Separate the task security context from task_struct. At this point, the
security data is temporarily embedded in the task_struct with two pointers
pointing to it.
Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
entry.S via asm-offsets.
With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
In xfs_ialloc we just want to set all timestamps to the current time. We
don't need to mark the inode dirty like xfs_ichgtime does, and we don't
need nor want the opimizations in xfs_ichgtime that I will introduce in
the next patch.
So just opencode the timestamp update in xfs_ialloc, and remove the new
unused XFS_ICHGTIME_ACC case in xfs_ichgtime.
SGI-PV: 981498
SGI-Modid: xfs-linux-melb:xfs-kern:31825a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Use the new completion flush code to implement the inode flush lock.
Removes one of the final users of semaphores in the XFS code base.
SGI-PV: 981498
SGI-Modid: xfs-linux-melb:xfs-kern:31817a
Signed-off-by: David Chinner <david@fromorbit.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
All remaining bhv_vnode_t instance are in code that's more or less Linux
specific. (Well, for xfs_acl.c that could be argued, but that code is on
the removal list, too). So just do an s/bhv_vnode_t/struct inode/ over the
whole tree. We can clean up variable naming and some useless helpers
later.
SGI-PV: 981498
SGI-Modid: xfs-linux-melb:xfs-kern:31781a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
When multiple inodes are locked in XFS it happens in order of the inode
number, with the everything but the first inode trylocked if any of the
previous inodes is in the AIL.
Except for the sorting of the inodes this logic is implemented in
xfs_lock_inodes, but also partially duplicated in xfs_lock_dir_and_entry
in a particularly stupid way adds a lock roundtrip if the inode ordering
is not optimal.
This patch adds a new helper xfs_lock_two_inodes that takes two inodes and
locks them in the most optimal way according to the above locking protocol
and uses it for all places that want to lock two inodes.
The only caller of xfs_lock_inodes is xfs_rename which might lock up to
four inodes.
SGI-PV: 981498
SGI-Modid: xfs-linux-melb:xfs-kern:31772a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
xfs_vtoi() is redundant and only unsed in small sections of code.
Replace them with widely used XFS_I() inline and kill xfs_vtoi().
SGI-PV: 981498
SGI-Modid: xfs-linux-melb:xfs-kern:31725a
Signed-off-by: David Chinner <david@fromorbit.com>
Signed-off-by: Niv Sardi <xaiki@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
In several places we directly convert from the XFS inode
to the linux (VFS) inode by a simple deference of ip->i_vnode.
We should not do this - a helper function should be used to
extract the VFS inode from the XFS inode.
Introduce the function VFS_I() to extract the VFS inode
from the XFS inode. The name was chosen to match XFS_I() which
is used to extract the XFS inode from the VFS inode.
SGI-PV: 981498
SGI-Modid: xfs-linux-melb:xfs-kern:31720a
Signed-off-by: David Chinner <david@fromorbit.com>
Signed-off-by: Niv Sardi <xaiki@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
xfs_igrow_start just expands to xfs_zero_eof with two asserts that are
useless in the context of the only caller and some rather confusing
comments.
xfs_igrow_finish is just a few lines of code decorated again with useless
asserts and confusing comments.
Just kill those two and merge them into xfs_setattr.
SGI-PV: 981498
SGI-Modid: xfs-linux-melb:xfs-kern:31186a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
->rename already gets the target inode passed if it exits. Pass it down to
xfs_rename so that we can avoid looking it up again. Also simplify locking
as the first lock section in xfs_rename can go away now: the isdir is an
invariant over the lifetime of the inode, and new_parent and the nlink
check are namespace topology protected by i_mutex in the VFS. The projid
check needs to move into the second lock section anyway to not be racy.
Also kill the now unused xfs_dir_lookup_int and remove the now-unused
first_locked argumet to xfs_lock_inodes.
SGI-PV: 976035
SGI-Modid: xfs-linux-melb:xfs-kern:30903a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
The writer field is not needed for non_DEBU builds so remove it. While
we're at i also clean up the interface for is locked asserts to go through
and xfs_iget.c helper with an interface like the xfs_ilock routines to
isolated the XFS codebase from mrlock internals. That way we can kill
mrlock_t entirely once rw_semaphores grow an islocked facility. Also
remove unused flags to the ilock family of functions.
SGI-PV: 976035
SGI-Modid: xfs-linux-melb:xfs-kern:30902a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Remove the xfs_icluster structure and replace with a radix tree lookup.
We don't need to keep a list of inodes in each cluster around anymore as
we can look them up quickly when we need to. The only time we need to do
this now is during inode writeback.
Factor the inode cluster writeback code out of xfs_iflush and convert it
to use radix_tree_gang_lookup() instead of walking a list of inodes built
when we first read in the inodes.
This remove 3 pointers from each xfs_inode structure and the xfs_icluster
structure per inode cluster. Hence we reduce the cache footprint of the
xfs_inodes by between 5-10% depending on cluster sparseness.
To be truly efficient we need a radix_tree_gang_lookup_range() call to
stop searching once we are past the end of the cluster instead of trying
to find a full cluster's worth of inodes.
Before (ia64):
$ cat /sys/slab/xfs_inode/object_size 536
After:
$ cat /sys/slab/xfs_inode/object_size 512
SGI-PV: 977460
SGI-Modid: xfs-linux-melb:xfs-kern:30502a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
When pdflush is writing back inodes, it can get stuck on inode cluster
buffers that are currently under I/O. This occurs when we write data to
multiple inodes in the same inode cluster at the same time.
Effectively, delayed allocation marks the inode dirty during the data
writeback. Hence if the inode cluster was flushed during the writeback of
the first inode, the writeback of the second inode will block waiting for
the inode cluster write to complete before writing it again for the newly
dirtied inode.
Basically, we want to avoid this from happening so we don't block pdflush
and slow down all of writeback. Hence we introduce a non-blocking async
inode flush flag that pdflush uses. If this flag is set, we use
non-blocking operations (e.g. try locks) whereever we can to avoid
blocking or extra I/O being issued.
SGI-PV: 970925
SGI-Modid: xfs-linux-melb:xfs-kern:30501a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Remove the xfs_refcache, it was only needed while we were still
building for 2.4 kernels.
SGI-PV: 971186
SGI-Modid: xfs-linux-melb:xfs-kern:30472a
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Now that all direct caller of xfs_iaccess are gone we can kill xfs_iaccess
and xfs_access and just use generic_permission with a check_acl callback.
This is required for the per-mount read-only patchset in -mm to work
properly with XFS.
SGI-PV: 971186
SGI-Modid: xfs-linux-melb:xfs-kern:30370a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Currently XFS_IFORK_* and XFS_DFORK* are implemented by means of
XFS_CFORK* macros. But given that XFS_IFORK_* operates on an xfs_inode
that embedds and xfs_icdinode_core and XFS_DFORK_* operates on an
xfs_dinode that embedds a xfs_dinode_core one will have to do endian
swapping while the other doesn't. Instead of having the current mess with
the CFORK macros that have byteswapping and non-byteswapping version
(which are inconsistantly named while we're at it) just define each family
of the macros to stand by itself and simplify the whole matter.
A few direct references to the CFORK variants were cleaned up to use IFORK
or DFORK to make this possible.
SGI-PV: 971186
SGI-Modid: xfs-linux-melb:xfs-kern:30163a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
SGI-PV: 971186
SGI-Modid: xfs-linux-melb:xfs-kern:30098a
Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
The log force added in xfs_iget_core() has been a performance issue since
it was introduced for tight loops that allocate then unlink a single file.
under heavy writeback, this can introduce unnecessary latency due tothe
log I/o getting stuck behind bulk data writes.
Fix this latency problem by avoinding the need for the log force by moving
the place we mark linux inode dirty to the transaction commit rather than
on transaction completion.
This also closes a potential hole in the sync code where a linux inode is
not dirty between the time it is modified and the time the log buffer has
been written to disk.
SGI-PV: 972753
SGI-Modid: xfs-linux-melb:xfs-kern:30007a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Get rid of vnode useage in xfs_iget.c and pass Linux inode / xfs_inode
where apropinquate. And kill some useless helpers while we're at it.
SGI-PV: 971186
SGI-Modid: xfs-linux-melb:xfs-kern:29808a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
xfs_iocore_t is a structure embedded in xfs_inode. Except for one field it
just duplicates fields already in xfs_inode, and there is nothing this
abstraction buys us on XFS/Linux. This patch removes it and shrinks source
and binary size of xfs aswell as shrinking the size of xfs_inode by 60/44
bytes in debug/non-debug builds.
SGI-PV: 970852
SGI-Modid: xfs-linux-melb:xfs-kern:29754a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Simplify vnode tracing calls by embedding function name & return addr in
the calling macro.
Also do a lot of vnode->inode renaming for consistency, while we're at it.
SGI-PV: 970335
SGI-Modid: xfs-linux-melb:xfs-kern:29650a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
All flags are added to xfs_mount's m_flag instead. Note that the 32bit
inode flag was duplicated in both of them, but only cleared in the mount
when it was not nessecary due to the filesystem beeing small enough. Two
flags are still required here - one to indicate the mount option setting,
and one to indicate if it applies or not.
SGI-PV: 969608
SGI-Modid: xfs-linux-melb:xfs-kern:29507a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Now that struct bhv_vnode is empty we can just kill it. Retain bhv_vnode_t
as a typedef for struct inode for the time being until all the fallout is
cleaned up.
SGI-PV: 969608
SGI-Modid: xfs-linux-melb:xfs-kern:29500a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
struct bhv_vnode is on it's way out, so move the trace buffer to the XFS
inode. Note that this makes the tracing macros rather misnamed, but this
kind of fallout will be fixed up incrementally later on.
SGI-PV: 969608
SGI-Modid: xfs-linux-melb:xfs-kern:29498a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
struct bhv_vnode is on it's way out, so move the I/O count to the XFS
inode.
SGI-PV: 969608
SGI-Modid: xfs-linux-melb:xfs-kern:29497a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
All flags previously handled at the vnode level are not in the xfs_inode
where we already have a flags mechanisms and free bits for flags
previously in the vnode.
SGI-PV: 969608
SGI-Modid: xfs-linux-melb:xfs-kern:29495a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
One of the perpetual scaling problems XFS has is indexing it's incore
inodes. We currently uses hashes and the default hash sizes chosen can
only ever be a tradeoff between memory consumption and the maximum
realistic size of the cache.
As a result, anyone who has millions of inodes cached on a filesystem
needs to tunes the size of the cache via the ihashsize mount option to
allow decent scalability with inode cache operations.
A further problem is the separate inode cluster hash, whose size is based
on the ihashsize but is smaller, and so under certain conditions (sparse
cluster cache population) this can become a limitation long before the
inode hash is causing issues.
The following patchset removes the inode hash and cluster hash and
replaces them with radix trees to avoid the scalability limitations of the
hashes. It also reduces the size of the inodes by 3 pointers....
SGI-PV: 969561
SGI-Modid: xfs-linux-melb:xfs-kern:29481a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Biggest bit is duplicating the dinode structure so we have one annotated for
native endianess and one for disk endianess. The other significant change
is that xfs_xlate_dinode_core is split into one helper per direction to
allow for proper annotations, everything else is trivial.
As a sidenode splitting out the incore dinode means we can move it into
xfs_inode.h in a later patch and severely improving on the include hell in
xfs.
SGI-PV: 968563
SGI-Modid: xfs-linux-melb:xfs-kern:29476a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
currently xfs_bmbt_rec_t is used both for ondisk extents as well as
host-endian ones. This patch adds a new xfs_bmbt_rec_host_t for the native
endian ones and cleans up the fallout. There have been various endianess
issues in the tracing / debug printf code that are fixed by this patch.
SGI-PV: 968563
SGI-Modid: xfs-linux-melb:xfs-kern:29318a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
In media spaces, video is often stored in a frame-per-file format. When
dealing with uncompressed realtime HD video streams in this format, it is
crucial that files do not get fragmented and that multiple files a placed
contiguously on disk.
When multiple streams are being ingested and played out at the same time,
it is critical that the filesystem does not cross the streams and
interleave them together as this creates seek and readahead cache miss
latency and prevents both ingest and playout from meeting frame rate
targets.
This patch set creates a "stream of files" concept into the allocator to
place all the data from a single stream contiguously on disk so that RAID
array readahead can be used effectively. Each additional stream gets
placed in different allocation groups within the filesystem, thereby
ensuring that we don't cross any streams. When an AG fills up, we select a
new AG for the stream that is not in use.
The core of the functionality is the stream tracking - each inode that we
create in a directory needs to be associated with the directories' stream.
Hence every time we create a file, we look up the directories' stream
object and associate the new file with that object.
Once we have a stream object for a file, we use the AG that the stream
object point to for allocations. If we can't allocate in that AG (e.g. it
is full) we move the entire stream to another AG. Other inodes in the same
stream are moved to the new AG on their next allocation (i.e. lazy
update).
Stream objects are kept in a cache and hold a reference on the inode.
Hence the inode cannot be reclaimed while there is an outstanding stream
reference. This means that on unlink we need to remove the stream
association and we also need to flush all the associations on certain
events that want to reclaim all unreferenced inodes (e.g. filesystem
freeze).
SGI-PV: 964469
SGI-Modid: xfs-linux-melb:xfs-kern:29096a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Signed-off-by: Vlad Apostolov <vapo@sgi.com>
The problem that has been addressed is that of synchronising updates of
the file size with writes that extend a file. Without the fix the update
of a file's size, as a result of a write beyond eof, is independent of
when the cached data is flushed to disk. Often the file size update would
be written to the filesystem log before the data is flushed to disk. When
a system crashes between these two events and the filesystem log is
replayed on mount the file's size will be set but since the contents never
made it to disk the file is full of holes. If some of the cached data was
flushed to disk then it may just be a section of the file at the end that
has holes.
There are existing fixes to help alleviate this problem, particularly in
the case where a file has been truncated, that force cached data to be
flushed to disk when the file is closed. If the system crashes while the
file(s) are still open then this flushing will never occur.
The fix that we have implemented is to introduce a second file size,
called the in-memory file size, that represents the current file size as
viewed by the user. The existing file size, called the on-disk file size,
is the one that get's written to the filesystem log and we only update it
when it is safe to do so. When we write to a file beyond eof we only
update the in- memory file size in the write operation. Later when the I/O
operation, that flushes the cached data to disk completes, an I/O
completion routine will update the on-disk file size. The on-disk file
size will be updated to the maximum offset of the I/O or to the value of
the in-memory file size if the I/O includes eof.
SGI-PV: 958522
SGI-Modid: xfs-linux-melb:xfs-kern:28322a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
This patch handles error return values in fs_flush_pages and
fs_flushinval_pages. It changes the prototype of fs_flushinval_pages so we
can propogate the errors and handle them at higher layers. I also modified
xfs_itruncate_start so that it could propogate the error further.
SGI-PV: 961990
SGI-Modid: xfs-linux-melb:xfs-kern:28231a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Stewart Smith <stewart@flamingspork.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The previous attempts to fix the linux inode use-after-free in xfs_iunpin
simply made the problem harder to hit. We actually need complete exclusion
between xfs_reclaim and xfs_iunpin, as well as ensuring that the i_flags
are consistent during both of these functions. Introduce a new spinlock
for exclusion and the i_flags, and fix up xfs_iunpin to use igrab before
marking the inode dirty.
SGI-PV: 952967
SGI-Modid: xfs-linux-melb:xfs-kern:26964a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
millions of inodes cached and has sparse cluster population, removing
inodes from the cluster hash consumes excessive amounts of CPU time.
Reduce the CPU cost by making removal O(1) via use of a double linked list
for the hash chains.
SGI-PV: 951551
SGI-Modid: xfs-linux-melb:xfs-kern:25683a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
xfs_bmap_search_multi_extents() wrapper function that I introduced in mod
xfs-linux:xfs-kern:207393a. The function was added as a wrapper around
xfs_bmap_do_search_extents() to avoid breaking the top-of-tree CXFS
interface. The idea of the function was basically to extract the target
extent buffer (if muli- level extent allocation mode), then call
xfs_bmap_do_search_extents() with either a pointer to the first extent in
the target buffer or a pointer to the first extent in the file, depending
on which extent mode was being used. However, in addition to locating the
target extent record for block bno, xfs_bmap_do_search_extents() also sets
four parameters needed by the caller: *lastx, *eofp, *gotp, *prevp.
Passing only the target extent buffer to xfs_bmap_do_search_extents()
causes *eofp to be set incorrectly if the extent is at the end of the
target list but there are actually more extents in the next er_extbuf.
Likewise, if the extent is the first one in the buffer but NOT the first
in the file, *prevp is incorrectly set to NULL. Adding the needed
functionality to xfs_bmap_search_multi_extents() to re-set any incorrectly
set fields is redundant and makes the call to xfs_bmap_do_search_extents()
not make much sense when multi-level extent allocation mode is being used.
This mod basically extracts the two functional components from
xfs_bmap_do_search_extents(), with the intent of obsoleting/removing
xfs_bmap_do_search_extents() after the CXFS mult-level in-core extent
changes are checked in. The two components are: 1) The binary search to
locate the target extent record, and 2) Setting the four parameters needed
by the caller (*lastx, *eofp, *gotp, *prevp). Component 1: I created a
new function in xfs_inode.c called xfs_iext_bno_to_ext(), which executes
the binary search to find the target extent record.
xfs_bmap_search_multi_extents() has been modified to call
xfs_iext_bno_to_ext() rather than xfs_bmap_do_search_extents(). Component
2: The parameter setting functionality has been added to
xfs_bmap_search_multi_extents(), eliminating the need for
xfs_bmap_do_search_extents(). These changes make the removal of
xfs_bmap_do_search_extents() trival once the CXFS changes are in place.
They also allow us to maintain the current XFS interface, using the new
search function introduced in mod xfs-linux:xfs-kern:207393a.
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207866a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
functionality, building upon the new layout introduced in mod
xfs-linux:xfs-kern:207390a. The new multi-level extent allocations are
only required for heavily fragmented files, so the old-style linear extent
list is used on files until the extents reach a pre-determined size of 4k.
4k buffers are used because this is the system page size on Linux i386 and
systems with larger page sizes don't seem to gain much, if anything, by
using their native page size as the extent buffer size. Also, using 4k
extent buffers everywhere provides a consistent interface for CXFS across
different platforms. The 4k extent buffers are managed by an indirection
array (xfs_ext_irec_t) which is basically just a pointer array with a bit
of extra information to keep track of the number of extents in each buffer
as well as the extent offset of each buffer. Major changes include: -
Add multi-level in-core file extent functionality to the xfs_iext_
subroutines introduced in mod: xfs-linux:xfs-kern:207390a - Introduce 13
new subroutines which add functionality for multi-level in-core file
extents: xfs_iext_add_indirect_multi()
xfs_iext_remove_indirect() xfs_iext_realloc_indirect()
xfs_iext_indirect_to_direct() xfs_iext_bno_to_irec()
xfs_iext_idx_to_irec() xfs_iext_irec_init()
xfs_iext_irec_new() xfs_iext_irec_remove()
xfs_iext_irec_compact() xfs_iext_irec_compact_pages()
xfs_iext_irec_compact_full() xfs_iext_irec_update_extoffs()
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207393a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
code to prepare for an upcoming mod which will introduce multi-level
in-core extent allocations. Although the in-core extent management is
using a new code path in this mod, the functionality remains the same.
Major changes include: - Introduce 10 new subroutines which re-orgainze
the existing code but do NOT change functionality:
xfs_iext_get_ext() xfs_iext_insert() xfs_iext_add()
xfs_iext_remove() xfs_iext_remove_inline()
xfs_iext_remove_direct() xfs_iext_realloc_direct()
xfs_iext_direct_to_inline() xfs_iext_inline_to_direct()
xfs_iext_destroy() - Remove 2 subroutines (functionality moved to new
subroutines above): xfs_iext_realloc() -replaced by xfs_iext_add()
and xfs_iext_remove() xfs_bmap_insert_exlist() - replaced by
xfs_iext_insert() xfs_bmap_delete_exlist() - replaced by
xfs_iext_remove() - Replace all hard-coded (indexed) extent assignments
with a call to xfs_iext_get_ext() - Replace all extent record pointer
arithmetic (ep++, ep--, base + lastx,..) with calls to
xfs_iext_get_ext() - Update comments to remove the idea of a single
"extent list" and introduce "extent record" terminology instead
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207390a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
updates and only sync back to the xfs inode when nessecary
SGI-PV: 946679
SGI-Modid: xfs-linux-melb:xfs-kern:203362a
Signed-off-by: Christoph Hellwig <hch@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>