Commit graph

10 commits

Author SHA1 Message Date
David Howells
a6f76f23d2 CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.

This patch and the preceding patches have been tested with the LTP SELinux
testsuite.

This patch makes several logical sets of alteration:

 (1) execve().

     The credential bits from struct linux_binprm are, for the most part,
     replaced with a single credentials pointer (bprm->cred).  This means that
     all the creds can be calculated in advance and then applied at the point
     of no return with no possibility of failure.

     I would like to replace bprm->cap_effective with:

	cap_isclear(bprm->cap_effective)

     but this seems impossible due to special behaviour for processes of pid 1
     (they always retain their parent's capability masks where normally they'd
     be changed - see cap_bprm_set_creds()).

     The following sequence of events now happens:

     (a) At the start of do_execve, the current task's cred_exec_mutex is
     	 locked to prevent PTRACE_ATTACH from obsoleting the calculation of
     	 creds that we make.

     (a) prepare_exec_creds() is then called to make a copy of the current
     	 task's credentials and prepare it.  This copy is then assigned to
     	 bprm->cred.

  	 This renders security_bprm_alloc() and security_bprm_free()
     	 unnecessary, and so they've been removed.

     (b) The determination of unsafe execution is now performed immediately
     	 after (a) rather than later on in the code.  The result is stored in
     	 bprm->unsafe for future reference.

     (c) prepare_binprm() is called, possibly multiple times.

     	 (i) This applies the result of set[ug]id binaries to the new creds
     	     attached to bprm->cred.  Personality bit clearance is recorded,
     	     but now deferred on the basis that the exec procedure may yet
     	     fail.

         (ii) This then calls the new security_bprm_set_creds().  This should
	     calculate the new LSM and capability credentials into *bprm->cred.

	     This folds together security_bprm_set() and parts of
	     security_bprm_apply_creds() (these two have been removed).
	     Anything that might fail must be done at this point.

         (iii) bprm->cred_prepared is set to 1.

	     bprm->cred_prepared is 0 on the first pass of the security
	     calculations, and 1 on all subsequent passes.  This allows SELinux
	     in (ii) to base its calculations only on the initial script and
	     not on the interpreter.

     (d) flush_old_exec() is called to commit the task to execution.  This
     	 performs the following steps with regard to credentials:

	 (i) Clear pdeath_signal and set dumpable on certain circumstances that
	     may not be covered by commit_creds().

         (ii) Clear any bits in current->personality that were deferred from
             (c.i).

     (e) install_exec_creds() [compute_creds() as was] is called to install the
     	 new credentials.  This performs the following steps with regard to
     	 credentials:

         (i) Calls security_bprm_committing_creds() to apply any security
             requirements, such as flushing unauthorised files in SELinux, that
             must be done before the credentials are changed.

	     This is made up of bits of security_bprm_apply_creds() and
	     security_bprm_post_apply_creds(), both of which have been removed.
	     This function is not allowed to fail; anything that might fail
	     must have been done in (c.ii).

         (ii) Calls commit_creds() to apply the new credentials in a single
             assignment (more or less).  Possibly pdeath_signal and dumpable
             should be part of struct creds.

	 (iii) Unlocks the task's cred_replace_mutex, thus allowing
	     PTRACE_ATTACH to take place.

         (iv) Clears The bprm->cred pointer as the credentials it was holding
             are now immutable.

         (v) Calls security_bprm_committed_creds() to apply any security
             alterations that must be done after the creds have been changed.
             SELinux uses this to flush signals and signal handlers.

     (f) If an error occurs before (d.i), bprm_free() will call abort_creds()
     	 to destroy the proposed new credentials and will then unlock
     	 cred_replace_mutex.  No changes to the credentials will have been
     	 made.

 (2) LSM interface.

     A number of functions have been changed, added or removed:

     (*) security_bprm_alloc(), ->bprm_alloc_security()
     (*) security_bprm_free(), ->bprm_free_security()

     	 Removed in favour of preparing new credentials and modifying those.

     (*) security_bprm_apply_creds(), ->bprm_apply_creds()
     (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()

     	 Removed; split between security_bprm_set_creds(),
     	 security_bprm_committing_creds() and security_bprm_committed_creds().

     (*) security_bprm_set(), ->bprm_set_security()

     	 Removed; folded into security_bprm_set_creds().

     (*) security_bprm_set_creds(), ->bprm_set_creds()

     	 New.  The new credentials in bprm->creds should be checked and set up
     	 as appropriate.  bprm->cred_prepared is 0 on the first call, 1 on the
     	 second and subsequent calls.

     (*) security_bprm_committing_creds(), ->bprm_committing_creds()
     (*) security_bprm_committed_creds(), ->bprm_committed_creds()

     	 New.  Apply the security effects of the new credentials.  This
     	 includes closing unauthorised files in SELinux.  This function may not
     	 fail.  When the former is called, the creds haven't yet been applied
     	 to the process; when the latter is called, they have.

 	 The former may access bprm->cred, the latter may not.

 (3) SELinux.

     SELinux has a number of changes, in addition to those to support the LSM
     interface changes mentioned above:

     (a) The bprm_security_struct struct has been removed in favour of using
     	 the credentials-under-construction approach.

     (c) flush_unauthorized_files() now takes a cred pointer and passes it on
     	 to inode_has_perm(), file_has_perm() and dentry_open().

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:24 +11:00
Jeremy Fitzhardinge
b6edbb1e04 x86_64: use save/loadsegment in ia32 compat
Use savesegment and loadsegment consistently in ia32 compat code.

Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-20 12:33:03 +02:00
Roland McGrath
6341c393fc tracehook: exec
This moves all the ptrace hooks related to exec into tracehook.h inlines.

This also lifts the calls for tracing out of the binfmt load_binary hooks
into search_binary_handler() after it calls into the binfmt module.  This
change has no effect, since all the binfmt modules' load_binary functions
did the call at the end on success, and now search_binary_handler() does
it immediately after return if successful.  We consolidate the repeated
code, and binfmt modules no longer need to import ptrace_notify().

Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:08 -07:00
H. Peter Anvin
6e16d89bcd Sanitize the type of struct user.u_ar0
struct user.u_ar0 is defined to contain a pointer offset on all
architectures in which it is defined (all architectures which define an
a.out format except SPARC.) However, it has a pointer type in the headers,
which is pointless -- <asm/user.h> is not exported to userspace, and it
just makes the code messy.

Redefine the field as "unsigned long" (which is the same size as a pointer
on all Linux architectures) and change the setting code to user offsetof()
instead of hand-coded arithmetic.

Cc: Linux Arch Mailing List <linux-arch@vger.kernel.org>
Cc: Bryan Wu <bryan.wu@analog.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Lennert Buytenhek <kernel@wantstofly.org>
Cc: Håvard Skinnemoen <hskinnemoen@atmel.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:30 -08:00
Julia Lawall
e5fc316196 arch/x86/ia32: use time_before, time_before_eq, etc.
The functions time_before, time_before_eq, time_after, and time_after_eq
are more robust for comparing jiffies against other values.

A simplified version of the semantic patch making this change is as follows:
(http://www.emn.fr/x-info/coccinelle/)

// <smpl>
@ change_compare_np @
expression E;
@@

(
- jiffies <= E
+ time_before_eq(jiffies,E)
|
- jiffies >= E
+ time_after_eq(jiffies,E)
|
- jiffies < E
+ time_before(jiffies,E)
|
- jiffies > E
+ time_after(jiffies,E)
)

@ include depends on change_compare_np @
@@

#include <linux/jiffies.h>

@ no_include depends on !include && change_compare_np @
@@

  #include <linux/...>
+ #include <linux/jiffies.h>
// </smpl>

[ mingo@elte.hu: merge to x86.git ]

Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 13:32:17 +01:00
H. Peter Anvin
65ea5b0349 x86: rename the struct pt_regs members for 32/64-bit consistency
We have a lot of code which differs only by the naming of specific
members of structures that contain registers.  In order to enable
additional unifications, this patch drops the e- or r- size prefix
from the register names in struct pt_regs, and drops the x- prefixes
for segment registers on the 32-bit side.

This patch also performs the equivalent renames in some additional
places that might be candidates for unification in the future.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 13:30:56 +01:00
Thomas Gleixner
8edf8bee88 x86: clean up arch/x86/ia32/aout32.c
White space and coding style clenaup.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-30 13:30:07 +01:00
Andi Kleen
f891dd18c1 x86: initialize 64bit registers for a.out executables
Previously the data from before the exec was kept in there. Zero
them instead.

[ tglx: arch/x86 adaptation ]

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-17 20:15:30 +02:00
Neil Horman
7dc0b22e3c core_pattern: ignore RLIMIT_CORE if core_pattern is a pipe
For some time /proc/sys/kernel/core_pattern has been able to set its output
destination as a pipe, allowing a user space helper to receive and
intellegently process a core.  This infrastructure however has some
shortcommings which can be enhanced.  Specifically:

1) The coredump code in the kernel should ignore RLIMIT_CORE limitation
   when core_pattern is a pipe, since file system resources are not being
   consumed in this case, unless the user application wishes to save the core,
   at which point the app is restricted by usual file system limits and
   restrictions.

2) The core_pattern code should be able to parse and pass options to the
   user space helper as an argv array.  The real core limit of the uid of the
   crashing proces should also be passable to the user space helper (since it
   is overridden to zero when called).

3) Some miscellaneous bugs need to be cleaned up (specifically the
   recognition of a recursive core dump, should the user mode helper itself
   crash.  Also, the core dump code in the kernel should not wait for the user
   mode helper to exit, since the same context is responsible for writing to
   the pipe, and a read of the pipe by the user mode helper will result in a
   deadlock.

This patch:

Remove the check of RLIMIT_CORE if core_pattern is a pipe.  In the event that
core_pattern is a pipe, the entire core will be fed to the user mode helper.

Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Cc: <martin.pitt@ubuntu.com>
Cc: <wwoods@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:50 -07:00
Thomas Gleixner
2db55d344e x86_64: move ia32
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-11 11:17:21 +02:00
Renamed from arch/x86_64/ia32/ia32_aout.c (Browse further)