commit 518a86713078168acd67cf50bc0b45d54b4cce6c upstream.
The "mode" and "level" variables are enums and in this context GCC will
treat them as unsigned ints so the error handling is never triggered.
I also removed the bogus initializer because it isn't required any more
and it's sort of confusing.
[akpm@linux-foundation.org: reduce implicit and explicit typecasting]
[akpm@linux-foundation.org: fix return value, add comment, per Matthew]
Link: http://lkml.kernel.org/r/20190925110449.GO3264@mwanda
Fixes: 3cadfa2b94 ("mm/vmpressure.c: convert to use match_string() helper")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Enrico Weigelt <info@metux.net>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The new helper returns index of the matching string in an array. We are
going to use it here.
Link: http://lkml.kernel.org/r/20180503203206.44046-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using kstrndup() simplifies the code.
Link: http://lkml.kernel.org/r/20180503201807.24941-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By default, vmpressure events are not pass-through, i.e. they propagate
up through the memcg hierarchy until an event notifier is found for any
threshold level.
This presents a difficulty when a thread waiting on a read(2) for a
vmpressure event cannot distinguish between local memory pressure and
memory pressure in a descendant memcg, especially when that thread may
not control the memcg hierarchy.
Consider a user-controlled child memcg with a smaller limit than a
top-level memcg controlled by the "Activity Manager" specified in
Documentation/cgroup-v1/memory.txt. It may register for memory pressure
notification for descendant memcgs to make a policy decision: oom kill a
low priority job, increase the limit, decrease other limits, etc. If it
registers for memory pressure notification on the top-level memcg, it
currently cannot distinguish between memory pressure in its own memcg or
a descendant memcg, which is user-controlled.
Conversely, if a user registers for memory pressure notification on
their own descendant memcg, the Activity Manager does not receive any
pressure notification for that child memcg hierarchy. Vmpressure events
are not received for ancestor memcgs if the memcg experiencing pressure
have notifiers registered, perhaps outside the knowledge of the thread
waiting on read(2) at the top level.
Both of these are consequences of vmpressure notification not being
pass-through.
This implements a pass-through behavior for vmpressure events. When
writing to control.event_control, vmpressure event handlers may
optionally specify a mode. There are two new modes:
- "hierarchy": always propagate memory pressure events up the hierarchy
regardless if descendant memcgs have their own notifiers registered,
and
- "local": only receive notifications when the memcg for which the
event is registered experiences memory pressure.
Of course, processes may register for one notification of "low,local",
for example, and another for "low".
If no mode is specified, the current behavior is maintained for
backwards compatibility.
See the change to Documentation/cgroup-v1/memory.txt for full
specification.
[dan.carpenter@oracle.com: free the same pointer we allocated]
Link: http://lkml.kernel.org/r/20170613191820.GA20003@elgon.mountain
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1705311421320.8946@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Anton Vorontsov <anton@enomsg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit e1587a4945 ("mm: vmpressure: fix sending wrong events on
underflow") declared that reclaimed pages exceed the scanned pages due
to the thp reclaim.
That is incorrect because THP will be spilt to normal page and loop
again, which will result in the scanned pages increment.
[akpm@linux-foundation.org: tweak comment text]
Link: http://lkml.kernel.org/r/1496824266-25235-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhongjiang <zhongjiang@huawei.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At the end of a window period, if the reclaimed pages is greater than
scanned, an unsigned underflow can result in a huge pressure value and
thus a critical event. Reclaimed pages is found to go higher than
scanned because of the addition of reclaimed slab pages to reclaimed in
shrink_node without a corresponding increment to scanned pages.
Minchan Kim mentioned that this can also happen in the case of a THP
page where the scanned is 1 and reclaimed could be 512.
Link: http://lkml.kernel.org/r/1486641577-11685-1-git-send-email-vinmenon@codeaurora.org
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Anton Vorontsov <anton.vorontsov@linaro.org>
Cc: Shiraz Hashim <shashim@codeaurora.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When vmpressure is called for the entire subtree under pressure we
mistakenly use vmpressure->scanned instead of vmpressure->tree_scanned
when checking if vmpressure work is to be scheduled. This results in
suppressing all vmpressure events in the legacy cgroup hierarchy. Fix it.
Fixes: 8e8ae64524 ("mm: memcontrol: hook up vmpressure to socket pressure")
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A CONFIG_MEMCG=y kernel booted with "cgroup_disable=memory" crashes on a
NULL memcg (but non-NULL root_mem_cgroup) when vmpressure kicks in.
Here's the patch I use to avoid that, but you might prefer a test on
mem_cgroup_disabled() somewhere.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let the networking stack know when a memcg is under reclaim pressure so
that it can clamp its transmit windows accordingly.
Whenever the reclaim efficiency of a cgroup's LRU lists drops low enough
for a MEDIUM or HIGH vmpressure event to occur, assert a pressure state
in the socket and tcp memory code that tells it to curb consumption
growth from sockets associated with said control group.
Traditionally, vmpressure reports for the entire subtree of a memcg
under pressure, which drops useful information on the individual groups
reclaimed. However, it's too late to change the userinterface, so add a
second reporting mode that reports on the level of reclaim instead of at
the level of pressure, and use that report for sockets.
vmpressure events are naturally edge triggered, so for hysteresis assert
socket pressure for a second to allow for subsequent vmpressure events
to occur before letting the socket code return to normal.
This will likely need finetuning for a wider variety of workloads, but
for now stick to the vmpressure presets and keep hysteresis simple.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some android devices, there will be a "divide by zero" exception.
vmpr->scanned could be zero before spin_lock(&vmpr->sr_lock).
Addresses https://bugzilla.kernel.org/show_bug.cgi?id=88051
[akpm@linux-foundation.org: neaten]
Reported-by: ji_ang <ji_ang@163.com>
Cc: Anton Vorontsov <anton.vorontsov@linaro.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
arch/arm/mach-tegra/pm.c, kernel/power/console.c and mm/vmpressure.c
were somehow getting slab.h indirectly through cgroup.h which in turn
was getting it indirectly through xattr.h. A scheduled cgroup change
drops xattr.h inclusion from cgroup.h and breaks compilation of these
three files. Add explicit slab.h includes to the three files.
A pending cgroup patch depends on this change and it'd be great if
this can be routed through cgroup/for-3.14-fixes branch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Stephen Warren <swarren@wwwdotorg.org>
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: linux-tegra@vger.kernel.org
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: cgroups@vger.kernel.org
cgroup_event is now memcg specific. Replace cgroup_event->css with
->memcg and convert [un]register_event() callbacks to take mem_cgroup
pointer instead of cgroup_subsys_state one. This simplifies the code
slightly and makes css_to_vmpressure() unnecessary which is removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
The only use of cgroup_event->cft is distinguishing "usage_in_bytes"
and "memsw.usgae_in_bytes" for mem_cgroup_usage_[un]register_event(),
which can be done by adding an explicit argument to the function and
implementing two wrappers so that the two cases can be distinguished
from the function alone.
Remove cgroup_event->cft and the related code including
[un]register_events() methods.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Pull cgroup updates from Tejun Heo:
"A lot of activities on the cgroup front. Most changes aren't visible
to userland at all at this point and are laying foundation for the
planned unified hierarchy.
- The biggest change is decoupling the lifetime management of css
(cgroup_subsys_state) from that of cgroup's. Because controllers
(cpu, memory, block and so on) will need to be dynamically enabled
and disabled, css which is the association point between a cgroup
and a controller may come and go dynamically across the lifetime of
a cgroup. Till now, css's were created when the associated cgroup
was created and stayed till the cgroup got destroyed.
Assumptions around this tight coupling permeated through cgroup
core and controllers. These assumptions are gradually removed,
which consists bulk of patches, and css destruction path is
completely decoupled from cgroup destruction path. Note that
decoupling of creation path is relatively easy on top of these
changes and the patchset is pending for the next window.
- cgroup has its own event mechanism cgroup.event_control, which is
only used by memcg. It is overly complex trying to achieve high
flexibility whose benefits seem dubious at best. Going forward,
new events will simply generate file modified event and the
existing mechanism is being made specific to memcg. This pull
request contains prepatory patches for such change.
- Various fixes and cleanups"
Fixed up conflict in kernel/cgroup.c as per Tejun.
* 'for-3.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (69 commits)
cgroup: fix cgroup_css() invocation in css_from_id()
cgroup: make cgroup_write_event_control() use css_from_dir() instead of __d_cgrp()
cgroup: make cgroup_event hold onto cgroup_subsys_state instead of cgroup
cgroup: implement CFTYPE_NO_PREFIX
cgroup: make cgroup_css() take cgroup_subsys * instead and allow NULL subsys
cgroup: rename cgroup_css_from_dir() to css_from_dir() and update its syntax
cgroup: fix cgroup_write_event_control()
cgroup: fix subsystem file accesses on the root cgroup
cgroup: change cgroup_from_id() to css_from_id()
cgroup: use css_get() in cgroup_create() to check CSS_ROOT
cpuset: remove an unncessary forward declaration
cgroup: RCU protect each cgroup_subsys_state release
cgroup: move subsys file removal to kill_css()
cgroup: factor out kill_css()
cgroup: decouple cgroup_subsys_state destruction from cgroup destruction
cgroup: replace cgroup->css_kill_cnt with ->nr_css
cgroup: bounce cgroup_subsys_state ref kill confirmation to a work item
cgroup: move cgroup->subsys[] assignment to online_css()
cgroup: reorganize css init / exit paths
cgroup: add __rcu modifier to cgroup->subsys[]
...
cgroup is in the process of converting to css (cgroup_subsys_state)
from cgroup as the principal subsystem interface handle. This is
mostly to prepare for the unified hierarchy support where css's will
be created and destroyed dynamically but also helps cleaning up
subsystem implementations as css is usually what they are interested
in anyway.
cftype->[un]register_event() is among the remaining couple interfaces
which still use struct cgroup. Convert it to cgroup_subsys_state.
The conversion is mostly mechanical and removes the last users of
mem_cgroup_from_cont() and cg_to_vmpressure(), which are removed.
v2: indentation update as suggested by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
cgroup is currently in the process of transitioning to using struct
cgroup_subsys_state * as the primary handle instead of struct cgroup.
Please see the previous commit which converts the subsystem methods
for rationale.
This patch converts all cftype file operations to take @css instead of
@cgroup. cftypes for the cgroup core files don't have their subsytem
pointer set. These will automatically use the dummy_css added by the
previous patch and can be converted the same way.
Most subsystem conversions are straight forwards but there are some
interesting ones.
* freezer: update_if_frozen() is also converted to take @css instead
of @cgroup for consistency. This will make the code look simpler
too once iterators are converted to use css.
* memory/vmpressure: mem_cgroup_from_css() needs to be exported to
vmpressure while mem_cgroup_from_cont() can be made static.
Updated accordingly.
* cpu: cgroup_tg() doesn't have any user left. Removed.
* cpuacct: cgroup_ca() doesn't have any user left. Removed.
* hugetlb: hugetlb_cgroup_form_cgroup() doesn't have any user left.
Removed.
* net_cls: cgrp_cls_state() doesn't have any user left. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Steven Rostedt <rostedt@goodmis.org>
The names of the two struct cgroup_subsys_state accessors -
cgroup_subsys_state() and task_subsys_state() - are somewhat awkward.
The former clashes with the type name and the latter doesn't even
indicate it's somehow related to cgroup.
We're about to revamp large portion of cgroup API, so, let's rename
them so that they're less awkward. Most per-controller usages of the
accessors are localized in accessor wrappers and given the amount of
scheduled changes, this isn't gonna add any noticeable headache.
Rename cgroup_subsys_state() to cgroup_css() and task_subsys_state()
to task_css(). This patch is pure rename.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
vmpressure is called synchronously from reclaim where the target_memcg
is guaranteed to be alive but the eventfd is signaled from the work
queue context. This means that memcg (along with vmpressure structure
which is embedded into it) might go away while the work item is pending
which would result in use-after-release bug.
We have two possible ways how to fix this. Either vmpressure pins memcg
before it schedules vmpr->work and unpin it in vmpressure_work_fn or
explicitely flush the work item from the css_offline context (as
suggested by Tejun).
This patch implements the later one and it introduces vmpressure_cleanup
which flushes the vmpressure work queue item item. It hooks into
mem_cgroup_css_offline after the memcg itself is cleaned up.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Tejun Heo <tj@kernel.org>
Cc: Anton Vorontsov <anton.vorontsov@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Li Zefan <lizefan@huawei.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
because it is racy and it doesn't give us much anyway as schedule_work
handles this case already.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Tejun Heo <tj@kernel.org>
Cc: Anton Vorontsov <anton.vorontsov@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Li Zefan <lizefan@huawei.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is nothing that can sleep inside critical sections protected by
this lock and those sections are really small so there doesn't make much
sense to use mutex for them. Change the log to a spinlock
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Tejun Heo <tj@kernel.org>
Cc: Anton Vorontsov <anton.vorontsov@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Li Zefan <lizefan@huawei.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With this patch userland applications that want to maintain the
interactivity/memory allocation cost can use the pressure level
notifications. The levels are defined like this:
The "low" level means that the system is reclaiming memory for new
allocations. Monitoring this reclaiming activity might be useful for
maintaining cache level. Upon notification, the program (typically
"Activity Manager") might analyze vmstat and act in advance (i.e.
prematurely shutdown unimportant services).
The "medium" level means that the system is experiencing medium memory
pressure, the system might be making swap, paging out active file
caches, etc. Upon this event applications may decide to further analyze
vmstat/zoneinfo/memcg or internal memory usage statistics and free any
resources that can be easily reconstructed or re-read from a disk.
The "critical" level means that the system is actively thrashing, it is
about to out of memory (OOM) or even the in-kernel OOM killer is on its
way to trigger. Applications should do whatever they can to help the
system. It might be too late to consult with vmstat or any other
statistics, so it's advisable to take an immediate action.
The events are propagated upward until the event is handled, i.e. the
events are not pass-through. Here is what this means: for example you
have three cgroups: A->B->C. Now you set up an event listener on
cgroups A, B and C, and suppose group C experiences some pressure. In
this situation, only group C will receive the notification, i.e. groups
A and B will not receive it. This is done to avoid excessive
"broadcasting" of messages, which disturbs the system and which is
especially bad if we are low on memory or thrashing. So, organize the
cgroups wisely, or propagate the events manually (or, ask us to
implement the pass-through events, explaining why would you need them.)
Performance wise, the memory pressure notifications feature itself is
lightweight and does not require much of bookkeeping, in contrast to the
rest of memcg features. Unfortunately, as of current memcg
implementation, pages accounting is an inseparable part and cannot be
turned off. The good news is that there are some efforts[1] to improve
the situation; plus, implementing the same, fully API-compatible[2]
interface for CONFIG_MEMCG=n case (e.g. embedded) is also a viable
option, so it will not require any changes on the userland side.
[1] http://permalink.gmane.org/gmane.linux.kernel.cgroups/6291
[2] http://lkml.org/lkml/2013/2/21/454
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix CONFIG_CGROPUPS=n warnings]
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Leonid Moiseichuk <leonid.moiseichuk@nokia.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>