commit 73669cc556462f4e50376538d77ee312142e8a8a upstream.
The function crypto_spawn_alg is racy because it drops the lock
before shooting the dying algorithm. The algorithm could disappear
altogether before we shoot it.
This patch fixes it by moving the shooting into the locked section.
Fixes: 6bfd48096f ("[CRYPTO] api: Added spawns")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e8d998264bffade3cfe0536559f712ab9058d654 upstream.
We should not be modifying the original request's MAY_SLEEP flag
upon completion. It makes no sense to do so anyway.
Reported-by: Eric Biggers <ebiggers@kernel.org>
Fixes: 5068c7a883 ("crypto: pcrypt - Add pcrypt crypto...")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Tested-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7db3b61b6bba4310f454588c2ca6faf2958ad79f upstream.
We need to check whether spawn->alg is NULL under lock as otherwise
the algorithm could be removed from under us after we have checked
it and found it to be non-NULL. This could cause us to remove the
spawn from a non-existent list.
Fixes: 7ede5a5ba5 ("crypto: api - Fix crypto_drop_spawn crash...")
Cc: <stable@vger.kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 07bfd9bdf568a38d9440c607b72342036011f727 ]
On module unload of pcrypt we must unregister the crypto algorithms
first and then tear down the padata structure. As otherwise the
crypto algorithms are still alive and can be used while the padata
structure is being freed.
Fixes: 5068c7a883 ("crypto: pcrypt - Add pcrypt crypto...")
Cc: <stable@vger.kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 37f96694cf73ba116993a9d2d99ad6a75fa7fdb0 upstream.
As af_alg_release_parent may be called from BH context (most notably
due to an async request that only completes after socket closure,
or as reported here because of an RCU-delayed sk_destruct call), we
must use bh_lock_sock instead of lock_sock.
Reported-by: syzbot+c2f1558d49e25cc36e5e@syzkaller.appspotmail.com
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Fixes: c840ac6af3 ("crypto: af_alg - Disallow bind/setkey/...")
Cc: <stable@vger.kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f990f7fb58ac8ac9a43316f09a48cff1a49dda42 ]
Fix an unaligned memory access in tgr192_transform() by using the
unaligned access helpers.
Fixes: 06ace7a9ba ("[CRYPTO] Use standard byte order macros wherever possible")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b1e3874c75ab15288f573b3532e507c37e8e7656 ]
Passing string 'name' as the format specifier is potentially hazardous
because name could (although very unlikely to) have a format specifier
embedded in it causing issues when parsing the non-existent arguments
to these. Follow best practice by using the "%s" format string for
the string 'name'.
Cleans up clang warning:
crypto/pcrypt.c:397:40: warning: format string is not a string literal
(potentially insecure) [-Wformat-security]
Fixes: a3fb1e330d ("pcrypt: Added sysfs interface to pcrypt")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit ffdde5932042600c6807d46c1550b28b0db6a3bc upstream.
In crypto_report, a new skb is created via nlmsg_new(). This skb should
be released if crypto_report_alg() fails.
Fixes: a38f7907b9 ("crypto: Add userspace configuration API")
Cc: <stable@vger.kernel.org>
Signed-off-by: Navid Emamdoost <navid.emamdoost@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f398243e9fd6a3a059c1ea7b380c40628dbf0c61 upstream.
The elliptic curve arithmetic library used by the EC-DH KPP implementation
assumes big endian byte order, and unconditionally reverses the byte
and word order of multi-limb quantities. On big endian systems, the byte
reordering is not necessary, while the word ordering needs to be retained.
So replace the __swab64() invocation with a call to be64_to_cpu() which
should do the right thing for both little and big endian builds.
Fixes: 3c4b23901a ("crypto: ecdh - Add ECDH software support")
Cc: <stable@vger.kernel.org> # v4.9+
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 64e7f852c47ce99f6c324c46d6a299a5a7ebead9 upstream.
when libkcapi test is executed using HW accelerator, cipher operation
return -74.Since af_alg_async_cb->ki_complete treat err as unsigned int,
libkcapi receive 429467222 even though it expect -ve value.
Hence its required to cast resultlen to int so that proper
error is returned to libkcapi.
AEAD one shot non-aligned test 2(libkcapi test)
./../bin/kcapi -x 10 -c "gcm(aes)" -i 7815d4b06ae50c9c56e87bd7
-k ea38ac0c9b9998c80e28fb496a2b88d9 -a
"853f98a750098bec1aa7497e979e78098155c877879556bb51ddeb6374cbaefc"
-t "c4ce58985b7203094be1d134c1b8ab0b" -q
"b03692f86d1b8b39baf2abb255197c98"
Fixes: d887c52d6a ("crypto: algif_aead - overhaul memory management")
Cc: <stable@vger.kernel.org>
Signed-off-by: Ayush Sawal <ayush.sawal@chelsio.com>
Signed-off-by: Atul Gupta <atul.gupta@chelsio.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Ayush Sawal <ayush.sawal@chelsio.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 2eb4942b6609d35a4e835644a33203b0aef7443d ]
Currently used scalar multiplication algorithm (Matthieu Rivain, 2011)
have invalid values for scalar == 1, n-1, and for regularized version
n-2, which was previously not checked. Verify that they are not used as
private keys.
Signed-off-by: Vitaly Chikunov <vt@altlinux.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0ac6b8fb23c724b015d9ca70a89126e8d1563166 ]
CRYPTO_MSG_GETALG in NLM_F_DUMP mode sometimes doesn't return all
registered crypto algorithms, because it doesn't support incremental
dumps. crypto_dump_report() only permits itself to be called once, yet
the netlink subsystem allocates at most ~64 KiB for the skb being dumped
to. Thus only the first recvmsg() returns data, and it may only include
a subset of the crypto algorithms even if the user buffer passed to
recvmsg() is large enough to hold all of them.
Fix this by using one of the arguments in the netlink_callback structure
to keep track of the current position in the algorithm list. Then
userspace can do multiple recvmsg() on the socket after sending the dump
request. This is the way netlink dumps work elsewhere in the kernel;
it's unclear why this was different (probably just an oversight).
Also fix an integer overflow when calculating the dump buffer size hint.
Fixes: a38f7907b9 ("crypto: Add userspace configuration API")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 22a8118d329334833cd30f2ceb36d28e8cae8a4f ]
After allocation, output and decomp_output both point to memory chunks of
size COMP_BUF_SIZE. Then, only the first bytes are zeroed out using
sizeof(COMP_BUF_SIZE) as parameter to memset(), because
sizeof(COMP_BUF_SIZE) provides the size of the constant and not the size of
allocated memory.
Instead, the whole allocated memory is meant to be zeroed out. Use
COMP_BUF_SIZE as parameter to memset() directly in order to accomplish
this.
Fixes: 336073840a ("crypto: testmgr - Allow different compression results")
Signed-off-by: Michael Schupikov <michael@schupikov.de>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3944f139d5592790b70bc64f197162e643a8512b ]
The encryption mode of pkcs1pad never uses out_sg and out_buf, so
there's no need to allocate the buffer, which presently is not even
being freed.
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: linux-crypto@vger.kernel.org
CC: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Dan Aloni <dan@kernelim.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a5e9f557098e54af44ade5d501379be18435bfbf ]
In commit 9f480faec5 ("crypto: chacha20 - Fix keystream alignment for
chacha20_block()"), I had missed that chacha20_block() can be called
directly on the buffer passed to get_random_bytes(), which can have any
alignment. So, while my commit didn't break anything, it didn't fully
solve the alignment problems.
Revert my solution and just update chacha20_block() to use
put_unaligned_le32(), so the output buffer need not be aligned.
This is simpler, and on many CPUs it's the same speed.
But, I kept the 'tmp' buffers in extract_crng_user() and
_get_random_bytes() 4-byte aligned, since that alignment is actually
needed for _crng_backtrack_protect() too.
Reported-by: Stephan Müller <smueller@chronox.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 0ba3c026e685573bd3534c17e27da7c505ac99c4 upstream.
skcipher_walk_done may be called with an error by internal or
external callers. For those internal callers we shouldn't unmap
pages but for external callers we must unmap any pages that are
in use.
This patch distinguishes between the two cases by checking whether
walk->nbytes is zero or not. For internal callers, we now set
walk->nbytes to zero prior to the call. For external callers,
walk->nbytes has always been non-zero (as zero is used to indicate
the termination of a walk).
Reported-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Fixes: 5cde0af2a9 ("[CRYPTO] cipher: Added block cipher type")
Cc: <stable@vger.kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7545b6c2087f4ef0287c8c9b7eba6a728c67ff8e upstream.
Clear the CRYPTO_TFM_REQ_MAY_SLEEP flag when the chacha20poly1305
operation is being continued from an async completion callback, since
sleeping may not be allowed in that context.
This is basically the same bug that was recently fixed in the xts and
lrw templates. But, it's always been broken in chacha20poly1305 too.
This was found using syzkaller in combination with the updated crypto
self-tests which actually test the MAY_SLEEP flag now.
Reproducer:
python -c 'import socket; socket.socket(socket.AF_ALG, 5, 0).bind(
("aead", "rfc7539(cryptd(chacha20-generic),poly1305-generic)"))'
Kernel output:
BUG: sleeping function called from invalid context at include/crypto/algapi.h:426
in_atomic(): 1, irqs_disabled(): 0, pid: 1001, name: kworker/2:2
[...]
CPU: 2 PID: 1001 Comm: kworker/2:2 Not tainted 5.2.0-rc2 #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-20181126_142135-anatol 04/01/2014
Workqueue: crypto cryptd_queue_worker
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x4d/0x6a lib/dump_stack.c:113
___might_sleep kernel/sched/core.c:6138 [inline]
___might_sleep.cold.19+0x8e/0x9f kernel/sched/core.c:6095
crypto_yield include/crypto/algapi.h:426 [inline]
crypto_hash_walk_done+0xd6/0x100 crypto/ahash.c:113
shash_ahash_update+0x41/0x60 crypto/shash.c:251
shash_async_update+0xd/0x10 crypto/shash.c:260
crypto_ahash_update include/crypto/hash.h:539 [inline]
poly_setkey+0xf6/0x130 crypto/chacha20poly1305.c:337
poly_init+0x51/0x60 crypto/chacha20poly1305.c:364
async_done_continue crypto/chacha20poly1305.c:78 [inline]
poly_genkey_done+0x15/0x30 crypto/chacha20poly1305.c:369
cryptd_skcipher_complete+0x29/0x70 crypto/cryptd.c:279
cryptd_skcipher_decrypt+0xcd/0x110 crypto/cryptd.c:339
cryptd_queue_worker+0x70/0xa0 crypto/cryptd.c:184
process_one_work+0x1ed/0x420 kernel/workqueue.c:2269
worker_thread+0x3e/0x3a0 kernel/workqueue.c:2415
kthread+0x11f/0x140 kernel/kthread.c:255
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:352
Fixes: 71ebc4d1b2 ("crypto: chacha20poly1305 - Add a ChaCha20-Poly1305 AEAD construction, RFC7539")
Cc: <stable@vger.kernel.org> # v4.2+
Cc: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5c6bc4dfa515738149998bb0db2481a4fdead979 upstream.
Changing ghash_mod_init() to be subsys_initcall made it start running
before the alignment fault handler has been installed on ARM. In kernel
builds where the keys in the ghash test vectors happened to be
misaligned in the kernel image, this exposed the longstanding bug that
ghash_setkey() is incorrectly casting the key buffer (which can have any
alignment) to be128 for passing to gf128mul_init_4k_lle().
Fix this by memcpy()ing the key to a temporary buffer.
Don't fix it by setting an alignmask on the algorithm instead because
that would unnecessarily force alignment of the data too.
Fixes: 2cdc6899a8 ("crypto: ghash - Add GHASH digest algorithm for GCM")
Reported-by: Peter Robinson <pbrobinson@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Tested-by: Peter Robinson <pbrobinson@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 90acc0653d2bee203174e66d519fbaaa513502de ]
Build testing with some core crypto options disabled revealed
a few modules that are missing CRYPTO_HASH:
crypto/asymmetric_keys/x509_public_key.o: In function `x509_get_sig_params':
x509_public_key.c:(.text+0x4c7): undefined reference to `crypto_alloc_shash'
x509_public_key.c:(.text+0x5e5): undefined reference to `crypto_shash_digest'
crypto/asymmetric_keys/pkcs7_verify.o: In function `pkcs7_digest.isra.0':
pkcs7_verify.c:(.text+0xab): undefined reference to `crypto_alloc_shash'
pkcs7_verify.c:(.text+0x1b2): undefined reference to `crypto_shash_digest'
pkcs7_verify.c:(.text+0x3c1): undefined reference to `crypto_shash_update'
pkcs7_verify.c:(.text+0x411): undefined reference to `crypto_shash_finup'
This normally doesn't show up in randconfig tests because there is
a large number of other options that select CRYPTO_HASH.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 473971187d6727609951858c63bf12b0307ef015 ]
The same bug that gcc hit in the past is apparently now showing
up with clang, which decides to inline __serpent_setkey_sbox:
crypto/serpent_generic.c:268:5: error: stack frame size of 2112 bytes in function '__serpent_setkey' [-Werror,-Wframe-larger-than=]
Marking it 'noinline' reduces the stack usage from 2112 bytes to
192 and 96 bytes, respectively, and seems to generate more
useful object code.
Fixes: c871c10e4e ("crypto: serpent - improve __serpent_setkey with UBSAN")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 1a0fad630e0b7cff38e7691b28b0517cfbb0633f upstream.
cryptd_skcipher_free() fails to free the struct skcipher_instance
allocated in cryptd_create_skcipher(), leading to a memory leak. This
is detected by kmemleak on bootup on ARM64 platforms:
unreferenced object 0xffff80003377b180 (size 1024):
comm "cryptomgr_probe", pid 822, jiffies 4294894830 (age 52.760s)
backtrace:
kmem_cache_alloc_trace+0x270/0x2d0
cryptd_create+0x990/0x124c
cryptomgr_probe+0x5c/0x1e8
kthread+0x258/0x318
ret_from_fork+0x10/0x1c
Fixes: 4e0958d19b ("crypto: cryptd - Add support for skcipher")
Cc: <stable@vger.kernel.org>
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 21d4120ec6f5b5992b01b96ac484701163917b63 upstream.
Michal Suchanek reported [1] that running the pcrypt_aead01 test from
LTP [2] in a loop and holding Ctrl-C causes a NULL dereference of
alg->cra_users.next in crypto_remove_spawns(), via crypto_del_alg().
The test repeatedly uses CRYPTO_MSG_NEWALG and CRYPTO_MSG_DELALG.
The crash occurs when the instance that CRYPTO_MSG_DELALG is trying to
unregister isn't a real registered algorithm, but rather is a "test
larval", which is a special "algorithm" added to the algorithms list
while the real algorithm is still being tested. Larvals don't have
initialized cra_users, so that causes the crash. Normally pcrypt_aead01
doesn't trigger this because CRYPTO_MSG_NEWALG waits for the algorithm
to be tested; however, CRYPTO_MSG_NEWALG returns early when interrupted.
Everything else in the "crypto user configuration" API has this same bug
too, i.e. it inappropriately allows operating on larval algorithms
(though it doesn't look like the other cases can cause a crash).
Fix this by making crypto_alg_match() exclude larval algorithms.
[1] https://lkml.kernel.org/r/20190625071624.27039-1-msuchanek@suse.de
[2] https://github.com/linux-test-project/ltp/blob/20190517/testcases/kernel/crypto/pcrypt_aead01.c
Reported-by: Michal Suchanek <msuchanek@suse.de>
Fixes: a38f7907b9 ("crypto: Add userspace configuration API")
Cc: <stable@vger.kernel.org> # v3.2+
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6a1faa4a43f5fabf9cbeaa742d916e7b5e73120f upstream.
CCM instances can be created by either the "ccm" template, which only
allows choosing the block cipher, e.g. "ccm(aes)"; or by "ccm_base",
which allows choosing the ctr and cbcmac implementations, e.g.
"ccm_base(ctr(aes-generic),cbcmac(aes-generic))".
However, a "ccm_base" instance prevents a "ccm" instance from being
registered using the same implementations. Nor will the instance be
found by lookups of "ccm". This can be used as a denial of service.
Moreover, "ccm_base" instances are never tested by the crypto
self-tests, even if there are compatible "ccm" tests.
The root cause of these problems is that instances of the two templates
use different cra_names. Therefore, fix these problems by making
"ccm_base" instances set the same cra_name as "ccm" instances, e.g.
"ccm(aes)" instead of "ccm_base(ctr(aes-generic),cbcmac(aes-generic))".
This requires extracting the block cipher name from the name of the ctr
and cbcmac algorithms. It also requires starting to verify that the
algorithms are really ctr and cbcmac using the same block cipher, not
something else entirely. But it would be bizarre if anyone were
actually using non-ccm-compatible algorithms with ccm_base, so this
shouldn't break anyone in practice.
Fixes: 4a49b499df ("[CRYPTO] ccm: Added CCM mode")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f699594d436960160f6d5ba84ed4a222f20d11cd upstream.
GCM instances can be created by either the "gcm" template, which only
allows choosing the block cipher, e.g. "gcm(aes)"; or by "gcm_base",
which allows choosing the ctr and ghash implementations, e.g.
"gcm_base(ctr(aes-generic),ghash-generic)".
However, a "gcm_base" instance prevents a "gcm" instance from being
registered using the same implementations. Nor will the instance be
found by lookups of "gcm". This can be used as a denial of service.
Moreover, "gcm_base" instances are never tested by the crypto
self-tests, even if there are compatible "gcm" tests.
The root cause of these problems is that instances of the two templates
use different cra_names. Therefore, fix these problems by making
"gcm_base" instances set the same cra_name as "gcm" instances, e.g.
"gcm(aes)" instead of "gcm_base(ctr(aes-generic),ghash-generic)".
This requires extracting the block cipher name from the name of the ctr
algorithm. It also requires starting to verify that the algorithms are
really ctr and ghash, not something else entirely. But it would be
bizarre if anyone were actually using non-gcm-compatible algorithms with
gcm_base, so this shouldn't break anyone in practice.
Fixes: d00aa19b50 ("[CRYPTO] gcm: Allow block cipher parameter")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 307508d1072979f4435416f87936f87eaeb82054 upstream.
The ->digest() method of crct10dif-generic reads the current CRC value
from the shash_desc context. But this value is uninitialized, causing
crypto_shash_digest() to compute the wrong result. Fix it.
Probably this wasn't noticed before because lib/crc-t10dif.c only uses
crypto_shash_update(), not crypto_shash_digest(). Likewise,
crypto_shash_digest() is not yet tested by the crypto self-tests because
those only test the ahash API which only uses shash init/update/final.
This bug was detected by my patches that improve testmgr to fuzz
algorithms against their generic implementation.
Fixes: 2d31e518a4 ("crypto: crct10dif - Wrap crc_t10dif function all to use crypto transform framework")
Cc: <stable@vger.kernel.org> # v3.11+
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit dcaca01a42cc2c425154a13412b4124293a6e11e upstream.
skcipher_walk_done() assumes it's a bug if, after the "slow" path is
executed where the next chunk of data is processed via a bounce buffer,
the algorithm says it didn't process all bytes. Thus it WARNs on this.
However, this can happen legitimately when the message needs to be
evenly divisible into "blocks" but isn't, and the algorithm has a
'walksize' greater than the block size. For example, ecb-aes-neonbs
sets 'walksize' to 128 bytes and only supports messages evenly divisible
into 16-byte blocks. If, say, 17 message bytes remain but they straddle
scatterlist elements, the skcipher_walk code will take the "slow" path
and pass the algorithm all 17 bytes in the bounce buffer. But the
algorithm will only be able to process 16 bytes, triggering the WARN.
Fix this by just removing the WARN_ON(). Returning -EINVAL, as the code
already does, is the right behavior.
This bug was detected by my patches that improve testmgr to fuzz
algorithms against their generic implementation.
Fixes: b286d8b1a6 ("crypto: skcipher - Add skcipher walk interface")
Cc: <stable@vger.kernel.org> # v4.10+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5e27f38f1f3f45a0c938299c3a34a2d2db77165a upstream.
If the rfc7539 template is instantiated with specific implementations,
e.g. "rfc7539(chacha20-generic,poly1305-generic)" rather than
"rfc7539(chacha20,poly1305)", then the implementation names end up
included in the instance's cra_name. This is incorrect because it then
prevents all users from allocating "rfc7539(chacha20,poly1305)", if the
highest priority implementations of chacha20 and poly1305 were selected.
Also, the self-tests aren't run on an instance allocated in this way.
Fix it by setting the instance's cra_name from the underlying
algorithms' actual cra_names, rather than from the requested names.
This matches what other templates do.
Fixes: 71ebc4d1b2 ("crypto: chacha20poly1305 - Add a ChaCha20-Poly1305 AEAD construction, RFC7539")
Cc: <stable@vger.kernel.org> # v4.2+
Cc: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit edaf28e996af69222b2cb40455dbb5459c2b875a upstream.
If the user-provided IV needs to be aligned to the algorithm's
alignmask, then skcipher_walk_virt() copies the IV into a new aligned
buffer walk.iv. But skcipher_walk_virt() can fail afterwards, and then
if the caller unconditionally accesses walk.iv, it's a use-after-free.
salsa20-generic doesn't set an alignmask, so currently it isn't affected
by this despite unconditionally accessing walk.iv. However this is more
subtle than desired, and it was actually broken prior to the alignmask
being removed by commit b62b3db76f ("crypto: salsa20-generic - cleanup
and convert to skcipher API").
Since salsa20-generic does not update the IV and does not need any IV
alignment, update it to use req->iv instead of walk.iv.
Fixes: 2407d60872 ("[CRYPTO] salsa20: Salsa20 stream cipher")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 678cce4019d746da6c680c48ba9e6d417803e127 upstream.
The x86_64 implementation of Poly1305 produces the wrong result on some
inputs because poly1305_4block_avx2() incorrectly assumes that when
partially reducing the accumulator, the bits carried from limb 'd4' to
limb 'h0' fit in a 32-bit integer. This is true for poly1305-generic
which processes only one block at a time. However, it's not true for
the AVX2 implementation, which processes 4 blocks at a time and
therefore can produce intermediate limbs about 4x larger.
Fix it by making the relevant calculations use 64-bit arithmetic rather
than 32-bit. Note that most of the carries already used 64-bit
arithmetic, but the d4 -> h0 carry was different for some reason.
To be safe I also made the same change to the corresponding SSE2 code,
though that only operates on 1 or 2 blocks at a time. I don't think
it's really needed for poly1305_block_sse2(), but it doesn't hurt
because it's already x86_64 code. It *might* be needed for
poly1305_2block_sse2(), but overflows aren't easy to reproduce there.
This bug was originally detected by my patches that improve testmgr to
fuzz algorithms against their generic implementation. But also add a
test vector which reproduces it directly (in the AVX2 case).
Fixes: b1ccc8f4b6 ("crypto: poly1305 - Add a four block AVX2 variant for x86_64")
Fixes: c70f4abef0 ("crypto: poly1305 - Add a SSE2 SIMD variant for x86_64")
Cc: <stable@vger.kernel.org> # v4.3+
Cc: Martin Willi <martin@strongswan.org>
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit eb5e6730db98fcc4b51148b4a819fa4bf864ae54 upstream.
Instantiating "cryptd(crc32c)" causes a crypto self-test failure because
the crypto_alloc_shash() in alg_test_crc32c() fails. This is because
cryptd(crc32c) is an ahash algorithm, not a shash algorithm; so it can
only be accessed through the ahash API, unlike shash algorithms which
can be accessed through both the ahash and shash APIs.
As the test is testing the shash descriptor format which is only
applicable to shash algorithms, skip it for ahash algorithms.
(Note that it's still important to fix crypto self-test failures even
for weird algorithm instantiations like cryptd(crc32c) that no one
would really use; in fips_enabled mode unprivileged users can use them
to panic the kernel, and also they prevent treating a crypto self-test
failure as a bug when fuzzing the kernel.)
Fixes: 8e3ee85e68 ("crypto: crc32c - Test descriptor context format")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b1f6b4bf416b49f00f3abc49c639371cdecaaad1 upstream.
Some algorithms have a ->setkey() method that is not atomic, in the
sense that setting a key can fail after changes were already made to the
tfm context. In this case, if a key was already set the tfm can end up
in a state that corresponds to neither the old key nor the new key.
For example, in lrw.c, if gf128mul_init_64k_bbe() fails due to lack of
memory, then priv::table will be left NULL. After that, encryption with
that tfm will cause a NULL pointer dereference.
It's not feasible to make all ->setkey() methods atomic, especially ones
that have to key multiple sub-tfms. Therefore, make the crypto API set
CRYPTO_TFM_NEED_KEY if ->setkey() fails and the algorithm requires a
key, to prevent the tfm from being used until a new key is set.
[Cc stable mainly because when introducing the NEED_KEY flag I changed
AF_ALG to rely on it; and unlike in-kernel crypto API users, AF_ALG
previously didn't have this problem. So these "incompletely keyed"
states became theoretically accessible via AF_ALG -- though, the
opportunities for causing real mischief seem pretty limited.]
Fixes: f8d33fac84 ("crypto: skcipher - prevent using skciphers without setting key")
Cc: <stable@vger.kernel.org> # v4.16+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 251b7aea34ba3c4d4fdfa9447695642eb8b8b098 upstream.
The memcpy()s in the PCBC implementation use walk->iv as both the source
and destination, which has undefined behavior. These memcpy()'s are
actually unneeded, because walk->iv is already used to hold the previous
plaintext block XOR'd with the previous ciphertext block. Thus,
walk->iv is already updated to its final value.
So remove the broken and unnecessary memcpy()s.
Fixes: 91652be5d1 ("[CRYPTO] pcbc: Add Propagated CBC template")
Cc: <stable@vger.kernel.org> # v2.6.21+
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d644f1c8746ed24f81075480f9e9cb3777ae8d65 upstream.
The generic MORUS implementations all fail the improved AEAD tests
because they produce the wrong result with some data layouts. The issue
is that they assume that if the skcipher_walk API gives 'nbytes' not
aligned to the walksize (a.k.a. walk.stride), then it is the end of the
data. In fact, this can happen before the end. Fix them.
Fixes: 396be41f16 ("crypto: morus - Add generic MORUS AEAD implementations")
Cc: <stable@vger.kernel.org> # v4.18+
Cc: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ba7d7433a0e998c902132bd47330e355a1eaa894 upstream.
Some algorithms have a ->setkey() method that is not atomic, in the
sense that setting a key can fail after changes were already made to the
tfm context. In this case, if a key was already set the tfm can end up
in a state that corresponds to neither the old key nor the new key.
It's not feasible to make all ->setkey() methods atomic, especially ones
that have to key multiple sub-tfms. Therefore, make the crypto API set
CRYPTO_TFM_NEED_KEY if ->setkey() fails and the algorithm requires a
key, to prevent the tfm from being used until a new key is set.
Note: we can't set CRYPTO_TFM_NEED_KEY for OPTIONAL_KEY algorithms, so
->setkey() for those must nevertheless be atomic. That's fine for now
since only the crc32 and crc32c algorithms set OPTIONAL_KEY, and it's
not intended that OPTIONAL_KEY be used much.
[Cc stable mainly because when introducing the NEED_KEY flag I changed
AF_ALG to rely on it; and unlike in-kernel crypto API users, AF_ALG
previously didn't have this problem. So these "incompletely keyed"
states became theoretically accessible via AF_ALG -- though, the
opportunities for causing real mischief seem pretty limited.]
Fixes: 9fa68f6200 ("crypto: hash - prevent using keyed hashes without setting key")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0f533e67d26f228ea5dfdacc8a4bdeb487af5208 upstream.
The generic AEGIS implementations all fail the improved AEAD tests
because they produce the wrong result with some data layouts. The issue
is that they assume that if the skcipher_walk API gives 'nbytes' not
aligned to the walksize (a.k.a. walk.stride), then it is the end of the
data. In fact, this can happen before the end. Fix them.
Fixes: f606a88e58 ("crypto: aegis - Add generic AEGIS AEAD implementations")
Cc: <stable@vger.kernel.org> # v4.18+
Cc: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6ebc97006b196aafa9df0497fdfa866cf26f259b upstream.
Some algorithms have a ->setkey() method that is not atomic, in the
sense that setting a key can fail after changes were already made to the
tfm context. In this case, if a key was already set the tfm can end up
in a state that corresponds to neither the old key nor the new key.
For example, in gcm.c, if the kzalloc() fails due to lack of memory,
then the CTR part of GCM will have the new key but GHASH will not.
It's not feasible to make all ->setkey() methods atomic, especially ones
that have to key multiple sub-tfms. Therefore, make the crypto API set
CRYPTO_TFM_NEED_KEY if ->setkey() fails, to prevent the tfm from being
used until a new key is set.
[Cc stable mainly because when introducing the NEED_KEY flag I changed
AF_ALG to rely on it; and unlike in-kernel crypto API users, AF_ALG
previously didn't have this problem. So these "incompletely keyed"
states became theoretically accessible via AF_ALG -- though, the
opportunities for causing real mischief seem pretty limited.]
Fixes: dc26c17f74 ("crypto: aead - prevent using AEADs without setting key")
Cc: <stable@vger.kernel.org> # v4.16+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 77568e535af7c4f97eaef1e555bf0af83772456c upstream.
Hash algorithms with an alignmask set, e.g. "xcbc(aes-aesni)" and
"michael_mic", fail the improved hash tests because they sometimes
produce the wrong digest. The bug is that in the case where a
scatterlist element crosses pages, not all the data is actually hashed
because the scatterlist walk terminates too early. This happens because
the 'nbytes' variable in crypto_hash_walk_done() is assigned the number
of bytes remaining in the page, then later interpreted as the number of
bytes remaining in the scatterlist element. Fix it.
Fixes: 900a081f69 ("crypto: ahash - Fix early termination in hash walk")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6c2e322b3621dc8be72e5c86d4fdb587434ba625 upstream.
The memcpy() in crypto_cfb_decrypt_inplace() uses walk->iv as both the
source and destination, which has undefined behavior. It is unneeded
because walk->iv is already used to hold the previous ciphertext block;
thus, walk->iv is already updated to its final value. So, remove it.
Also, note that in-place decryption is the only case where the previous
ciphertext block is not directly available. Therefore, as a related
cleanup I also updated crypto_cfb_encrypt_segment() to directly use the
previous ciphertext block rather than save it into walk->iv. This makes
it consistent with in-place encryption and out-of-place decryption; now
only in-place decryption is different, because it has to be.
Fixes: a7d85e06ed ("crypto: cfb - add support for Cipher FeedBack mode")
Cc: <stable@vger.kernel.org> # v4.17+
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 394a9e044702e6a8958a5e89d2a291605a587a2a upstream.
Like some other block cipher mode implementations, the CFB
implementation assumes that while walking through the scatterlist, a
partial block does not occur until the end. But the walk is incorrectly
being done with a blocksize of 1, as 'cra_blocksize' is set to 1 (since
CFB is a stream cipher) but no 'chunksize' is set. This bug causes
incorrect encryption/decryption for some scatterlist layouts.
Fix it by setting the 'chunksize'. Also extend the CFB test vectors to
cover this bug as well as cases where the message length is not a
multiple of the block size.
Fixes: a7d85e06ed ("crypto: cfb - add support for Cipher FeedBack mode")
Cc: <stable@vger.kernel.org> # v4.17+
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 0a6a40c2a8c184a2fb467efacfb1cd338d719e0b ]
In the "aes-fixed-time" AES implementation, disable interrupts while
accessing the S-box, in order to make cache-timing attacks more
difficult. Previously it was possible for the CPU to be interrupted
while the S-box was loaded into L1 cache, potentially evicting the
cachelines and causing later table lookups to be time-variant.
In tests I did on x86 and ARM, this doesn't affect performance
significantly. Responsiveness is potentially a concern, but interrupts
are only disabled for a single AES block.
Note that even after this change, the implementation still isn't
necessarily guaranteed to be constant-time; see
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf for a discussion
of the many difficulties involved in writing truly constant-time AES
software. But it's valuable to make such attacks more difficult.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3da2c1dfdb802b184eea0653d1e589515b52d74b ]
ecc_point_mult is supposed to be used with a regularized scalar,
otherwise, it's possible to deduce the position of the top bit of the
scalar with timing attack. This is important when the scalar is a
private key.
ecc_point_mult is already using a regular algorithm (i.e. having an
operation flow independent of the input scalar) but regularization step
is not implemented.
Arrange scalar to always have fixed top bit by adding a multiple of the
curve order (n).
References:
The constant time regularization step is based on micro-ecc by Kenneth
MacKay and also referenced in the literature (Bernstein, D. J., & Lange,
T. (2017). Montgomery curves and the Montgomery ladder. (Cryptology
ePrint Archive; Vol. 2017/293). s.l.: IACR. Chapter 4.6.2.)
Signed-off-by: Vitaly Chikunov <vt@altlinux.org>
Cc: kernel-hardening@lists.openwall.com
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 8f9c469348487844328e162db57112f7d347c49f upstream.
Keys for "authenc" AEADs are formatted as an rtattr containing a 4-byte
'enckeylen', followed by an authentication key and an encryption key.
crypto_authenc_extractkeys() parses the key to find the inner keys.
However, it fails to consider the case where the rtattr's payload is
longer than 4 bytes but not 4-byte aligned, and where the key ends
before the next 4-byte aligned boundary. In this case, 'keylen -=
RTA_ALIGN(rta->rta_len);' underflows to a value near UINT_MAX. This
causes a buffer overread and crash during crypto_ahash_setkey().
Fix it by restricting the rtattr payload to the expected size.
Reproducer using AF_ALG:
#include <linux/if_alg.h>
#include <linux/rtnetlink.h>
#include <sys/socket.h>
int main()
{
int fd;
struct sockaddr_alg addr = {
.salg_type = "aead",
.salg_name = "authenc(hmac(sha256),cbc(aes))",
};
struct {
struct rtattr attr;
__be32 enckeylen;
char keys[1];
} __attribute__((packed)) key = {
.attr.rta_len = sizeof(key),
.attr.rta_type = 1 /* CRYPTO_AUTHENC_KEYA_PARAM */,
};
fd = socket(AF_ALG, SOCK_SEQPACKET, 0);
bind(fd, (void *)&addr, sizeof(addr));
setsockopt(fd, SOL_ALG, ALG_SET_KEY, &key, sizeof(key));
}
It caused:
BUG: unable to handle kernel paging request at ffff88007ffdc000
PGD 2e01067 P4D 2e01067 PUD 2e04067 PMD 2e05067 PTE 0
Oops: 0000 [#1] SMP
CPU: 0 PID: 883 Comm: authenc Not tainted 4.20.0-rc1-00108-g00c9fe37a7f27 #13
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-20181126_142135-anatol 04/01/2014
RIP: 0010:sha256_ni_transform+0xb3/0x330 arch/x86/crypto/sha256_ni_asm.S:155
[...]
Call Trace:
sha256_ni_finup+0x10/0x20 arch/x86/crypto/sha256_ssse3_glue.c:321
crypto_shash_finup+0x1a/0x30 crypto/shash.c:178
shash_digest_unaligned+0x45/0x60 crypto/shash.c:186
crypto_shash_digest+0x24/0x40 crypto/shash.c:202
hmac_setkey+0x135/0x1e0 crypto/hmac.c:66
crypto_shash_setkey+0x2b/0xb0 crypto/shash.c:66
shash_async_setkey+0x10/0x20 crypto/shash.c:223
crypto_ahash_setkey+0x2d/0xa0 crypto/ahash.c:202
crypto_authenc_setkey+0x68/0x100 crypto/authenc.c:96
crypto_aead_setkey+0x2a/0xc0 crypto/aead.c:62
aead_setkey+0xc/0x10 crypto/algif_aead.c:526
alg_setkey crypto/af_alg.c:223 [inline]
alg_setsockopt+0xfe/0x130 crypto/af_alg.c:256
__sys_setsockopt+0x6d/0xd0 net/socket.c:1902
__do_sys_setsockopt net/socket.c:1913 [inline]
__se_sys_setsockopt net/socket.c:1910 [inline]
__x64_sys_setsockopt+0x1f/0x30 net/socket.c:1910
do_syscall_64+0x4a/0x180 arch/x86/entry/common.c:290
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Fixes: e236d4a89a ("[CRYPTO] authenc: Move enckeylen into key itself")
Cc: <stable@vger.kernel.org> # v2.6.25+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d45a90cb5d061fa7d411b974b950fe0b8bc5f265 upstream.
sm3_compress() calls rol32() with shift >= 32, which causes undefined
behavior. This is easily detected by enabling CONFIG_UBSAN.
Explicitly AND with 31 to make the behavior well defined.
Fixes: 4f0fc1600e ("crypto: sm3 - add OSCCA SM3 secure hash")
Cc: <stable@vger.kernel.org> # v4.15+
Cc: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fa4600734b74f74d9169c3015946d4722f8bcf79 upstream.
crypto_cfb_decrypt_segment() incorrectly XOR'ed generated keystream with
IV, rather than with data stream, resulting in incorrect decryption.
Test vectors will be added in the next patch.
Signed-off-by: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e5bde04ccce64d808f8b00a489a1fe5825d285cb upstream.
In multiple functions, the algorithm fields are read after its reference
is dropped through crypto_mod_put. In this case, the algorithm memory
may be freed, resulting in use-after-free bugs. This patch delays the
put operation until the algorithm is never used.
Fixes: 79c65d179a ("crypto: cbc - Convert to skcipher")
Fixes: a7d85e06ed ("crypto: cfb - add support for Cipher FeedBack mode")
Fixes: 043a44001b ("crypto: pcbc - Convert to skcipher")
Cc: <stable@vger.kernel.org>
Signed-off-by: Pan Bian <bianpan2016@163.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 508a1c4df085a547187eed346f1bfe5e381797f1 ]
The simd wrapper's skcipher request context structure consists
of a single subrequest whose size is taken from the subordinate
skcipher. However, in simd_skcipher_init(), the reqsize that is
retrieved is not from the subordinate skcipher but from the
cryptd request structure, whose size is completely unrelated to
the actual wrapped skcipher.
Reported-by: Qian Cai <cai@gmx.us>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Qian Cai <cai@gmx.us>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit f43f39958beb206b53292801e216d9b8a660f087 upstream.
All bytes of the NETLINK_CRYPTO report structures must be initialized,
since they are copied to userspace. The change from strncpy() to
strlcpy() broke this. As a minimal fix, change it back.
Fixes: 4473710df1 ("crypto: user - Prepare for CRYPTO_MAX_ALG_NAME expansion")
Cc: <stable@vger.kernel.org> # v4.12+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>