Update the DM thin provisioning target's allocation failure error to be
consistent with commit a9d6ceb8 ("[SCSI] return ENOSPC on thin
provisioning failure").
The DM thin target now returns -ENOSPC rather than -EIO when
block allocation fails due to the pool being out of data space (and
the 'error_if_no_space' thin-pool feature is enabled).
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-By: Joe Thornber <ejt@redhat.com>
Factor out a pool_work interface that noflush_work makes use of to wait
for and complete work items (in terms of a proper completion struct).
Allows discontinuing the use of a custom completion in terms of atomic_t
and wait_event.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Commit 85ad643b ("dm thin: add timeout to stop out-of-data-space mode
holding IO forever") introduced a fixed 60 second timeout. Users may
want to either disable or modify this timeout.
Allow the out-of-data-space timeout to be configured using the
'no_space_timeout' dm-thin-pool module param. Setting it to 0 will
disable the timeout, resulting in IO being queued until more data space
is added to the thin-pool.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org # 3.14+
If the pool runs out of data space, dm-thin can be configured to
either error IOs that would trigger provisioning, or hold those IOs
until the pool is resized. Unfortunately, holding IOs until the pool is
resized can result in a cascade of tasks hitting the hung_task_timeout,
which may render the system unavailable.
Add a fixed timeout so IOs can only be held for a maximum of 60 seconds.
If LVM is going to resize a thin-pool that is out of data space it needs
to be prompt about it.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org # 3.14+
Commit 3e1a0699 ("dm thin: fix out of data space handling") introduced
a regression in the metadata commit() method by returning an error if
the pool is in PM_OUT_OF_DATA_SPACE mode. This oversight caused a thin
device to return errors even if the default queue_if_no_space ENOSPC
handling mode is used.
Fix commit() to only fail if pool is in PM_READ_ONLY or PM_FAIL mode.
Reported-by: qindehua@163.com
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org # 3.14+
Use INIT_WORK_ONSTACK to silence "ODEBUG: object is on stack, but not
annotated".
Reported-by: Zdeněk Kabeláč <zkabelac@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Commit c140e1c4e2 ("dm thin: use per thin device deferred bio lists")
introduced the use of an rculist for all active thin devices. The use
of rcu_read_lock() in process_deferred_bios() can result in a BUG if a
dm_bio_prison_cell must be allocated as a side-effect of bio_detain():
BUG: sleeping function called from invalid context at mm/mempool.c:203
in_atomic(): 1, irqs_disabled(): 0, pid: 6, name: kworker/u8:0
3 locks held by kworker/u8:0/6:
#0: ("dm-" "thin"){.+.+..}, at: [<ffffffff8106be42>] process_one_work+0x192/0x550
#1: ((&pool->worker)){+.+...}, at: [<ffffffff8106be42>] process_one_work+0x192/0x550
#2: (rcu_read_lock){.+.+..}, at: [<ffffffff816360b5>] do_worker+0x5/0x4d0
We can't process deferred bios with the rcu lock held, since
dm_bio_prison_cell allocation may block if the bio-prison's cell mempool
is exhausted.
To fix:
- Introduce a refcount and completion field to each thin_c
- Add thin_get/put methods for adjusting the refcount. If the refcount
hits zero then the completion is triggered.
- Initialise refcount to 1 when creating thin_c
- When iterating the active_thins list we thin_get() whilst the rcu
lock is held.
- After the rcu lock is dropped we process the deferred bios for that
thin.
- When destroying a thin_c we thin_put() and then wait for the
completion -- to avoid a race between the worker thread iterating
from that thin_c and destroying the thin_c.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Commit c140e1c4e2 ("dm thin: use per thin device deferred bio lists")
incorrectly stopped disabling irqs when taking the pool's spinlock.
Irqs must be disabled when taking the pool's spinlock otherwise a thread
could spin_lock(), then get interrupted to service thin_endio() in
interrupt context, which would then deadlock in spin_lock_irqsave().
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
A thin-pool will allocate blocks using FIFO order for all thin devices
which share the thin-pool. Because of this simplistic allocation the
thin-pool's space can become fragmented quite easily; especially when
multiple threads are requesting blocks in parallel.
Sort each thin device's deferred_bio_list based on logical sector to
help reduce fragmentation of the thin-pool's ondisk layout.
The following tables illustrate the realized gains/potential offered by
sorting each thin device's deferred_bio_list. An "io size"-sized random
read of the device would result in "seeks/io" fragments being read, with
an average "distance/seek" between each fragment.
Data was written to a single thin device using multiple threads via
iozone (8 threads, 64K for both the block_size and io_size).
unsorted:
io size seeks/io distance/seek
--------------------------------------
4k 0.000 0b
16k 0.013 11m
64k 0.065 11m
256k 0.274 10m
1m 1.109 10m
4m 4.411 10m
16m 17.097 11m
64m 60.055 13m
256m 148.798 25m
1g 809.929 21m
sorted:
io size seeks/io distance/seek
--------------------------------------
4k 0.000 0b
16k 0.000 1g
64k 0.001 1g
256k 0.003 1g
1m 0.011 1g
4m 0.045 1g
16m 0.181 1g
64m 0.747 1011m
256m 3.299 1g
1g 14.373 1g
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
The thin-pool previously only had a single deferred_bios list that would
collect bios for all thin devices in the pool. Split this per-pool
deferred_bios list out to per-thin deferred_bios_list -- doing so
enables increased parallelism when processing deferred bios. And now
that each thin device has it's own deferred_bios_list we can sort all
bios in the list using logical sector. The requeue code in error
handling path is also cleaner as a side-effect.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
The pool is congested if the pool is in PM_OUT_OF_DATA_SPACE mode. This
is more explicit/clear/efficient than inferring whether or not the pool
is congested by checking if retry_on_resume_list is empty.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
If unable to ensure_next_mapping() we must add the current bio, which
was removed from the @bios list via bio_list_pop, back to the
deferred_bios list before all the remaining @bios.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Cc: stable@vger.kernel.org
i) by the time DM core calls the postsuspend hook the dm_noflush flag
has been cleared. So the old thin_postsuspend did nothing. We need to
use the presuspend hook instead.
ii) There was a race between bios leaving DM core and arriving in the
deferred queue.
thin_presuspend now sets a 'requeue' flag causing all bios destined for
that thin to be requeued back to DM core. Then it requeues all held IO,
and all IO on the deferred queue (destined for that thin). Finally
postsuspend clears the 'requeue' flag.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
The spin lock in requeue_io() was held for too long, allowing deadlock.
Don't worry, due to other issues addressed in the following "dm thin:
fix noflush suspend IO queueing" commit, this code was never called.
Fix this by taking the spin lock for a much shorter period of time.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Ideally a thin pool would never run out of data space; the low water
mark would trigger userland to extend the pool before we completely run
out of space. However, many small random IOs to unprovisioned space can
consume data space at an alarming rate. Adjust your low water mark if
you're frequently seeing "out-of-data-space" mode.
Before this fix, if data space ran out the pool would be put in
PM_READ_ONLY mode which also aborted the pool's current metadata
transaction (data loss for any changes in the transaction). This had a
side-effect of needlessly compromising data consistency. And retry of
queued unserviceable bios, once the data pool was resized, could
initiate changes to potentially inconsistent pool metadata.
Now when the pool's data space is exhausted transition to a new pool
mode (PM_OUT_OF_DATA_SPACE) that allows metadata to be changed but data
may not be allocated. This allows users to remove thin volumes or
discard data to recover data space.
The pool is no longer put in PM_READ_ONLY mode in response to the pool
running out of data space. And PM_READ_ONLY mode no longer aborts the
pool's current metadata transaction. Also, set_pool_mode() will now
notify userspace when the pool mode is changed.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
If a thin metadata operation fails the current transaction will abort,
whereby causing potential for IO layers up the stack (e.g. filesystems)
to have data loss. As such, set THIN_METADATA_NEEDS_CHECK_FLAG in the
thin metadata's superblock which:
1) requires the user verify the thin metadata is consistent (e.g. use
thin_check, etc)
2) suggests the user verify the thin data is consistent (e.g. use fsck)
The only way to clear the superblock's THIN_METADATA_NEEDS_CHECK_FLAG is
to run thin_repair.
On metadata operation failure: abort current metadata transaction, set
pool in read-only mode, and now set the needs_check flag.
As part of this change, constraints are introduced or relaxed:
* don't allow a pool to transition to write mode if needs_check is set
* don't allow data or metadata space to be resized if needs_check is set
* if a thin pool's metadata space is exhausted: the kernel will now
force the user to take the pool offline for repair before the kernel
will allow the metadata space to be extended.
Also, update Documentation to include information about when the thin
provisioning target commits metadata, how it handles metadata failures
and running out of space.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Joe Thornber <ejt@redhat.com>
Commit b5330655 ("dm thin: handle metadata failures more consistently")
increased potential for the pool's mode to be changed in response to
metadata operation failures.
When the pool mode is changed it isn't synchronized with the mode in
pool_features stored in the target's context (ti->private) that is used
as the basis for (re)establishing the pool mode during resume via
bind_control_target.
It is important that we synchronize the pool mode when it is changed
otherwise the pool may experience and unexpected mode transition on the
next resume (especially if there was no new table load).
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
It was always intended that a user could provide a thin metadata device
that is larger than the max supported by the on-disk format. The extra
space would just go unused.
Unfortunately that never worked. If the user attempted to use a larger
metadata device on creation they would get an error like the following:
device-mapper: space map common: space map too large
device-mapper: transaction manager: couldn't create metadata space map
device-mapper: thin metadata: tm_create_with_sm failed
device-mapper: table: 252:17: thin-pool: Error creating metadata object
device-mapper: ioctl: error adding target to table
Fix this by allowing the initial metadata space map creation to cap its
size at the max number of blocks supported (DM_SM_METADATA_MAX_BLOCKS).
get_metadata_dev_size() must also impose DM_SM_METADATA_MAX_BLOCKS (via
THIN_METADATA_MAX_SECTORS), otherwise extending metadata would cap at
THIN_METADATA_MAX_SECTORS_WARNING (which is larger than supported).
Also, the calculation for THIN_METADATA_MAX_SECTORS didn't account for
the sizeof the disk_bitmap_header. So the supported maximum metadata
size is a bit smaller (reduced from 33423360 to 33292800 sectors).
Lastly, remove the "excess space will not be used" warning message from
get_metadata_dev_size(); it resulted in printing the warning multiple
times. Factor out warn_if_metadata_device_too_big(), call it from
pool_ctr() and maybe_resize_metadata_dev().
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
dm_pool_close_thin_device() must be called if dm_set_target_max_io_len()
fails in thin_ctr(). Otherwise __pool_destroy() will fail because the
pool will still have an open thin device:
device-mapper: thin metadata: attempt to close pmd when 1 device(s) are still open
device-mapper: thin: __pool_destroy: dm_pool_metadata_close() failed.
Also, must establish error code if failing thin_ctr() because the pool
is in fail_io mode.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Cc: stable@vger.kernel.org
Commit 905e51b ("dm thin: commit outstanding data every second")
introduced a periodic commit. This commit occurs regardless of whether
any thin devices have made changes.
Fix the periodic commit to check if any of a pool's thin devices have
changed using dm_pool_changed_this_transaction().
Reported-by: Alexander Larsson <alexl@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Cc: stable@vger.kernel.org
Pull core block IO changes from Jens Axboe:
"The major piece in here is the immutable bio_ve series from Kent, the
rest is fairly minor. It was supposed to go in last round, but
various issues pushed it to this release instead. The pull request
contains:
- Various smaller blk-mq fixes from different folks. Nothing major
here, just minor fixes and cleanups.
- Fix for a memory leak in the error path in the block ioctl code
from Christian Engelmayer.
- Header export fix from CaiZhiyong.
- Finally the immutable biovec changes from Kent Overstreet. This
enables some nice future work on making arbitrarily sized bios
possible, and splitting more efficient. Related fixes to immutable
bio_vecs:
- dm-cache immutable fixup from Mike Snitzer.
- btrfs immutable fixup from Muthu Kumar.
- bio-integrity fix from Nic Bellinger, which is also going to stable"
* 'for-3.14/core' of git://git.kernel.dk/linux-block: (44 commits)
xtensa: fixup simdisk driver to work with immutable bio_vecs
block/blk-mq-cpu.c: use hotcpu_notifier()
blk-mq: for_each_* macro correctness
block: Fix memory leak in rw_copy_check_uvector() handling
bio-integrity: Fix bio_integrity_verify segment start bug
block: remove unrelated header files and export symbol
blk-mq: uses page->list incorrectly
blk-mq: use __smp_call_function_single directly
btrfs: fix missing increment of bi_remaining
Revert "block: Warn and free bio if bi_end_io is not set"
block: Warn and free bio if bi_end_io is not set
blk-mq: fix initializing request's start time
block: blk-mq: don't export blk_mq_free_queue()
block: blk-mq: make blk_sync_queue support mq
block: blk-mq: support draining mq queue
dm cache: increment bi_remaining when bi_end_io is restored
block: fixup for generic bio chaining
block: Really silence spurious compiler warnings
block: Silence spurious compiler warnings
block: Kill bio_pair_split()
...
Commit 787a996cb2 ("dm thin: add error_if_no_space feature")
mistakenly forgot to increase the number of feature args supported.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
The pool mode must not be switched until after the corresponding pool
process_* methods have been established. Otherwise, because
set_pool_mode() isn't interlocked with the IO path for performance
reasons, the IO path can end up executing process_* operations that
don't match the mode. This patch eliminates problems like the following
(as seen on really fast PCIe SSD storage when transitioning the pool's
mode from PM_READ_ONLY to PM_WRITE):
kernel: device-mapper: thin: 253:2: reached low water mark for data device: sending event.
kernel: device-mapper: thin: 253:2: no free data space available.
kernel: device-mapper: thin: 253:2: switching pool to read-only mode
kernel: device-mapper: thin: 253:2: switching pool to write mode
kernel: ------------[ cut here ]------------
kernel: WARNING: CPU: 11 PID: 7564 at drivers/md/dm-thin.c:995 handle_unserviceable_bio+0x146/0x160 [dm_thin_pool]()
...
kernel: Workqueue: dm-thin do_worker [dm_thin_pool]
kernel: 00000000000003e3 ffff880308831cc8 ffffffff8152ebcb 00000000000003e3
kernel: 0000000000000000 ffff880308831d08 ffffffff8104c46c ffff88032502a800
kernel: ffff880036409000 ffff88030ec7ce00 0000000000000001 00000000ffffffc3
kernel: Call Trace:
kernel: [<ffffffff8152ebcb>] dump_stack+0x49/0x5e
kernel: [<ffffffff8104c46c>] warn_slowpath_common+0x8c/0xc0
kernel: [<ffffffff8104c4ba>] warn_slowpath_null+0x1a/0x20
kernel: [<ffffffffa001e2c6>] handle_unserviceable_bio+0x146/0x160 [dm_thin_pool]
kernel: [<ffffffffa001f276>] process_bio_read_only+0x136/0x180 [dm_thin_pool]
kernel: [<ffffffffa0020b75>] process_deferred_bios+0xc5/0x230 [dm_thin_pool]
kernel: [<ffffffffa0020d31>] do_worker+0x51/0x60 [dm_thin_pool]
kernel: [<ffffffff81067823>] process_one_work+0x183/0x490
kernel: [<ffffffff81068c70>] worker_thread+0x120/0x3a0
kernel: [<ffffffff81068b50>] ? manage_workers+0x160/0x160
kernel: [<ffffffff8106e86e>] kthread+0xce/0xf0
kernel: [<ffffffff8106e7a0>] ? kthread_freezable_should_stop+0x70/0x70
kernel: [<ffffffff8153b3ec>] ret_from_fork+0x7c/0xb0
kernel: [<ffffffff8106e7a0>] ? kthread_freezable_should_stop+0x70/0x70
kernel: ---[ end trace 3f00528e08ffa55c ]---
kernel: device-mapper: thin: pool mode is PM_WRITE not PM_READ_ONLY like expected!?
dm-thin.c:995 was the WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
at the top of handle_unserviceable_bio(). And as the additional
debugging I had conveys: the pool mode was _not_ PM_READ_ONLY like
expected, it was already PM_WRITE, yet pool->process_bio was still set
to process_bio_read_only().
Also, while fixing this up, reduce logging of redundant pool mode
transitions by checking new_mode is different from old_mode.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
The pool's error_if_no_space flag can easily serve the same purpose that
no_free_space did, namely: control whether handle_unserviceable_bio()
will error a bio or requeue it.
This is cleaner since error_if_no_space is established when the pool's
features are processed during table load. So it avoids managing the
no_free_space flag by taking the pool's spinlock.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
If the pool runs out of data or metadata space, the pool can either
queue or error the IO destined to the data device. The default is to
queue the IO until more space is added.
An admin may now configure the pool to error IO when no space is
available by setting the 'error_if_no_space' feature when loading the
thin-pool table.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Now that we switch the pool to read-only mode when the data device runs
out of space it causes active writers to get IO errors once we resume
after resizing the data device.
If no_free_space is set, save bios to the 'retry_on_resume_list' and
requeue them on resume (once the data or metadata device may have been
resized).
With this patch the resize_io test passes again (on slower storage):
dmtest run --suite thin-provisioning -n /resize_io/
Later patches fix some subtle races associated with the pool mode
transitions done as part of the pool's -ENOSPC handling. These races
are exposed on fast storage (e.g. PCIe SSD).
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Factor out_of_data_space() out of alloc_data_block(). Eliminate the use
of 'no_free_space' as a latch in alloc_data_block() -- this is no longer
needed now that we switch to read-only mode when we run out of data or
metadata space. In a later patch, the 'no_free_space' flag will be
eliminated entirely (in favor of checking metadata rather than relying
on a transient flag).
Move no metdata space handling into metdata_operation_failed(). Set
no_free_space when metadata space is exhausted too. This is useful,
because it offers consistency, for the following patch that will requeue
data IOs if no_free_space.
Also, rename no_space() to retry_bios_on_resume().
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Introduce metadata_operation_failed() wrappers, around set_pool_mode(),
to assist with improving the consistency of how metadata failures are
handled. Logging is improved and metadata operation failures trigger
read-only mode immediately.
Also, eliminate redundant set_pool_mode() calls in the two
alloc_data_block() caller's error paths.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Factor check_low_water_mark() out of alloc_data_block().
Change a couple unsigned flags in the pool structure to bool.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Mappings could be processed in descending logical block order,
particularly if buffered IO is used. This could adversely affect the
latency of IO processing. Fix this by adding mappings to the end of the
'prepared_mappings' and 'prepared_discards' lists.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Also, move 'err' member in dm_thin_new_mapping structure to eliminate 4
byte hole (reduces size from 88 bytes to 80).
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
If a snapshot is created and later deleted the origin dm_thin_device's
snapshotted_time will have been updated to reflect the snapshot's
creation time. The 'shared' flag in the dm_thin_lookup_result struct
returned from dm_thin_find_block() is an approximation based on
snapshotted_time -- this is done to avoid 0(n), or worse, time
complexity. In this case, the shared flag would be true.
But because the 'shared' flag reflects an approximation a block can be
incorrectly assumed to be shared (e.g. false positive for 'shared'
because the snapshot no longer exists). This could result in discards
issued to a thin device not being passed down to the pool's underlying
data device.
To fix this we double check that a thin block is really still in-use
after a mapping is removed using dm_pool_block_is_used(). If the
reference count for a block is now zero the discard is allowed to be
passed down.
Also add a 'definitely_not_shared' member to the dm_thin_new_mapping
structure -- reflects that the 'shared' flag in the response from
dm_thin_find_block() can only be held as definitive if false is
returned.
Resolves: https://bugzilla.redhat.com/show_bug.cgi?id=1043527
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
As additional members are added to the dm_thin_new_mapping structure
care should be taken to make sure they get initialized before use.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Cc: stable@vger.kernel.org
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJSwLfoAAoJEHm+PkMAQRiGi6QH/1U1B7lmHChDTw3jj1lfm9gA
189Si4QJlnxFWCKHvKEL+pcaVuACU+aMGI8+KyMYK4/JfuWVjjj5fr/SvyHH2/8m
LdSK8aHMhJ46uBS4WJ/l6v46qQa5e2vn8RKSBAyKm/h4vpt+hd6zJdoFrFai4th7
k/TAwOAEHI5uzexUChwLlUBRTvbq4U8QUvDu+DeifC8cT63CGaaJ4qVzjOZrx1an
eP6UXZrKDASZs7RU950i7xnFVDQu4PsjlZi25udsbeiKcZJgPqGgXz5ULf8ZH8RQ
YCi1JOnTJRGGjyIOyLj7pyB01h7XiSM2+eMQ0S7g54F2s7gCJ58c2UwQX45vRWU=
=/4/R
-----END PGP SIGNATURE-----
Merge tag 'v3.13-rc6' into for-3.14/core
Needed to bring blk-mq uptodate, since changes have been going in
since for-3.14/core was established.
Fixup merge issues related to the immutable biovec changes.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Conflicts:
block/blk-flush.c
fs/btrfs/check-integrity.c
fs/btrfs/extent_io.c
fs/btrfs/scrub.c
fs/logfs/dev_bdev.c
A thin-pool may be in read-only mode because the pool's data or metadata
space was exhausted. To allow for recovery, by adding more space to the
pool, we must allow a pool to transition from PM_READ_ONLY to PM_WRITE
mode. Otherwise, running out of space will render the pool permanently
read-only.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
If the thin-pool transitioned to fail mode and the thin-pool's table
were reloaded for some reason: the new table's default pool mode would
be read-write, though it will transition to fail mode during resume.
When the pool mode transitions directly from PM_WRITE to PM_FAIL we need
to re-establish the intermediate read-only state in both the metadata
and persistent-data block manager (as is usually done with the normal
pool mode transition sequence: PM_WRITE -> PM_READ_ONLY -> PM_FAIL).
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
Rename commit_or_fallback() to commit(). Now all previous calls to
commit() will trigger the pool mode to fallback if the commit fails.
Also, check the error returned from commit() in alloc_data_block().
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
Switch the thin pool to read-only mode in alloc_data_block() if
dm_pool_alloc_data_block() fails because the pool's metadata space is
exhausted.
Differentiate between data and metadata space in messages about no
free space available.
This issue was noticed with the device-mapper-test-suite using:
dmtest run --suite thin-provisioning -n /exhausting_metadata_space_causes_fail_mode/
The quantity of errors logged in this case must be reduced.
before patch:
device-mapper: thin: 253:4: reached low water mark for metadata device: sending event.
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map common: dm_tm_shadow_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map common: dm_tm_shadow_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map common: dm_tm_shadow_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map common: dm_tm_shadow_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map common: dm_tm_shadow_block() failed
<snip ... these repeat for a _very_ long while ... >
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: 253:4: commit failed: error = -28
device-mapper: thin: 253:4: switching pool to read-only mode
after patch:
device-mapper: thin: 253:4: reached low water mark for metadata device: sending event.
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: 253:4: no free metadata space available.
device-mapper: thin: 253:4: switching pool to read-only mode
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Cc: stable@vger.kernel.org
Switch the thin pool to read-only mode when dm_thin_insert_block() fails
since there is little reason to expect the cause of the failure to be
resolved without further action by user space.
This issue was noticed with the device-mapper-test-suite using:
dmtest run --suite thin-provisioning -n /exhausting_metadata_space_causes_fail_mode/
The quantity of errors logged in this case must be reduced.
before patch:
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: dm_thin_insert_block() failed
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map metadata: unable to allocate new metadata block
<snip ... these repeat for a long while ... >
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: space map common: dm_tm_shadow_block() failed
device-mapper: thin: 253:4: no free metadata space available.
device-mapper: thin: 253:4: switching pool to read-only mode
after patch:
device-mapper: space map metadata: unable to allocate new metadata block
device-mapper: thin: 253:4: dm_thin_insert_block() failed: error = -28
device-mapper: thin: 253:4: switching pool to read-only mode
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org
This adds a generic mechanism for chaining bio completions. This is
going to be used for a bio_split() replacement, and it turns out to be
very useful in a fair amount of driver code - a fair number of drivers
were implementing this in their own roundabout ways, often painfully.
Note that this means it's no longer to call bio_endio() more than once
on the same bio! This can cause problems for drivers that save/restore
bi_end_io. Arguably they shouldn't be saving/restoring bi_end_io at all
- in all but the simplest cases they'd be better off just cloning the
bio, and immutable biovecs is making bio cloning cheaper. But for now,
we add a bio_endio_nodec() for these cases.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Fix issue where the block layer would stack the discard limits of the
pool's data device even if the "ignore_discard" pool feature was
specified.
The pool and thin device(s) still had discards disabled because the
QUEUE_FLAG_DISCARD request_queue flag wasn't set. But to avoid user
confusion when "ignore_discard" is used: both the pool device and the
thin device(s) have zeroes for all discard limits.
Also, always set discard_zeroes_data_unsupported in targets because they
should never advertise the 'discard_zeroes_data' capability (even if the
pool's data device supports it).
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
If pool has 'no_free_space' set it means a previous allocation already
determined the pool has no free space (and failed that allocation with
-ENOSPC). By always returning -ENOSPC if 'no_free_space' is set, we do
not allow the pool to oscillate between allocating blocks and then not.
But a side-effect of this determinism is that if a user wants to be able
to allocate new blocks they'll need to reload the pool's table (to clear
the 'no_free_space' flag). This reload will happen automatically if the
pool's data volume is resized. But if the user takes action to free a
lot of space by deleting snapshot volumes, etc the pool will no longer
allow data allocations to continue without an intervening table reload.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
break_sharing() now handles an arbitrary alloc_data_block() error
the same way as provision_block(): marks pool read-only and errors the
cell.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Useful to know which pool is experiencing the error.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Do not blindly override the queue limits (specifically io_min and
io_opt). Allow traditional stacking of these limits if io_opt is a
factor of the thin-pool's data block size.
Without this patch mkfs.xfs does not recognize the thin device's
provided limits as a useful geometry (e.g. raid) so these hints are
ignored. This was due to setting io_min to a useless value.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Acked-by: Joe Thornber <ejt@redhat.com>
Fix detection of the need to resize the dm thin metadata device.
The code incorrectly tried to extend the metadata device when it
didn't need to due to a merging error with patch 24347e9 ("dm thin:
detect metadata device resizing").
device-mapper: transaction manager: couldn't open metadata space map
device-mapper: thin metadata: tm_open_with_sm failed
device-mapper: thin: aborting transaction failed
device-mapper: thin: switching pool to failure mode
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Generate a dm event when the amount of remaining thin pool metadata
space falls below a certain level.
The threshold is taken to be a quarter of the size of the metadata
device with a minimum threshold of 4MB.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>