFS.
Given the complexity and size of this change I am expecting - like the
addition of reverse mapping last cycle - that there will be some
follow-up bug fixes and cleanups around the -rc3 stage for issues that
I'm sure will show up once the code hits a wider userbase.
What it is:
At the most basic level we are simply adding shared data extents to
XFS - i.e. a single extent on disk can now have multiple owners. To do
this we have to add new on-disk features to both track the shared
extents and the number of times they've been shared. This is done by
the new "refcount" btree that sits in every allocation group. When we
share or unshare an extent, this tree gets updated.
Along with this new tree, the reverse mapping tree needs to be updated
to track each owner or a shared extent. This also needs to be updated
ever share/unshare operation. These interactions at extent allocation
and freeing time have complex ordering and recovery constraints, so
there's a significant amount of new intent-based transaction code to
ensure that operations are performed atomically from both the runtime
and integrity/crash recovery perspectives.
We also need to break sharing when writes hit a shared extent - this
is where the new copy-on-write implementation comes in. We allocate
new storage and copy the original data along with the overwrite data
into the new location. We only do this for data as we don't share
metadata at all - each inode has it's own metadata that tracks the
shared data extents, the extents undergoing CoW and it's own private
extents.
Of course, being XFS, nothing is simple - we use delayed allocation
for CoW similar to how we use it for normal writes. ENOSPC is a
significant issue here - we build on the reservation code added in
4.8-rc1 with the reverse mapping feature to ensure we don't get
spurious ENOSPC issues part way through a CoW operation. These
mechanisms also help minimise fragmentation due to repeated CoW
operations. To further reduce fragmentation overhead, we've also
introduced a CoW extent size hint, which indicates how large a region
we should allocate when we execute a CoW operation.
With all this functionality in place, we can hook up .copy_file_range,
.clone_file_range and .dedupe_file_range and we gain all the
capabilities of reflink and other vfs provided functionality that
enable manipulation to shared extents. We also added a fallocate mode
that explicitly unshares a range of a file, which we implemented as an
explicit CoW of all the shared extents in a file.
As such, it's a huge chunk of new functionality with new on-disk
format features and internal infrastructure. It warns at mount time as
an experimental feature and that it may eat data (as we do with all
new on-disk features until they stabilise). We have not released
userspace suport for it yet - userspace support currently requires
download from Darrick's xfsprogs repo and build from source, so the
access to this feature is really developer/tester only at this point.
Initial userspace support will be released at the same time the kernel
with this code in it is released.
The new code causes 5-6 new failures with xfstests - these aren't
serious functional failures but things the output of tests changing
slightly due to perturbations in layouts, space usage, etc. OTOH,
we've added 150+ new tests to xfstests that specifically exercise this
new functionality so it's got far better test coverage than any
functionality we've previously added to XFS.
Darrick has done a pretty amazing job getting us to this stage, and
special mention also needs to go to Christoph (review, testing,
improvements and bug fixes) and Brian (caught several intricate bugs
during review) for the effort they've also put in.
Summary:
- unshare range (FALLOC_FL_UNSHARE) support for fallocate
- copy-on-write extent size hints (FS_XFLAG_COWEXTSIZE) for fsxattr
interface
- shared extent support for XFS
- copy-on-write support for shared extents
- copy_file_range support
- clone_file_range support (implements reflink)
- dedupe_file_range support
- defrag support for reverse mapping enabled filesystems"
* tag 'xfs-reflink-for-linus-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (71 commits)
xfs: convert COW blocks to real blocks before unwritten extent conversion
xfs: rework refcount cow recovery error handling
xfs: clear reflink flag if setting realtime flag
xfs: fix error initialization
xfs: fix label inaccuracies
xfs: remove isize check from unshare operation
xfs: reduce stack usage of _reflink_clear_inode_flag
xfs: check inode reflink flag before calling reflink functions
xfs: implement swapext for rmap filesystems
xfs: refactor swapext code
xfs: various swapext cleanups
xfs: recognize the reflink feature bit
xfs: simulate per-AG reservations being critically low
xfs: don't mix reflink and DAX mode for now
xfs: check for invalid inode reflink flags
xfs: set a default CoW extent size of 32 blocks
xfs: convert unwritten status of reverse mappings for shared files
xfs: use interval query for rmap alloc operations on shared files
xfs: add shared rmap map/unmap/convert log item types
xfs: increase log reservations for reflink
...