Commit graph

882 commits

Author SHA1 Message Date
Andrii Nakryiko
634d42cadc bpf: Fix map leak in HASH_OF_MAPS map
[ Upstream commit 1d4e1eab456e1ee92a94987499b211db05f900ea ]

Fix HASH_OF_MAPS bug of not putting inner map pointer on bpf_map_elem_update()
operation. This is due to per-cpu extra_elems optimization, which bypassed
free_htab_elem() logic doing proper clean ups. Make sure that inner map is put
properly in optimized case as well.

Fixes: 8c290e60fa ("bpf: fix hashmap extra_elems logic")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200729040913.2815687-1-andriin@fb.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-08-05 10:06:03 +02:00
Kees Cook
b80e052c3a bpf: Check correct cred for CAP_SYSLOG in bpf_dump_raw_ok()
commit 63960260457a02af2a6cb35d75e6bdb17299c882 upstream.

When evaluating access control over kallsyms visibility, credentials at
open() time need to be used, not the "current" creds (though in BPF's
case, this has likely always been the same). Plumb access to associated
file->f_cred down through bpf_dump_raw_ok() and its callers now that
kallsysm_show_value() has been refactored to take struct cred.

Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: bpf@vger.kernel.org
Cc: stable@vger.kernel.org
Fixes: 7105e828c0 ("bpf: allow for correlation of maps and helpers in dump")
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-07-16 08:17:27 +02:00
Toke Høiland-Jørgensen
1fc9f6c1b5 cpumap: Avoid warning when CONFIG_DEBUG_PER_CPU_MAPS is enabled
commit bc23d0e3f717ced21fbfacab3ab887d55e5ba367 upstream.

When the kernel is built with CONFIG_DEBUG_PER_CPU_MAPS, the cpumap code
can trigger a spurious warning if CONFIG_CPUMASK_OFFSTACK is also set. This
happens because in this configuration, NR_CPUS can be larger than
nr_cpumask_bits, so the initial check in cpu_map_alloc() is not sufficient
to guard against hitting the warning in cpumask_check().

Fix this by explicitly checking the supplied key against the
nr_cpumask_bits variable before calling cpu_possible().

Fixes: 6710e11269 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Reported-by: Xiumei Mu <xmu@redhat.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Xiumei Mu <xmu@redhat.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200416083120.453718-1-toke@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-05-02 17:25:53 +02:00
Daniel Borkmann
e0b80b7d64 bpf: fix buggy r0 retval refinement for tracing helpers
[ no upstream commit ]

See the glory details in 100605035e15 ("bpf: Verifier, do_refine_retval_range
may clamp umin to 0 incorrectly") for why 849fa50662 ("bpf/verifier: refine
retval R0 state for bpf_get_stack helper") is buggy. The whole series however
is not suitable for stable since it adds significant amount [0] of verifier
complexity in order to add 32bit subreg tracking. Something simpler is needed.

Unfortunately, reverting 849fa50662 ("bpf/verifier: refine retval R0 state
for bpf_get_stack helper") or just cherry-picking 100605035e15 ("bpf: Verifier,
do_refine_retval_range may clamp umin to 0 incorrectly") is not an option since
it will break existing tracing programs badly (at least those that are using
bpf_get_stack() and bpf_probe_read_str() helpers). Not fixing it in stable is
also not an option since on 4.19 kernels an error will cause a soft-lockup due
to hitting dead-code sanitized branch since we don't hard-wire such branches
in old kernels yet. But even then for 5.x 849fa50662 ("bpf/verifier: refine
retval R0 state for bpf_get_stack helper") would cause wrong bounds on the
verifier simluation when an error is hit.

In one of the earlier iterations of mentioned patch series for upstream there
was the concern that just using smax_value in do_refine_retval_range() would
nuke bounds by subsequent <<32 >>32 shifts before the comparison against 0 [1]
which eventually led to the 32bit subreg tracking in the first place. While I
initially went for implementing the idea [1] to pattern match the two shift
operations, it turned out to be more complex than actually needed, meaning, we
could simply treat do_refine_retval_range() similarly to how we branch off
verification for conditionals or under speculation, that is, pushing a new
reg state to the stack for later verification. This means, instead of verifying
the current path with the ret_reg in [S32MIN, msize_max_value] interval where
later bounds would get nuked, we split this into two: i) for the success case
where ret_reg can be in [0, msize_max_value], and ii) for the error case with
ret_reg known to be in interval [S32MIN, -1]. Latter will preserve the bounds
during these shift patterns and can match reg < 0 test. test_progs also succeed
with this approach.

  [0] https://lore.kernel.org/bpf/158507130343.15666.8018068546764556975.stgit@john-Precision-5820-Tower/
  [1] https://lore.kernel.org/bpf/158015334199.28573.4940395881683556537.stgit@john-XPS-13-9370/T/#m2e0ad1d5949131014748b6daa48a3495e7f0456d

Fixes: 849fa50662 ("bpf/verifier: refine retval R0 state for bpf_get_stack helper")
Reported-by: Lorenzo Fontana <fontanalorenz@gmail.com>
Reported-by: Leonardo Di Donato <leodidonato@gmail.com>
Reported-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Tested-by: John Fastabend <john.fastabend@gmail.com>
Tested-by: Lorenzo Fontana <fontanalorenz@gmail.com>
Tested-by: Leonardo Di Donato <leodidonato@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-23 10:30:24 +02:00
Greg Kroah-Hartman
638d8c748e bpf: Explicitly memset some bpf info structures declared on the stack
commit 5c6f25887963f15492b604dd25cb149c501bbabf upstream.

Trying to initialize a structure with "= {};" will not always clean out
all padding locations in a structure. So be explicit and call memset to
initialize everything for a number of bpf information structures that
are then copied from userspace, sometimes from smaller memory locations
than the size of the structure.

Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200320162258.GA794295@kroah.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-02 15:28:23 +02:00
Greg Kroah-Hartman
aca6a9b098 bpf: Explicitly memset the bpf_attr structure
commit 8096f229421f7b22433775e928d506f0342e5907 upstream.

For the bpf syscall, we are relying on the compiler to properly zero out
the bpf_attr union that we copy userspace data into. Unfortunately that
doesn't always work properly, padding and other oddities might not be
correctly zeroed, and in some tests odd things have been found when the
stack is pre-initialized to other values.

Fix this by explicitly memsetting the structure to 0 before using it.

Reported-by: Maciej Żenczykowski <maze@google.com>
Reported-by: John Stultz <john.stultz@linaro.org>
Reported-by: Alexander Potapenko <glider@google.com>
Reported-by: Alistair Delva <adelva@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://android-review.googlesource.com/c/kernel/common/+/1235490
Link: https://lore.kernel.org/bpf/20200320094813.GA421650@kroah.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-02 15:28:23 +02:00
Yoshiki Komachi
fb957d1003 bpf/btf: Fix BTF verification of enum members in struct/union
commit da6c7faeb103c493e505e87643272f70be586635 upstream.

btf_enum_check_member() was currently sure to recognize the size of
"enum" type members in struct/union as the size of "int" even if
its size was packed.

This patch fixes BTF enum verification to use the correct size
of member in BPF programs.

Fixes: 179cde8cef ("bpf: btf: Check members of struct/union")
Signed-off-by: Yoshiki Komachi <komachi.yoshiki@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/1583825550-18606-2-git-send-email-komachi.yoshiki@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-02 15:28:19 +02:00
Johannes Krude
bf3043d277 bpf, offload: Replace bitwise AND by logical AND in bpf_prog_offload_info_fill
commit e20d3a055a457a10a4c748ce5b7c2ed3173a1324 upstream.

This if guards whether user-space wants a copy of the offload-jited
bytecode and whether this bytecode exists. By erroneously doing a bitwise
AND instead of a logical AND on user- and kernel-space buffer-size can lead
to no data being copied to user-space especially when user-space size is a
power of two and bigger then the kernel-space buffer.

Fixes: fcfb126def ("bpf: add new jited info fields in bpf_dev_offload and bpf_prog_info")
Signed-off-by: Johannes Krude <johannes@krude.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/bpf/20200212193227.GA3769@phlox.h.transitiv.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-28 16:38:59 +01:00
Vasily Averin
ca2b459365 bpf: map_seq_next should always increase position index
[ Upstream commit 90435a7891a2259b0f74c5a1bc5600d0d64cba8f ]

If seq_file .next fuction does not change position index,
read after some lseek can generate an unexpected output.

See also: https://bugzilla.kernel.org/show_bug.cgi?id=206283

v1 -> v2: removed missed increment in end of function

Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/eca84fdd-c374-a154-d874-6c7b55fc3bc4@virtuozzo.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-02-24 08:34:51 +01:00
Dan Carpenter
4622676d8f bpf, offload: Unlock on error in bpf_offload_dev_create()
[ Upstream commit d0fbb51dfaa612f960519b798387be436e8f83c5 ]

We need to drop the bpf_devs_lock on error before returning.

Fixes: 9fd7c55591 ("bpf: offload: aggregate offloads per-device")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Link: https://lore.kernel.org/bpf/20191104091536.GB31509@mwanda
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-27 14:51:20 +01:00
Andrey Ignatov
462c72919b bpf: Add missed newline in verifier verbose log
[ Upstream commit 1fbd20f8b77b366ea4aeb92ade72daa7f36a7e3b ]

check_stack_access() that prints verbose log is used in
adjust_ptr_min_max_vals() that prints its own verbose log and now they
stick together, e.g.:

  variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16
  size=1R2 stack pointer arithmetic goes out of range, prohibited for
  !root

Add missing newline so that log is more readable:
  variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16 size=1
  R2 stack pointer arithmetic goes out of range, prohibited for !root

Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-27 14:50:37 +01:00
Daniel Borkmann
042a3a6d93 bpf: Fix incorrect verifier simulation of ARSH under ALU32
commit 0af2ffc93a4b50948f9dad2786b7f1bd253bf0b9 upstream.

Anatoly has been fuzzing with kBdysch harness and reported a hang in one
of the outcomes:

  0: R1=ctx(id=0,off=0,imm=0) R10=fp0
  0: (85) call bpf_get_socket_cookie#46
  1: R0_w=invP(id=0) R10=fp0
  1: (57) r0 &= 808464432
  2: R0_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0
  2: (14) w0 -= 810299440
  3: R0_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0
  3: (c4) w0 s>>= 1
  4: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0
  4: (76) if w0 s>= 0x30303030 goto pc+216
  221: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0
  221: (95) exit
  processed 6 insns (limit 1000000) [...]

Taking a closer look, the program was xlated as follows:

  # ./bpftool p d x i 12
  0: (85) call bpf_get_socket_cookie#7800896
  1: (bf) r6 = r0
  2: (57) r6 &= 808464432
  3: (14) w6 -= 810299440
  4: (c4) w6 s>>= 1
  5: (76) if w6 s>= 0x30303030 goto pc+216
  6: (05) goto pc-1
  7: (05) goto pc-1
  8: (05) goto pc-1
  [...]
  220: (05) goto pc-1
  221: (05) goto pc-1
  222: (95) exit

Meaning, the visible effect is very similar to f54c7898ed1c ("bpf: Fix
precision tracking for unbounded scalars"), that is, the fall-through
branch in the instruction 5 is considered to be never taken given the
conclusion from the min/max bounds tracking in w6, and therefore the
dead-code sanitation rewrites it as goto pc-1. However, real-life input
disagrees with verification analysis since a soft-lockup was observed.

The bug sits in the analysis of the ARSH. The definition is that we shift
the target register value right by K bits through shifting in copies of
its sign bit. In adjust_scalar_min_max_vals(), we do first coerce the
register into 32 bit mode, same happens after simulating the operation.
However, for the case of simulating the actual ARSH, we don't take the
mode into account and act as if it's always 64 bit, but location of sign
bit is different:

  dst_reg->smin_value >>= umin_val;
  dst_reg->smax_value >>= umin_val;
  dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);

Consider an unknown R0 where bpf_get_socket_cookie() (or others) would
for example return 0xffff. With the above ARSH simulation, we'd see the
following results:

  [...]
  1: R1=ctx(id=0,off=0,imm=0) R2_w=invP65535 R10=fp0
  1: (85) call bpf_get_socket_cookie#46
  2: R0_w=invP(id=0) R10=fp0
  2: (57) r0 &= 808464432
    -> R0_runtime = 0x3030
  3: R0_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0
  3: (14) w0 -= 810299440
    -> R0_runtime = 0xcfb40000
  4: R0_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0
                              (0xffffffff)
  4: (c4) w0 s>>= 1
    -> R0_runtime = 0xe7da0000
  5: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0
                              (0x67c00000)           (0x7ffbfff8)
  [...]

In insn 3, we have a runtime value of 0xcfb40000, which is '1100 1111 1011
0100 0000 0000 0000 0000', the result after the shift has 0xe7da0000 that
is '1110 0111 1101 1010 0000 0000 0000 0000', where the sign bit is correctly
retained in 32 bit mode. In insn4, the umax was 0xffffffff, and changed into
0x7ffbfff8 after the shift, that is, '0111 1111 1111 1011 1111 1111 1111 1000'
and means here that the simulation didn't retain the sign bit. With above
logic, the updates happen on the 64 bit min/max bounds and given we coerced
the register, the sign bits of the bounds are cleared as well, meaning, we
need to force the simulation into s32 space for 32 bit alu mode.

Verification after the fix below. We're first analyzing the fall-through branch
on 32 bit signed >= test eventually leading to rejection of the program in this
specific case:

  0: R1=ctx(id=0,off=0,imm=0) R10=fp0
  0: (b7) r2 = 808464432
  1: R1=ctx(id=0,off=0,imm=0) R2_w=invP808464432 R10=fp0
  1: (85) call bpf_get_socket_cookie#46
  2: R0_w=invP(id=0) R10=fp0
  2: (bf) r6 = r0
  3: R0_w=invP(id=0) R6_w=invP(id=0) R10=fp0
  3: (57) r6 &= 808464432
  4: R0_w=invP(id=0) R6_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0
  4: (14) w6 -= 810299440
  5: R0_w=invP(id=0) R6_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0
  5: (c4) w6 s>>= 1
  6: R0_w=invP(id=0) R6_w=invP(id=0,umin_value=3888119808,umax_value=4294705144,var_off=(0xe7c00000; 0x183bfff8)) R10=fp0
                                              (0x67c00000)          (0xfffbfff8)
  6: (76) if w6 s>= 0x30303030 goto pc+216
  7: R0_w=invP(id=0) R6_w=invP(id=0,umin_value=3888119808,umax_value=4294705144,var_off=(0xe7c00000; 0x183bfff8)) R10=fp0
  7: (30) r0 = *(u8 *)skb[808464432]
  BPF_LD_[ABS|IND] uses reserved fields
  processed 8 insns (limit 1000000) [...]

Fixes: 9cbe1f5a32 ("bpf/verifier: improve register value range tracking with ARSH")
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200115204733.16648-1-daniel@iogearbox.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-23 08:21:32 +01:00
Daniel Borkmann
f70280ee89 bpf: Fix passing modified ctx to ld/abs/ind instruction
commit 6d4f151acf9a4f6fab09b615f246c717ddedcf0c upstream.

Anatoly has been fuzzing with kBdysch harness and reported a KASAN
slab oob in one of the outcomes:

  [...]
  [   77.359642] BUG: KASAN: slab-out-of-bounds in bpf_skb_load_helper_8_no_cache+0x71/0x130
  [   77.360463] Read of size 4 at addr ffff8880679bac68 by task bpf/406
  [   77.361119]
  [   77.361289] CPU: 2 PID: 406 Comm: bpf Not tainted 5.5.0-rc2-xfstests-00157-g2187f215eba #1
  [   77.362134] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
  [   77.362984] Call Trace:
  [   77.363249]  dump_stack+0x97/0xe0
  [   77.363603]  print_address_description.constprop.0+0x1d/0x220
  [   77.364251]  ? bpf_skb_load_helper_8_no_cache+0x71/0x130
  [   77.365030]  ? bpf_skb_load_helper_8_no_cache+0x71/0x130
  [   77.365860]  __kasan_report.cold+0x37/0x7b
  [   77.366365]  ? bpf_skb_load_helper_8_no_cache+0x71/0x130
  [   77.366940]  kasan_report+0xe/0x20
  [   77.367295]  bpf_skb_load_helper_8_no_cache+0x71/0x130
  [   77.367821]  ? bpf_skb_load_helper_8+0xf0/0xf0
  [   77.368278]  ? mark_lock+0xa3/0x9b0
  [   77.368641]  ? kvm_sched_clock_read+0x14/0x30
  [   77.369096]  ? sched_clock+0x5/0x10
  [   77.369460]  ? sched_clock_cpu+0x18/0x110
  [   77.369876]  ? bpf_skb_load_helper_8+0xf0/0xf0
  [   77.370330]  ___bpf_prog_run+0x16c0/0x28f0
  [   77.370755]  __bpf_prog_run32+0x83/0xc0
  [   77.371153]  ? __bpf_prog_run64+0xc0/0xc0
  [   77.371568]  ? match_held_lock+0x1b/0x230
  [   77.371984]  ? rcu_read_lock_held+0xa1/0xb0
  [   77.372416]  ? rcu_is_watching+0x34/0x50
  [   77.372826]  sk_filter_trim_cap+0x17c/0x4d0
  [   77.373259]  ? sock_kzfree_s+0x40/0x40
  [   77.373648]  ? __get_filter+0x150/0x150
  [   77.374059]  ? skb_copy_datagram_from_iter+0x80/0x280
  [   77.374581]  ? do_raw_spin_unlock+0xa5/0x140
  [   77.375025]  unix_dgram_sendmsg+0x33a/0xa70
  [   77.375459]  ? do_raw_spin_lock+0x1d0/0x1d0
  [   77.375893]  ? unix_peer_get+0xa0/0xa0
  [   77.376287]  ? __fget_light+0xa4/0xf0
  [   77.376670]  __sys_sendto+0x265/0x280
  [   77.377056]  ? __ia32_sys_getpeername+0x50/0x50
  [   77.377523]  ? lock_downgrade+0x350/0x350
  [   77.377940]  ? __sys_setsockopt+0x2a6/0x2c0
  [   77.378374]  ? sock_read_iter+0x240/0x240
  [   77.378789]  ? __sys_socketpair+0x22a/0x300
  [   77.379221]  ? __ia32_sys_socket+0x50/0x50
  [   77.379649]  ? mark_held_locks+0x1d/0x90
  [   77.380059]  ? trace_hardirqs_on_thunk+0x1a/0x1c
  [   77.380536]  __x64_sys_sendto+0x74/0x90
  [   77.380938]  do_syscall_64+0x68/0x2a0
  [   77.381324]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  [   77.381878] RIP: 0033:0x44c070
  [...]

After further debugging, turns out while in case of other helper functions
we disallow passing modified ctx, the special case of ld/abs/ind instruction
which has similar semantics (except r6 being the ctx argument) is missing
such check. Modified ctx is impossible here as bpf_skb_load_helper_8_no_cache()
and others are expecting skb fields in original position, hence, add
check_ctx_reg() to reject any modified ctx. Issue was first introduced back
in f1174f77b5 ("bpf/verifier: rework value tracking").

Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200106215157.3553-1-daniel@iogearbox.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-12 12:17:04 +01:00
Song Liu
a7f4da875c bpf/stackmap: Fix deadlock with rq_lock in bpf_get_stack()
[ Upstream commit eac9153f2b584c702cea02c1f1a57d85aa9aea42 ]

bpf stackmap with build-id lookup (BPF_F_STACK_BUILD_ID) can trigger A-A
deadlock on rq_lock():

rcu: INFO: rcu_sched detected stalls on CPUs/tasks:
[...]
Call Trace:
 try_to_wake_up+0x1ad/0x590
 wake_up_q+0x54/0x80
 rwsem_wake+0x8a/0xb0
 bpf_get_stack+0x13c/0x150
 bpf_prog_fbdaf42eded9fe46_on_event+0x5e3/0x1000
 bpf_overflow_handler+0x60/0x100
 __perf_event_overflow+0x4f/0xf0
 perf_swevent_overflow+0x99/0xc0
 ___perf_sw_event+0xe7/0x120
 __schedule+0x47d/0x620
 schedule+0x29/0x90
 futex_wait_queue_me+0xb9/0x110
 futex_wait+0x139/0x230
 do_futex+0x2ac/0xa50
 __x64_sys_futex+0x13c/0x180
 do_syscall_64+0x42/0x100
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

This can be reproduced by:
1. Start a multi-thread program that does parallel mmap() and malloc();
2. taskset the program to 2 CPUs;
3. Attach bpf program to trace_sched_switch and gather stackmap with
   build-id, e.g. with trace.py from bcc tools:
   trace.py -U -p <pid> -s <some-bin,some-lib> t:sched:sched_switch

A sample reproducer is attached at the end.

This could also trigger deadlock with other locks that are nested with
rq_lock.

Fix this by checking whether irqs are disabled. Since rq_lock and all
other nested locks are irq safe, it is safe to do up_read() when irqs are
not disable. If the irqs are disabled, postpone up_read() in irq_work.

Fixes: 615755a77b ("bpf: extend stackmap to save binary_build_id+offset instead of address")
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191014171223.357174-1-songliubraving@fb.com

Reproducer:
============================ 8< ============================

char *filename;

void *worker(void *p)
{
        void *ptr;
        int fd;
        char *pptr;

        fd = open(filename, O_RDONLY);
        if (fd < 0)
                return NULL;
        while (1) {
                struct timespec ts = {0, 1000 + rand() % 2000};

                ptr = mmap(NULL, 4096 * 64, PROT_READ, MAP_PRIVATE, fd, 0);
                usleep(1);
                if (ptr == MAP_FAILED) {
                        printf("failed to mmap\n");
                        break;
                }
                munmap(ptr, 4096 * 64);
                usleep(1);
                pptr = malloc(1);
                usleep(1);
                pptr[0] = 1;
                usleep(1);
                free(pptr);
                usleep(1);
                nanosleep(&ts, NULL);
        }
        close(fd);
        return NULL;
}

int main(int argc, char *argv[])
{
        void *ptr;
        int i;
        pthread_t threads[THREAD_COUNT];

        if (argc < 2)
                return 0;

        filename = argv[1];

        for (i = 0; i < THREAD_COUNT; i++) {
                if (pthread_create(threads + i, NULL, worker, NULL)) {
                        fprintf(stderr, "Error creating thread\n");
                        return 0;
                }
        }

        for (i = 0; i < THREAD_COUNT; i++)
                pthread_join(threads[i], NULL);
        return 0;
}
============================ 8< ============================

Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-31 16:35:20 +01:00
Yonghong Song
12c49ac4cf bpf: btf: check name validity for various types
[ Upstream commit eb04bbb608e683f8fd3ef7f716e2fa32dd90861f ]

This patch added name checking for the following types:
 . BTF_KIND_PTR, BTF_KIND_ARRAY, BTF_KIND_VOLATILE,
   BTF_KIND_CONST, BTF_KIND_RESTRICT:
     the name must be null
 . BTF_KIND_STRUCT, BTF_KIND_UNION: the struct/member name
     is either null or a valid identifier
 . BTF_KIND_ENUM: the enum type name is either null or a valid
     identifier; the enumerator name must be a valid identifier.
 . BTF_KIND_FWD: the name must be a valid identifier
 . BTF_KIND_TYPEDEF: the name must be a valid identifier

For those places a valid name is required, the name must be
a valid C identifier. This can be relaxed later if we found
use cases for a different (non-C) frontend.

Fixes: 69b693f0ae ("bpf: btf: Introduce BPF Type Format (BTF)")
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-13 08:52:09 +01:00
Yonghong Song
2f3e380d49 bpf: btf: implement btf_name_valid_identifier()
[ Upstream commit cdbb096adddb3f42584cecb5ec2e07c26815b71f ]

Function btf_name_valid_identifier() have been implemented in
bpf-next commit 2667a2626f4d ("bpf: btf: Add BTF_KIND_FUNC and
BTF_KIND_FUNC_PROTO"). Backport this function so later patch
can use it.

Fixes: 69b693f0ae ("bpf: btf: Introduce BPF Type Format (BTF)")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-13 08:52:09 +01:00
Jesper Dangaard Brouer
7d8677ff10 xdp: fix cpumap redirect SKB creation bug
[ Upstream commit 676e4a6fe703f2dae699ee9d56f14516f9ada4ea ]

We want to avoid leaking pointer info from xdp_frame (that is placed in
top of frame) like commit 6dfb970d3d ("xdp: avoid leaking info stored in
frame data on page reuse"), and followup commit 97e19cce05 ("bpf:
reserve xdp_frame size in xdp headroom") that reserve this headroom.

These changes also affected how cpumap constructed SKBs, as xdpf->headroom
size changed, the skb data starting point were in-effect shifted with 32
bytes (sizeof xdp_frame). This was still okay, as the cpumap frame_size
calculation also included xdpf->headroom which were reduced by same amount.

A bug was introduced in commit 77ea5f4cbe20 ("bpf/cpumap: make sure
frame_size for build_skb is aligned if headroom isn't"), where the
xdpf->headroom became part of the SKB_DATA_ALIGN rounding up. This
round-up to find the frame_size is in principle still correct as it does
not exceed the 2048 bytes frame_size (which is max for ixgbe and i40e),
but the 32 bytes offset of pkt_data_start puts this over the 2048 bytes
limit. This cause skb_shared_info to spill into next frame. It is a little
hard to trigger, as the SKB need to use above 15 skb_shinfo->frags[] as
far as I calculate. This does happen in practise for TCP streams when
skb_try_coalesce() kicks in.

KASAN can be used to detect these wrong memory accesses, I've seen:
 BUG: KASAN: use-after-free in skb_try_coalesce+0x3cb/0x760
 BUG: KASAN: wild-memory-access in skb_release_data+0xe2/0x250

Driver veth also construct a SKB from xdp_frame in this way, but is not
affected, as it doesn't reserve/deduct the room (used by xdp_frame) from
the SKB headroom. Instead is clears the pointers via xdp_scrub_frame(),
and allows SKB to use this area.

The fix in this patch is to do like veth and instead allow SKB to (re)use
the area occupied by xdp_frame, by clearing via xdp_scrub_frame().  (This
does kill the idea of the SKB being able to access (mem) info from this
area, but I guess it was a bad idea anyhow, and it was already killed by
the veth changes.)

Fixes: 77ea5f4cbe20 ("bpf/cpumap: make sure frame_size for build_skb is aligned if headroom isn't")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05 09:21:24 +01:00
Peng Sun
1a5df073d0 bpf: drop refcount if bpf_map_new_fd() fails in map_create()
[ Upstream commit 352d20d611414715353ee65fc206ee57ab1a6984 ]

In bpf/syscall.c, map_create() first set map->usercnt to 1, a file
descriptor is supposed to return to userspace. When bpf_map_new_fd()
fails, drop the refcount.

Fixes: bd5f5f4ecb ("bpf: Add BPF_MAP_GET_FD_BY_ID")
Signed-off-by: Peng Sun <sironhide0null@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05 09:21:15 +01:00
Peng Sun
944df7b4b9 bpf: decrease usercnt if bpf_map_new_fd() fails in bpf_map_get_fd_by_id()
[ Upstream commit 781e62823cb81b972dc8652c1827205cda2ac9ac ]

In bpf/syscall.c, bpf_map_get_fd_by_id() use bpf_map_inc_not_zero()
to increase the refcount, both map->refcnt and map->usercnt. Then, if
bpf_map_new_fd() fails, should handle map->usercnt too.

Fixes: bd5f5f4ecb ("bpf: Add BPF_MAP_GET_FD_BY_ID")
Signed-off-by: Peng Sun <sironhide0null@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05 09:21:13 +01:00
Jesper Dangaard Brouer
f0910af753 bpf/cpumap: make sure frame_size for build_skb is aligned if headroom isn't
[ Upstream commit 77ea5f4cbe2084db9ab021ba73fb7eadf1610884 ]

The frame_size passed to build_skb must be aligned, else it is
possible that the embedded struct skb_shared_info gets unaligned.

For correctness make sure that xdpf->headroom in included in the
alignment. No upstream drivers can hit this, as all XDP drivers provide
an aligned headroom.  This was discovered when playing with implementing
XDP support for mvneta, which have a 2 bytes DSA header, and this
Marvell ARM64 platform didn't like doing atomic operations on an
unaligned skb_shinfo(skb)->dataref addresses.

Fixes: 1c601d829a ("bpf: cpumap xdp_buff to skb conversion and allocation")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05 09:20:46 +01:00
Martin Lau
54299e1cf3 bpf, btf: fix a missing check bug in btf_parse
[ Upstream commit 4a6998aff82a20a1aece86a186d8e5263f8b2315 ]

Wenwen Wang reported:

  In btf_parse(), the header of the user-space btf data 'btf_data'
  is firstly parsed and verified through btf_parse_hdr().
  In btf_parse_hdr(), the header is copied from user-space 'btf_data'
  to kernel-space 'btf->hdr' and then verified. If no error happens
  during the verification process, the whole data of 'btf_data',
  including the header, is then copied to 'data' in btf_parse(). It
  is obvious that the header is copied twice here. More importantly,
  no check is enforced after the second copy to make sure the headers
  obtained in these two copies are same. Given that 'btf_data' resides
  in the user space, a malicious user can race to modify the header
  between these two copies. By doing so, the user can inject
  inconsistent data, which can cause undefined behavior of the
  kernel and introduce potential security risk.

This issue is similar to the one fixed in commit 8af03d1ae2e1 ("bpf:
btf: Fix a missing check bug"). To fix it, this patch copies the user
'btf_data' *before* parsing / verifying the BTF header.

Fixes: 69b693f0ae ("bpf: btf: Introduce BPF Type Format (BTF)")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Co-developed-by: Wenwen Wang <wang6495@umn.edu>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01 09:17:01 +01:00
Taehee Yoo
8044e741ee bpf: devmap: fix wrong interface selection in notifier_call
[ Upstream commit f592f804831f1cf9d1f9966f58c80f150e6829b5 ]

The dev_map_notification() removes interface in devmap if
unregistering interface's ifindex is same.
But only checking ifindex is not enough because other netns can have
same ifindex. so that wrong interface selection could occurred.
Hence netdev pointer comparison code is added.

v2: compare netdev pointer instead of using net_eq() (Daniel Borkmann)
v1: Initial patch

Fixes: 2ddf71e23c ("net: add notifier hooks for devmap bpf map")
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01 09:17:01 +01:00
Wenwen Wang
014045888a bpf: btf: Fix a missing check bug
[ Upstream commit 8af03d1ae2e154a8be3631e8694b87007e1bdbc2 ]

In btf_parse_hdr(), the length of the btf data header is firstly copied
from the user space to 'hdr_len' and checked to see whether it is larger
than 'btf_data_size'. If yes, an error code EINVAL is returned. Otherwise,
the whole header is copied again from the user space to 'btf->hdr'.
However, after the second copy, there is no check between
'btf->hdr->hdr_len' and 'hdr_len' to confirm that the two copies get the
same value. Given that the btf data is in the user space, a malicious user
can race to change the data between the two copies. By doing so, the user
can provide malicious data to the kernel and cause undefined behavior.

This patch adds a necessary check after the second copy, to make sure
'btf->hdr->hdr_len' has the same value as 'hdr_len'. Otherwise, an error
code EINVAL will be returned.

Signed-off-by: Wenwen Wang <wang6495@umn.edu>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-24 08:20:53 +01:00
Daniel Borkmann
ed568ca736 bpf: fix use after free in prog symbol exposure
commit c751798aa224fadc5124b49eeb38fb468c0fa039 upstream.

syzkaller managed to trigger the warning in bpf_jit_free() which checks via
bpf_prog_kallsyms_verify_off() for potentially unlinked JITed BPF progs
in kallsyms, and subsequently trips over GPF when walking kallsyms entries:

  [...]
  8021q: adding VLAN 0 to HW filter on device batadv0
  8021q: adding VLAN 0 to HW filter on device batadv0
  WARNING: CPU: 0 PID: 9869 at kernel/bpf/core.c:810 bpf_jit_free+0x1e8/0x2a0
  Kernel panic - not syncing: panic_on_warn set ...
  CPU: 0 PID: 9869 Comm: kworker/0:7 Not tainted 5.0.0-rc8+ #1
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  Workqueue: events bpf_prog_free_deferred
  Call Trace:
   __dump_stack lib/dump_stack.c:77 [inline]
   dump_stack+0x113/0x167 lib/dump_stack.c:113
   panic+0x212/0x40b kernel/panic.c:214
   __warn.cold.8+0x1b/0x38 kernel/panic.c:571
   report_bug+0x1a4/0x200 lib/bug.c:186
   fixup_bug arch/x86/kernel/traps.c:178 [inline]
   do_error_trap+0x11b/0x200 arch/x86/kernel/traps.c:271
   do_invalid_op+0x36/0x40 arch/x86/kernel/traps.c:290
   invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:973
  RIP: 0010:bpf_jit_free+0x1e8/0x2a0
  Code: 02 4c 89 e2 83 e2 07 38 d0 7f 08 84 c0 0f 85 86 00 00 00 48 ba 00 02 00 00 00 00 ad de 0f b6 43 02 49 39 d6 0f 84 5f fe ff ff <0f> 0b e9 58 fe ff ff 48 b8 00 00 00 00 00 fc ff df 4c 89 e2 48 c1
  RSP: 0018:ffff888092f67cd8 EFLAGS: 00010202
  RAX: 0000000000000007 RBX: ffffc90001947000 RCX: ffffffff816e9d88
  RDX: dead000000000200 RSI: 0000000000000008 RDI: ffff88808769f7f0
  RBP: ffff888092f67d00 R08: fffffbfff1394059 R09: fffffbfff1394058
  R10: fffffbfff1394058 R11: ffffffff89ca02c7 R12: ffffc90001947002
  R13: ffffc90001947020 R14: ffffffff881eca80 R15: ffff88808769f7e8
  BUG: unable to handle kernel paging request at fffffbfff400d000
  #PF error: [normal kernel read fault]
  PGD 21ffee067 P4D 21ffee067 PUD 21ffed067 PMD 9f942067 PTE 0
  Oops: 0000 [#1] PREEMPT SMP KASAN
  CPU: 0 PID: 9869 Comm: kworker/0:7 Not tainted 5.0.0-rc8+ #1
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  Workqueue: events bpf_prog_free_deferred
  RIP: 0010:bpf_get_prog_addr_region kernel/bpf/core.c:495 [inline]
  RIP: 0010:bpf_tree_comp kernel/bpf/core.c:558 [inline]
  RIP: 0010:__lt_find include/linux/rbtree_latch.h:115 [inline]
  RIP: 0010:latch_tree_find include/linux/rbtree_latch.h:208 [inline]
  RIP: 0010:bpf_prog_kallsyms_find+0x107/0x2e0 kernel/bpf/core.c:632
  Code: 00 f0 ff ff 44 38 c8 7f 08 84 c0 0f 85 fa 00 00 00 41 f6 45 02 01 75 02 0f 0b 48 39 da 0f 82 92 00 00 00 48 89 d8 48 c1 e8 03 <42> 0f b6 04 30 84 c0 74 08 3c 03 0f 8e 45 01 00 00 8b 03 48 c1 e0
  [...]

Upon further debugging, it turns out that whenever we trigger this
issue, the kallsyms removal in bpf_prog_ksym_node_del() was /skipped/
but yet bpf_jit_free() reported that the entry is /in use/.

Problem is that symbol exposure via bpf_prog_kallsyms_add() but also
perf_event_bpf_event() were done /after/ bpf_prog_new_fd(). Once the
fd is exposed to the public, a parallel close request came in right
before we attempted to do the bpf_prog_kallsyms_add().

Given at this time the prog reference count is one, we start to rip
everything underneath us via bpf_prog_release() -> bpf_prog_put().
The memory is eventually released via deferred free, so we're seeing
that bpf_jit_free() has a kallsym entry because we added it from
bpf_prog_load() but /after/ bpf_prog_put() from the remote CPU.

Therefore, move both notifications /before/ we install the fd. The
issue was never seen between bpf_prog_alloc_id() and bpf_prog_new_fd()
because upon bpf_prog_get_fd_by_id() we'll take another reference to
the BPF prog, so we're still holding the original reference from the
bpf_prog_load().

Fixes: 6ee52e2a3fe4 ("perf, bpf: Introduce PERF_RECORD_BPF_EVENT")
Fixes: 74451e66d5 ("bpf: make jited programs visible in traces")
Reported-by: syzbot+bd3bba6ff3fcea7a6ec6@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Song Liu <songliubraving@fb.com>
Signed-off-by: Zubin Mithra <zsm@chromium.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-07 18:57:19 +02:00
Valdis Klētnieks
7c10f8941b bpf: silence warning messages in core
[ Upstream commit aee450cbe482a8c2f6fa5b05b178ef8b8ff107ca ]

Compiling kernel/bpf/core.c with W=1 causes a flood of warnings:

kernel/bpf/core.c:1198:65: warning: initialized field overwritten [-Woverride-init]
 1198 | #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
      |                                                                 ^~~~
kernel/bpf/core.c:1087:2: note: in expansion of macro 'BPF_INSN_3_TBL'
 1087 |  INSN_3(ALU, ADD,  X),   \
      |  ^~~~~~
kernel/bpf/core.c:1202:3: note: in expansion of macro 'BPF_INSN_MAP'
 1202 |   BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
      |   ^~~~~~~~~~~~
kernel/bpf/core.c:1198:65: note: (near initialization for 'public_insntable[12]')
 1198 | #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
      |                                                                 ^~~~
kernel/bpf/core.c:1087:2: note: in expansion of macro 'BPF_INSN_3_TBL'
 1087 |  INSN_3(ALU, ADD,  X),   \
      |  ^~~~~~
kernel/bpf/core.c:1202:3: note: in expansion of macro 'BPF_INSN_MAP'
 1202 |   BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
      |   ^~~~~~~~~~~~

98 copies of the above.

The attached patch silences the warnings, because we *know* we're overwriting
the default initializer. That leaves bpf/core.c with only 6 other warnings,
which become more visible in comparison.

Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-26 09:14:06 +02:00
Toshiaki Makita
4c2ce7addd bpf, devmap: Add missing RCU read lock on flush
[ Upstream commit 86723c8640633bee4b4588d3c7784ee7a0032f65 ]

.ndo_xdp_xmit() assumes it is called under RCU. For example virtio_net
uses RCU to detect it has setup the resources for tx. The assumption
accidentally broke when introducing bulk queue in devmap.

Fixes: 5d053f9da4 ("bpf: devmap prepare xdp frames for bulking")
Reported-by: David Ahern <dsahern@gmail.com>
Signed-off-by: Toshiaki Makita <toshiaki.makita1@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-14 08:11:11 +02:00
Toshiaki Makita
ab44f8bcf2 bpf, devmap: Add missing bulk queue free
[ Upstream commit edabf4d9dd905acd60048ea1579943801e3a4876 ]

dev_map_free() forgot to free bulk queue when freeing its entries.

Fixes: 5d053f9da4 ("bpf: devmap prepare xdp frames for bulking")
Signed-off-by: Toshiaki Makita <toshiaki.makita1@gmail.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-14 08:11:11 +02:00
Toshiaki Makita
8d09e86210 bpf, devmap: Fix premature entry free on destroying map
[ Upstream commit d4dd153d551634683fccf8881f606fa9f3dfa1ef ]

dev_map_free() waits for flush_needed bitmap to be empty in order to
ensure all flush operations have completed before freeing its entries.
However the corresponding clear_bit() was called before using the
entries, so the entries could be used after free.

All access to the entries needs to be done before clearing the bit.
It seems commit a5e2da6e97 ("bpf: netdev is never null in
__dev_map_flush") accidentally changed the clear_bit() and memory access
order.

Note that the problem happens only in __dev_map_flush(), not in
dev_map_flush_old(). dev_map_flush_old() is called only after nulling
out the corresponding netdev_map entry, so dev_map_free() never frees
the entry thus no such race happens there.

Fixes: a5e2da6e97 ("bpf: netdev is never null in __dev_map_flush")
Signed-off-by: Toshiaki Makita <toshiaki.makita1@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-14 08:11:11 +02:00
Daniel Borkmann
54e8cf41b2 bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64K
[ Upstream commit fdadd04931c2d7cd294dc5b2b342863f94be53a3 ]

Michael and Sandipan report:

  Commit ede95a63b5 introduced a bpf_jit_limit tuneable to limit BPF
  JIT allocations. At compile time it defaults to PAGE_SIZE * 40000,
  and is adjusted again at init time if MODULES_VADDR is defined.

  For ppc64 kernels, MODULES_VADDR isn't defined, so we're stuck with
  the compile-time default at boot-time, which is 0x9c400000 when
  using 64K page size. This overflows the signed 32-bit bpf_jit_limit
  value:

  root@ubuntu:/tmp# cat /proc/sys/net/core/bpf_jit_limit
  -1673527296

  and can cause various unexpected failures throughout the network
  stack. In one case `strace dhclient eth0` reported:

  setsockopt(5, SOL_SOCKET, SO_ATTACH_FILTER, {len=11, filter=0x105dd27f8},
             16) = -1 ENOTSUPP (Unknown error 524)

  and similar failures can be seen with tools like tcpdump. This doesn't
  always reproduce however, and I'm not sure why. The more consistent
  failure I've seen is an Ubuntu 18.04 KVM guest booted on a POWER9
  host would time out on systemd/netplan configuring a virtio-net NIC
  with no noticeable errors in the logs.

Given this and also given that in near future some architectures like
arm64 will have a custom area for BPF JIT image allocations we should
get rid of the BPF_JIT_LIMIT_DEFAULT fallback / default entirely. For
4.21, we have an overridable bpf_jit_alloc_exec(), bpf_jit_free_exec()
so therefore add another overridable bpf_jit_alloc_exec_limit() helper
function which returns the possible size of the memory area for deriving
the default heuristic in bpf_jit_charge_init().

Like bpf_jit_alloc_exec() and bpf_jit_free_exec(), the new
bpf_jit_alloc_exec_limit() assumes that module_alloc() is the default
JIT memory provider, and therefore in case archs implement their custom
module_alloc() we use MODULES_{END,_VADDR} for limits and otherwise for
vmalloc_exec() cases like on ppc64 we use VMALLOC_{END,_START}.

Additionally, for archs supporting large page sizes, we should change
the sysctl to be handled as long to not run into sysctl restrictions
in future.

Fixes: ede95a63b5e8 ("bpf: add bpf_jit_limit knob to restrict unpriv allocations")
Reported-by: Sandipan Das <sandipan@linux.ibm.com>
Reported-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-10 09:53:47 +02:00
Daniel Borkmann
613bc37f74 bpf: fix unconnected udp hooks
commit 983695fa676568fc0fe5ddd995c7267aabc24632 upstream.

Intention of cgroup bind/connect/sendmsg BPF hooks is to act transparently
to applications as also stated in original motivation in 7828f20e37 ("Merge
branch 'bpf-cgroup-bind-connect'"). When recently integrating the latter
two hooks into Cilium to enable host based load-balancing with Kubernetes,
I ran into the issue that pods couldn't start up as DNS got broken. Kubernetes
typically sets up DNS as a service and is thus subject to load-balancing.

Upon further debugging, it turns out that the cgroupv2 sendmsg BPF hooks API
is currently insufficient and thus not usable as-is for standard applications
shipped with most distros. To break down the issue we ran into with a simple
example:

  # cat /etc/resolv.conf
  nameserver 147.75.207.207
  nameserver 147.75.207.208

For the purpose of a simple test, we set up above IPs as service IPs and
transparently redirect traffic to a different DNS backend server for that
node:

  # cilium service list
  ID   Frontend            Backend
  1    147.75.207.207:53   1 => 8.8.8.8:53
  2    147.75.207.208:53   1 => 8.8.8.8:53

The attached BPF program is basically selecting one of the backends if the
service IP/port matches on the cgroup hook. DNS breaks here, because the
hooks are not transparent enough to applications which have built-in msg_name
address checks:

  # nslookup 1.1.1.1
  ;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
  ;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.208#53
  ;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
  [...]
  ;; connection timed out; no servers could be reached

  # dig 1.1.1.1
  ;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
  ;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.208#53
  ;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
  [...]

  ; <<>> DiG 9.11.3-1ubuntu1.7-Ubuntu <<>> 1.1.1.1
  ;; global options: +cmd
  ;; connection timed out; no servers could be reached

For comparison, if none of the service IPs is used, and we tell nslookup
to use 8.8.8.8 directly it works just fine, of course:

  # nslookup 1.1.1.1 8.8.8.8
  1.1.1.1.in-addr.arpa	name = one.one.one.one.

In order to fix this and thus act more transparent to the application,
this needs reverse translation on recvmsg() side. A minimal fix for this
API is to add similar recvmsg() hooks behind the BPF cgroups static key
such that the program can track state and replace the current sockaddr_in{,6}
with the original service IP. From BPF side, this basically tracks the
service tuple plus socket cookie in an LRU map where the reverse NAT can
then be retrieved via map value as one example. Side-note: the BPF cgroups
static key should be converted to a per-hook static key in future.

Same example after this fix:

  # cilium service list
  ID   Frontend            Backend
  1    147.75.207.207:53   1 => 8.8.8.8:53
  2    147.75.207.208:53   1 => 8.8.8.8:53

Lookups work fine now:

  # nslookup 1.1.1.1
  1.1.1.1.in-addr.arpa    name = one.one.one.one.

  Authoritative answers can be found from:

  # dig 1.1.1.1

  ; <<>> DiG 9.11.3-1ubuntu1.7-Ubuntu <<>> 1.1.1.1
  ;; global options: +cmd
  ;; Got answer:
  ;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 51550
  ;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1

  ;; OPT PSEUDOSECTION:
  ; EDNS: version: 0, flags:; udp: 512
  ;; QUESTION SECTION:
  ;1.1.1.1.                       IN      A

  ;; AUTHORITY SECTION:
  .                       23426   IN      SOA     a.root-servers.net. nstld.verisign-grs.com. 2019052001 1800 900 604800 86400

  ;; Query time: 17 msec
  ;; SERVER: 147.75.207.207#53(147.75.207.207)
  ;; WHEN: Tue May 21 12:59:38 UTC 2019
  ;; MSG SIZE  rcvd: 111

And from an actual packet level it shows that we're using the back end
server when talking via 147.75.207.20{7,8} front end:

  # tcpdump -i any udp
  [...]
  12:59:52.698732 IP foo.42011 > google-public-dns-a.google.com.domain: 18803+ PTR? 1.1.1.1.in-addr.arpa. (38)
  12:59:52.698735 IP foo.42011 > google-public-dns-a.google.com.domain: 18803+ PTR? 1.1.1.1.in-addr.arpa. (38)
  12:59:52.701208 IP google-public-dns-a.google.com.domain > foo.42011: 18803 1/0/0 PTR one.one.one.one. (67)
  12:59:52.701208 IP google-public-dns-a.google.com.domain > foo.42011: 18803 1/0/0 PTR one.one.one.one. (67)
  [...]

In order to be flexible and to have same semantics as in sendmsg BPF
programs, we only allow return codes in [1,1] range. In the sendmsg case
the program is called if msg->msg_name is present which can be the case
in both, connected and unconnected UDP.

The former only relies on the sockaddr_in{,6} passed via connect(2) if
passed msg->msg_name was NULL. Therefore, on recvmsg side, we act in similar
way to call into the BPF program whenever a non-NULL msg->msg_name was
passed independent of sk->sk_state being TCP_ESTABLISHED or not. Note
that for TCP case, the msg->msg_name is ignored in the regular recvmsg
path and therefore not relevant.

For the case of ip{,v6}_recv_error() paths, picked up via MSG_ERRQUEUE,
the hook is not called. This is intentional as it aligns with the same
semantics as in case of TCP cgroup BPF hooks right now. This might be
better addressed in future through a different bpf_attach_type such
that this case can be distinguished from the regular recvmsg paths,
for example.

Fixes: 1cedee13d2 ("bpf: Hooks for sys_sendmsg")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Martynas Pumputis <m@lambda.lt>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-03 13:14:48 +02:00
Jonathan Lemon
4992d4af58 bpf: lpm_trie: check left child of last leftmost node for NULL
commit da2577fdd0932ea4eefe73903f1130ee366767d2 upstream.

If the leftmost parent node of the tree has does not have a child
on the left side, then trie_get_next_key (and bpftool map dump) will
not look at the child on the right.  This leads to the traversal
missing elements.

Lookup is not affected.

Update selftest to handle this case.

Reproducer:

 bpftool map create /sys/fs/bpf/lpm type lpm_trie key 6 \
     value 1 entries 256 name test_lpm flags 1
 bpftool map update pinned /sys/fs/bpf/lpm key  8 0 0 0  0   0 value 1
 bpftool map update pinned /sys/fs/bpf/lpm key 16 0 0 0  0 128 value 2
 bpftool map dump   pinned /sys/fs/bpf/lpm

Returns only 1 element. (2 expected)

Fixes: b471f2f1de ("bpf: implement MAP_GET_NEXT_KEY command for LPM_TRIE")
Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-03 13:14:48 +02:00
Krzesimir Nowak
f9ee13ce21 bpf: fix undefined behavior in narrow load handling
[ Upstream commit e2f7fc0ac6957cabff4cecf6c721979b571af208 ]

Commit 31fd85816d ("bpf: permits narrower load from bpf program
context fields") made the verifier add AND instructions to clear the
unwanted bits with a mask when doing a narrow load. The mask is
computed with

  (1 << size * 8) - 1

where "size" is the size of the narrow load. When doing a 4 byte load
of a an 8 byte field the verifier shifts the literal 1 by 32 places to
the left. This results in an overflow of a signed integer, which is an
undefined behavior. Typically, the computed mask was zero, so the
result of the narrow load ended up being zero too.

Cast the literal to long long to avoid overflows. Note that narrow
load of the 4 byte fields does not have the undefined behavior,
because the load size can only be either 1 or 2 bytes, so shifting 1
by 8 or 16 places will not overflow it. And reading 4 bytes would not
be a narrow load of a 4 bytes field.

Fixes: 31fd85816d ("bpf: permits narrower load from bpf program context fields")
Reviewed-by: Alban Crequy <alban@kinvolk.io>
Reviewed-by: Iago López Galeiras <iago@kinvolk.io>
Signed-off-by: Krzesimir Nowak <krzesimir@kinvolk.io>
Cc: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-15 11:54:03 +02:00
Eric Dumazet
003e2d74c5 bpf: devmap: fix use-after-free Read in __dev_map_entry_free
commit 2baae3545327632167c0180e9ca1d467416f1919 upstream.

synchronize_rcu() is fine when the rcu callbacks only need
to free memory (kfree_rcu() or direct kfree() call rcu call backs)

__dev_map_entry_free() is a bit more complex, so we need to make
sure that call queued __dev_map_entry_free() callbacks have completed.

sysbot report:

BUG: KASAN: use-after-free in dev_map_flush_old kernel/bpf/devmap.c:365
[inline]
BUG: KASAN: use-after-free in __dev_map_entry_free+0x2a8/0x300
kernel/bpf/devmap.c:379
Read of size 8 at addr ffff8801b8da38c8 by task ksoftirqd/1/18

CPU: 1 PID: 18 Comm: ksoftirqd/1 Not tainted 4.17.0+ #39
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
  __dump_stack lib/dump_stack.c:77 [inline]
  dump_stack+0x1b9/0x294 lib/dump_stack.c:113
  print_address_description+0x6c/0x20b mm/kasan/report.c:256
  kasan_report_error mm/kasan/report.c:354 [inline]
  kasan_report.cold.7+0x242/0x2fe mm/kasan/report.c:412
  __asan_report_load8_noabort+0x14/0x20 mm/kasan/report.c:433
  dev_map_flush_old kernel/bpf/devmap.c:365 [inline]
  __dev_map_entry_free+0x2a8/0x300 kernel/bpf/devmap.c:379
  __rcu_reclaim kernel/rcu/rcu.h:178 [inline]
  rcu_do_batch kernel/rcu/tree.c:2558 [inline]
  invoke_rcu_callbacks kernel/rcu/tree.c:2818 [inline]
  __rcu_process_callbacks kernel/rcu/tree.c:2785 [inline]
  rcu_process_callbacks+0xe9d/0x1760 kernel/rcu/tree.c:2802
  __do_softirq+0x2e0/0xaf5 kernel/softirq.c:284
  run_ksoftirqd+0x86/0x100 kernel/softirq.c:645
  smpboot_thread_fn+0x417/0x870 kernel/smpboot.c:164
  kthread+0x345/0x410 kernel/kthread.c:240
  ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:412

Allocated by task 6675:
  save_stack+0x43/0xd0 mm/kasan/kasan.c:448
  set_track mm/kasan/kasan.c:460 [inline]
  kasan_kmalloc+0xc4/0xe0 mm/kasan/kasan.c:553
  kmem_cache_alloc_trace+0x152/0x780 mm/slab.c:3620
  kmalloc include/linux/slab.h:513 [inline]
  kzalloc include/linux/slab.h:706 [inline]
  dev_map_alloc+0x208/0x7f0 kernel/bpf/devmap.c:102
  find_and_alloc_map kernel/bpf/syscall.c:129 [inline]
  map_create+0x393/0x1010 kernel/bpf/syscall.c:453
  __do_sys_bpf kernel/bpf/syscall.c:2351 [inline]
  __se_sys_bpf kernel/bpf/syscall.c:2328 [inline]
  __x64_sys_bpf+0x303/0x510 kernel/bpf/syscall.c:2328
  do_syscall_64+0x1b1/0x800 arch/x86/entry/common.c:290
  entry_SYSCALL_64_after_hwframe+0x49/0xbe

Freed by task 26:
  save_stack+0x43/0xd0 mm/kasan/kasan.c:448
  set_track mm/kasan/kasan.c:460 [inline]
  __kasan_slab_free+0x11a/0x170 mm/kasan/kasan.c:521
  kasan_slab_free+0xe/0x10 mm/kasan/kasan.c:528
  __cache_free mm/slab.c:3498 [inline]
  kfree+0xd9/0x260 mm/slab.c:3813
  dev_map_free+0x4fa/0x670 kernel/bpf/devmap.c:191
  bpf_map_free_deferred+0xba/0xf0 kernel/bpf/syscall.c:262
  process_one_work+0xc64/0x1b70 kernel/workqueue.c:2153
  worker_thread+0x181/0x13a0 kernel/workqueue.c:2296
  kthread+0x345/0x410 kernel/kthread.c:240
  ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:412

The buggy address belongs to the object at ffff8801b8da37c0
  which belongs to the cache kmalloc-512 of size 512
The buggy address is located 264 bytes inside of
  512-byte region [ffff8801b8da37c0, ffff8801b8da39c0)
The buggy address belongs to the page:
page:ffffea0006e368c0 count:1 mapcount:0 mapping:ffff8801da800940
index:0xffff8801b8da3540
flags: 0x2fffc0000000100(slab)
raw: 02fffc0000000100 ffffea0007217b88 ffffea0006e30cc8 ffff8801da800940
raw: ffff8801b8da3540 ffff8801b8da3040 0000000100000004 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
  ffff8801b8da3780: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
  ffff8801b8da3800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
> ffff8801b8da3880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                                               ^
  ffff8801b8da3900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
  ffff8801b8da3980: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc

Fixes: 546ac1ffb7 ("bpf: add devmap, a map for storing net device references")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot+457d3e2ffbcf31aee5c0@syzkaller.appspotmail.com
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-31 06:46:04 -07:00
Daniel Borkmann
43caa29c99 bpf: add bpf_jit_limit knob to restrict unpriv allocations
commit ede95a63b5e84ddeea6b0c473b36ab8bfd8c6ce3 upstream.

Rick reported that the BPF JIT could potentially fill the entire module
space with BPF programs from unprivileged users which would prevent later
attempts to load normal kernel modules or privileged BPF programs, for
example. If JIT was enabled but unsuccessful to generate the image, then
before commit 290af86629 ("bpf: introduce BPF_JIT_ALWAYS_ON config")
we would always fall back to the BPF interpreter. Nowadays in the case
where the CONFIG_BPF_JIT_ALWAYS_ON could be set, then the load will abort
with a failure since the BPF interpreter was compiled out.

Add a global limit and enforce it for unprivileged users such that in case
of BPF interpreter compiled out we fail once the limit has been reached
or we fall back to BPF interpreter earlier w/o using module mem if latter
was compiled in. In a next step, fair share among unprivileged users can
be resolved in particular for the case where we would fail hard once limit
is reached.

Fixes: 290af86629 ("bpf: introduce BPF_JIT_ALWAYS_ON config")
Fixes: 0a14842f5a ("net: filter: Just In Time compiler for x86-64")
Co-Developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: LKML <linux-kernel@vger.kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-31 06:46:03 -07:00
Daniel Borkmann
107e215c29 bpf, lru: avoid messing with eviction heuristics upon syscall lookup
commit 50b045a8c0ccf44f76640ac3eea8d80ca53979a3 upstream.

One of the biggest issues we face right now with picking LRU map over
regular hash table is that a map walk out of user space, for example,
to just dump the existing entries or to remove certain ones, will
completely mess up LRU eviction heuristics and wrong entries such
as just created ones will get evicted instead. The reason for this
is that we mark an entry as "in use" via bpf_lru_node_set_ref() from
system call lookup side as well. Thus upon walk, all entries are
being marked, so information of actual least recently used ones
are "lost".

In case of Cilium where it can be used (besides others) as a BPF
based connection tracker, this current behavior causes disruption
upon control plane changes that need to walk the map from user space
to evict certain entries. Discussion result from bpfconf [0] was that
we should simply just remove marking from system call side as no
good use case could be found where it's actually needed there.
Therefore this patch removes marking for regular LRU and per-CPU
flavor. If there ever should be a need in future, the behavior could
be selected via map creation flag, but due to mentioned reason we
avoid this here.

  [0] http://vger.kernel.org/bpfconf.html

Fixes: 29ba732acb ("bpf: Add BPF_MAP_TYPE_LRU_HASH")
Fixes: 8f8449384e ("bpf: Add BPF_MAP_TYPE_LRU_PERCPU_HASH")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-25 18:23:48 +02:00
Daniel Borkmann
2bb3c5470a bpf: add map_lookup_elem_sys_only for lookups from syscall side
commit c6110222c6f49ea68169f353565eb865488a8619 upstream.

Add a callback map_lookup_elem_sys_only() that map implementations
could use over map_lookup_elem() from system call side in case the
map implementation needs to handle the latter differently than from
the BPF data path. If map_lookup_elem_sys_only() is set, this will
be preferred pick for map lookups out of user space. This hook is
used in a follow-up fix for LRU map, but once development window
opens, we can convert other map types from map_lookup_elem() (here,
the one called upon BPF_MAP_LOOKUP_ELEM cmd is meant) over to use
the callback to simplify and clean up the latter.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-25 18:23:48 +02:00
Chenbo Feng
3ded3aaa4a bpf: relax inode permission check for retrieving bpf program
commit e547ff3f803e779a3898f1f48447b29f43c54085 upstream.

For iptable module to load a bpf program from a pinned location, it
only retrieve a loaded program and cannot change the program content so
requiring a write permission for it might not be necessary.
Also when adding or removing an unrelated iptable rule, it might need to
flush and reload the xt_bpf related rules as well and triggers the inode
permission check. It might be better to remove the write premission
check for the inode so we won't need to grant write access to all the
processes that flush and restore iptables rules.

Signed-off-by: Chenbo Feng <fengc@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-25 18:23:47 +02:00
Daniel Borkmann
e8eef7ad98 bpf: fix use after free in bpf_evict_inode
[ Upstream commit 1da6c4d9140cb7c13e87667dc4e1488d6c8fc10f ]

syzkaller was able to generate the following UAF in bpf:

  BUG: KASAN: use-after-free in lookup_last fs/namei.c:2269 [inline]
  BUG: KASAN: use-after-free in path_lookupat.isra.43+0x9f8/0xc00 fs/namei.c:2318
  Read of size 1 at addr ffff8801c4865c47 by task syz-executor2/9423

  CPU: 0 PID: 9423 Comm: syz-executor2 Not tainted 4.20.0-rc1-next-20181109+
  #110
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
  Google 01/01/2011
  Call Trace:
    __dump_stack lib/dump_stack.c:77 [inline]
    dump_stack+0x244/0x39d lib/dump_stack.c:113
    print_address_description.cold.7+0x9/0x1ff mm/kasan/report.c:256
    kasan_report_error mm/kasan/report.c:354 [inline]
    kasan_report.cold.8+0x242/0x309 mm/kasan/report.c:412
    __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:430
    lookup_last fs/namei.c:2269 [inline]
    path_lookupat.isra.43+0x9f8/0xc00 fs/namei.c:2318
    filename_lookup+0x26a/0x520 fs/namei.c:2348
    user_path_at_empty+0x40/0x50 fs/namei.c:2608
    user_path include/linux/namei.h:62 [inline]
    do_mount+0x180/0x1ff0 fs/namespace.c:2980
    ksys_mount+0x12d/0x140 fs/namespace.c:3258
    __do_sys_mount fs/namespace.c:3272 [inline]
    __se_sys_mount fs/namespace.c:3269 [inline]
    __x64_sys_mount+0xbe/0x150 fs/namespace.c:3269
    do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
    entry_SYSCALL_64_after_hwframe+0x49/0xbe
  RIP: 0033:0x457569
  Code: fd b3 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7
  48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff
  ff 0f 83 cb b3 fb ff c3 66 2e 0f 1f 84 00 00 00 00
  RSP: 002b:00007fde6ed96c78 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5
  RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 0000000000457569
  RDX: 0000000020000040 RSI: 0000000020000000 RDI: 0000000000000000
  RBP: 000000000072bf00 R08: 0000000020000340 R09: 0000000000000000
  R10: 0000000000200000 R11: 0000000000000246 R12: 00007fde6ed976d4
  R13: 00000000004c2c24 R14: 00000000004d4990 R15: 00000000ffffffff

  Allocated by task 9424:
    save_stack+0x43/0xd0 mm/kasan/kasan.c:448
    set_track mm/kasan/kasan.c:460 [inline]
    kasan_kmalloc+0xc7/0xe0 mm/kasan/kasan.c:553
    __do_kmalloc mm/slab.c:3722 [inline]
    __kmalloc_track_caller+0x157/0x760 mm/slab.c:3737
    kstrdup+0x39/0x70 mm/util.c:49
    bpf_symlink+0x26/0x140 kernel/bpf/inode.c:356
    vfs_symlink+0x37a/0x5d0 fs/namei.c:4127
    do_symlinkat+0x242/0x2d0 fs/namei.c:4154
    __do_sys_symlink fs/namei.c:4173 [inline]
    __se_sys_symlink fs/namei.c:4171 [inline]
    __x64_sys_symlink+0x59/0x80 fs/namei.c:4171
    do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
    entry_SYSCALL_64_after_hwframe+0x49/0xbe

  Freed by task 9425:
    save_stack+0x43/0xd0 mm/kasan/kasan.c:448
    set_track mm/kasan/kasan.c:460 [inline]
    __kasan_slab_free+0x102/0x150 mm/kasan/kasan.c:521
    kasan_slab_free+0xe/0x10 mm/kasan/kasan.c:528
    __cache_free mm/slab.c:3498 [inline]
    kfree+0xcf/0x230 mm/slab.c:3817
    bpf_evict_inode+0x11f/0x150 kernel/bpf/inode.c:565
    evict+0x4b9/0x980 fs/inode.c:558
    iput_final fs/inode.c:1550 [inline]
    iput+0x674/0xa90 fs/inode.c:1576
    do_unlinkat+0x733/0xa30 fs/namei.c:4069
    __do_sys_unlink fs/namei.c:4110 [inline]
    __se_sys_unlink fs/namei.c:4108 [inline]
    __x64_sys_unlink+0x42/0x50 fs/namei.c:4108
    do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
    entry_SYSCALL_64_after_hwframe+0x49/0xbe

In this scenario path lookup under RCU is racing with the final
unlink in case of symlinks. As Linus puts it in his analysis:

  [...] We actually RCU-delay the inode freeing itself, but
  when we do the final iput(), the "evict()" function is called
  synchronously. Now, the simple fix would seem to just RCU-delay
  the kfree() of the symlink data in bpf_evict_inode(). Maybe
  that's the right thing to do. [...]

Al suggested to piggy-back on the ->destroy_inode() callback in
order to implement RCU deferral there which can then kfree() the
inode->i_link eventually right before putting inode back into
inode cache. By reusing free_inode_nonrcu() from there we can
avoid the need for our own inode cache and just reuse generic
one as we currently do.

And in-fact on top of all this we should just get rid of the
bpf_evict_inode() entirely. This means truncate_inode_pages_final()
and clear_inode() will then simply be called by the fs core via
evict(). Dropping the reference should really only be done when
inode is unhashed and nothing reachable anymore, so it's better
also moved into the final ->destroy_inode() callback.

Fixes: 0f98621bef ("bpf, inode: add support for symlinks and fix mtime/ctime")
Reported-by: syzbot+fb731ca573367b7f6564@syzkaller.appspotmail.com
Reported-by: syzbot+a13e5ead792d6df37818@syzkaller.appspotmail.com
Reported-by: syzbot+7a8ba368b47fdefca61e@syzkaller.appspotmail.com
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Analyzed-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lore.kernel.org/lkml/0000000000006946d2057bbd0eef@google.com/T/
Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
2019-04-20 09:16:05 +02:00
Xu Yu
f5959dec08 bpf: do not restore dst_reg when cur_state is freed
commit 0803278b0b4d8eeb2b461fb698785df65a725d9e upstream.

Syzkaller hit 'KASAN: use-after-free Write in sanitize_ptr_alu' bug.

Call trace:

  dump_stack+0xbf/0x12e
  print_address_description+0x6a/0x280
  kasan_report+0x237/0x360
  sanitize_ptr_alu+0x85a/0x8d0
  adjust_ptr_min_max_vals+0x8f2/0x1ca0
  adjust_reg_min_max_vals+0x8ed/0x22e0
  do_check+0x1ca6/0x5d00
  bpf_check+0x9ca/0x2570
  bpf_prog_load+0xc91/0x1030
  __se_sys_bpf+0x61e/0x1f00
  do_syscall_64+0xc8/0x550
  entry_SYSCALL_64_after_hwframe+0x49/0xbe

Fault injection trace:

  kfree+0xea/0x290
  free_func_state+0x4a/0x60
  free_verifier_state+0x61/0xe0
  push_stack+0x216/0x2f0	          <- inject failslab
  sanitize_ptr_alu+0x2b1/0x8d0
  adjust_ptr_min_max_vals+0x8f2/0x1ca0
  adjust_reg_min_max_vals+0x8ed/0x22e0
  do_check+0x1ca6/0x5d00
  bpf_check+0x9ca/0x2570
  bpf_prog_load+0xc91/0x1030
  __se_sys_bpf+0x61e/0x1f00
  do_syscall_64+0xc8/0x550
  entry_SYSCALL_64_after_hwframe+0x49/0xbe

When kzalloc() fails in push_stack(), free_verifier_state() will free
current verifier state. As push_stack() returns, dst_reg was restored
if ptr_is_dst_reg is false. However, as member of the cur_state,
dst_reg is also freed, and error occurs when dereferencing dst_reg.
Simply fix it by testing ret of push_stack() before restoring dst_reg.

Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Signed-off-by: Xu Yu <xuyu@linux.alibaba.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-03 06:26:30 +02:00
Alban Crequy
02f8211b75 bpf, lpm: fix lookup bug in map_delete_elem
[ Upstream commit 7c0cdf0b3940f63d9777c3fcf250a2f83859ca54 ]

trie_delete_elem() was deleting an entry even though it was not matching
if the prefixlen was correct. This patch adds a check on matchlen.

Reproducer:

$ sudo bpftool map create /sys/fs/bpf/mylpm type lpm_trie key 8 value 1 entries 128 name mylpm flags 1
$ sudo bpftool map update pinned /sys/fs/bpf/mylpm key hex 10 00 00 00 aa bb cc dd value hex 01
$ sudo bpftool map dump pinned /sys/fs/bpf/mylpm
key: 10 00 00 00 aa bb cc dd  value: 01
Found 1 element
$ sudo bpftool map delete pinned /sys/fs/bpf/mylpm key hex 10 00 00 00 ff ff ff ff
$ echo $?
0
$ sudo bpftool map dump pinned /sys/fs/bpf/mylpm
Found 0 elements

A similar reproducer is added in the selftests.

Without the patch:

$ sudo ./tools/testing/selftests/bpf/test_lpm_map
test_lpm_map: test_lpm_map.c:485: test_lpm_delete: Assertion `bpf_map_delete_elem(map_fd, key) == -1 && errno == ENOENT' failed.
Aborted

With the patch: test_lpm_map runs without errors.

Fixes: e454cf5958 ("bpf: Implement map_delete_elem for BPF_MAP_TYPE_LPM_TRIE")
Cc: Craig Gallek <kraig@google.com>
Signed-off-by: Alban Crequy <alban@kinvolk.io>
Acked-by: Craig Gallek <kraig@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-23 20:09:51 +01:00
Alexei Starovoitov
c7c68a1b9a bpf: fix lockdep false positive in stackmap
[ Upstream commit 3defaf2f15b2bfd86c6664181ac009e91985f8ac ]

Lockdep warns about false positive:
[   11.211460] ------------[ cut here ]------------
[   11.211936] DEBUG_LOCKS_WARN_ON(depth <= 0)
[   11.211985] WARNING: CPU: 0 PID: 141 at ../kernel/locking/lockdep.c:3592 lock_release+0x1ad/0x280
[   11.213134] Modules linked in:
[   11.214954] RIP: 0010:lock_release+0x1ad/0x280
[   11.223508] Call Trace:
[   11.223705]  <IRQ>
[   11.223874]  ? __local_bh_enable+0x7a/0x80
[   11.224199]  up_read+0x1c/0xa0
[   11.224446]  do_up_read+0x12/0x20
[   11.224713]  irq_work_run_list+0x43/0x70
[   11.225030]  irq_work_run+0x26/0x50
[   11.225310]  smp_irq_work_interrupt+0x57/0x1f0
[   11.225662]  irq_work_interrupt+0xf/0x20

since rw_semaphore is released in a different task vs task that locked the sema.
It is expected behavior.
Fix the warning with up_read_non_owner() and rwsem_release() annotation.

Fixes: bae77c5eb5 ("bpf: enable stackmap with build_id in nmi context")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-23 20:09:48 +01:00
Martin KaFai Lau
ae26a7109c bpf: Fix syscall's stackmap lookup potential deadlock
[ Upstream commit 7c4cd051add3d00bbff008a133c936c515eaa8fe ]

The map_lookup_elem used to not acquiring spinlock
in order to optimize the reader.

It was true until commit 557c0c6e7d ("bpf: convert stackmap to pre-allocation")
The syscall's map_lookup_elem(stackmap) calls bpf_stackmap_copy().
bpf_stackmap_copy() may find the elem no longer needed after the copy is done.
If that is the case, pcpu_freelist_push() saves this elem for reuse later.
This push requires a spinlock.

If a tracing bpf_prog got run in the middle of the syscall's
map_lookup_elem(stackmap) and this tracing bpf_prog is calling
bpf_get_stackid(stackmap) which also requires the same pcpu_freelist's
spinlock, it may end up with a dead lock situation as reported by
Eric Dumazet in https://patchwork.ozlabs.org/patch/1030266/

The situation is the same as the syscall's map_update_elem() which
needs to acquire the pcpu_freelist's spinlock and could race
with tracing bpf_prog.  Hence, this patch fixes it by protecting
bpf_stackmap_copy() with this_cpu_inc(bpf_prog_active)
to prevent tracing bpf_prog from running.

A later syscall's map_lookup_elem commit f1a2e44a3aec ("bpf: add queue and stack maps")
also acquires a spinlock and races with tracing bpf_prog similarly.
Hence, this patch is forward looking and protects the majority
of the map lookups.  bpf_map_offload_lookup_elem() is the exception
since it is for network bpf_prog only (i.e. never called by tracing
bpf_prog).

Fixes: 557c0c6e7d ("bpf: convert stackmap to pre-allocation")
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-13 14:02:36 -07:00
Alexei Starovoitov
e3bc64c9aa bpf: fix lockdep false positive in percpu_freelist
[ Upstream commit a89fac57b5d080771efd4d71feaae19877cf68f0 ]

Lockdep warns about false positive:
[   12.492084] 00000000e6b28347 (&head->lock){+...}, at: pcpu_freelist_push+0x2a/0x40
[   12.492696] but this lock was taken by another, HARDIRQ-safe lock in the past:
[   12.493275]  (&rq->lock){-.-.}
[   12.493276]
[   12.493276]
[   12.493276] and interrupts could create inverse lock ordering between them.
[   12.493276]
[   12.494435]
[   12.494435] other info that might help us debug this:
[   12.494979]  Possible interrupt unsafe locking scenario:
[   12.494979]
[   12.495518]        CPU0                    CPU1
[   12.495879]        ----                    ----
[   12.496243]   lock(&head->lock);
[   12.496502]                                local_irq_disable();
[   12.496969]                                lock(&rq->lock);
[   12.497431]                                lock(&head->lock);
[   12.497890]   <Interrupt>
[   12.498104]     lock(&rq->lock);
[   12.498368]
[   12.498368]  *** DEADLOCK ***
[   12.498368]
[   12.498837] 1 lock held by dd/276:
[   12.499110]  #0: 00000000c58cb2ee (rcu_read_lock){....}, at: trace_call_bpf+0x5e/0x240
[   12.499747]
[   12.499747] the shortest dependencies between 2nd lock and 1st lock:
[   12.500389]  -> (&rq->lock){-.-.} {
[   12.500669]     IN-HARDIRQ-W at:
[   12.500934]                       _raw_spin_lock+0x2f/0x40
[   12.501373]                       scheduler_tick+0x4c/0xf0
[   12.501812]                       update_process_times+0x40/0x50
[   12.502294]                       tick_periodic+0x27/0xb0
[   12.502723]                       tick_handle_periodic+0x1f/0x60
[   12.503203]                       timer_interrupt+0x11/0x20
[   12.503651]                       __handle_irq_event_percpu+0x43/0x2c0
[   12.504167]                       handle_irq_event_percpu+0x20/0x50
[   12.504674]                       handle_irq_event+0x37/0x60
[   12.505139]                       handle_level_irq+0xa7/0x120
[   12.505601]                       handle_irq+0xa1/0x150
[   12.506018]                       do_IRQ+0x77/0x140
[   12.506411]                       ret_from_intr+0x0/0x1d
[   12.506834]                       _raw_spin_unlock_irqrestore+0x53/0x60
[   12.507362]                       __setup_irq+0x481/0x730
[   12.507789]                       setup_irq+0x49/0x80
[   12.508195]                       hpet_time_init+0x21/0x32
[   12.508644]                       x86_late_time_init+0xb/0x16
[   12.509106]                       start_kernel+0x390/0x42a
[   12.509554]                       secondary_startup_64+0xa4/0xb0
[   12.510034]     IN-SOFTIRQ-W at:
[   12.510305]                       _raw_spin_lock+0x2f/0x40
[   12.510772]                       try_to_wake_up+0x1c7/0x4e0
[   12.511220]                       swake_up_locked+0x20/0x40
[   12.511657]                       swake_up_one+0x1a/0x30
[   12.512070]                       rcu_process_callbacks+0xc5/0x650
[   12.512553]                       __do_softirq+0xe6/0x47b
[   12.512978]                       irq_exit+0xc3/0xd0
[   12.513372]                       smp_apic_timer_interrupt+0xa9/0x250
[   12.513876]                       apic_timer_interrupt+0xf/0x20
[   12.514343]                       default_idle+0x1c/0x170
[   12.514765]                       do_idle+0x199/0x240
[   12.515159]                       cpu_startup_entry+0x19/0x20
[   12.515614]                       start_kernel+0x422/0x42a
[   12.516045]                       secondary_startup_64+0xa4/0xb0
[   12.516521]     INITIAL USE at:
[   12.516774]                      _raw_spin_lock_irqsave+0x38/0x50
[   12.517258]                      rq_attach_root+0x16/0xd0
[   12.517685]                      sched_init+0x2f2/0x3eb
[   12.518096]                      start_kernel+0x1fb/0x42a
[   12.518525]                      secondary_startup_64+0xa4/0xb0
[   12.518986]   }
[   12.519132]   ... key      at: [<ffffffff82b7bc28>] __key.71384+0x0/0x8
[   12.519649]   ... acquired at:
[   12.519892]    pcpu_freelist_pop+0x7b/0xd0
[   12.520221]    bpf_get_stackid+0x1d2/0x4d0
[   12.520563]    ___bpf_prog_run+0x8b4/0x11a0
[   12.520887]
[   12.521008] -> (&head->lock){+...} {
[   12.521292]    HARDIRQ-ON-W at:
[   12.521539]                     _raw_spin_lock+0x2f/0x40
[   12.521950]                     pcpu_freelist_push+0x2a/0x40
[   12.522396]                     bpf_get_stackid+0x494/0x4d0
[   12.522828]                     ___bpf_prog_run+0x8b4/0x11a0
[   12.523296]    INITIAL USE at:
[   12.523537]                    _raw_spin_lock+0x2f/0x40
[   12.523944]                    pcpu_freelist_populate+0xc0/0x120
[   12.524417]                    htab_map_alloc+0x405/0x500
[   12.524835]                    __do_sys_bpf+0x1a3/0x1a90
[   12.525253]                    do_syscall_64+0x4a/0x180
[   12.525659]                    entry_SYSCALL_64_after_hwframe+0x49/0xbe
[   12.526167]  }
[   12.526311]  ... key      at: [<ffffffff838f7668>] __key.13130+0x0/0x8
[   12.526812]  ... acquired at:
[   12.527047]    __lock_acquire+0x521/0x1350
[   12.527371]    lock_acquire+0x98/0x190
[   12.527680]    _raw_spin_lock+0x2f/0x40
[   12.527994]    pcpu_freelist_push+0x2a/0x40
[   12.528325]    bpf_get_stackid+0x494/0x4d0
[   12.528645]    ___bpf_prog_run+0x8b4/0x11a0
[   12.528970]
[   12.529092]
[   12.529092] stack backtrace:
[   12.529444] CPU: 0 PID: 276 Comm: dd Not tainted 5.0.0-rc3-00018-g2fa53f892422 #475
[   12.530043] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
[   12.530750] Call Trace:
[   12.530948]  dump_stack+0x5f/0x8b
[   12.531248]  check_usage_backwards+0x10c/0x120
[   12.531598]  ? ___bpf_prog_run+0x8b4/0x11a0
[   12.531935]  ? mark_lock+0x382/0x560
[   12.532229]  mark_lock+0x382/0x560
[   12.532496]  ? print_shortest_lock_dependencies+0x180/0x180
[   12.532928]  __lock_acquire+0x521/0x1350
[   12.533271]  ? find_get_entry+0x17f/0x2e0
[   12.533586]  ? find_get_entry+0x19c/0x2e0
[   12.533902]  ? lock_acquire+0x98/0x190
[   12.534196]  lock_acquire+0x98/0x190
[   12.534482]  ? pcpu_freelist_push+0x2a/0x40
[   12.534810]  _raw_spin_lock+0x2f/0x40
[   12.535099]  ? pcpu_freelist_push+0x2a/0x40
[   12.535432]  pcpu_freelist_push+0x2a/0x40
[   12.535750]  bpf_get_stackid+0x494/0x4d0
[   12.536062]  ___bpf_prog_run+0x8b4/0x11a0

It has been explained that is a false positive here:
https://lkml.org/lkml/2018/7/25/756
Recap:
- stackmap uses pcpu_freelist
- The lock in pcpu_freelist is a percpu lock
- stackmap is only used by tracing bpf_prog
- A tracing bpf_prog cannot be run if another bpf_prog
  has already been running (ensured by the percpu bpf_prog_active counter).

Eric pointed out that this lockdep splats stops other
legit lockdep splats in selftests/bpf/test_progs.c.

Fix this by calling local_irq_save/restore for stackmap.

Another false positive had also been worked around by calling
local_irq_save in commit 89ad2fa3f0 ("bpf: fix lockdep splat").
That commit added unnecessary irq_save/restore to fast path of
bpf hash map. irqs are already disabled at that point, since htab
is holding per bucket spin_lock with irqsave.

Let's reduce overhead for htab by introducing __pcpu_freelist_push/pop
function w/o irqsave and convert pcpu_freelist_push/pop to irqsave
to be used elsewhere (right now only in stackmap).
It stops lockdep false positive in stackmap with a bit of acceptable overhead.

Fixes: 557c0c6e7d ("bpf: convert stackmap to pre-allocation")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-13 14:02:36 -07:00
Daniel Borkmann
ca490a9873 bpf: fix sanitation rewrite in case of non-pointers
commit 3612af783cf52c74a031a2f11b82247b2599d3cd upstream.

Marek reported that he saw an issue with the below snippet in that
timing measurements where off when loaded as unpriv while results
were reasonable when loaded as privileged:

    [...]
    uint64_t a = bpf_ktime_get_ns();
    uint64_t b = bpf_ktime_get_ns();
    uint64_t delta = b - a;
    if ((int64_t)delta > 0) {
    [...]

Turns out there is a bug where a corner case is missing in the fix
d3bd7413e0ca ("bpf: fix sanitation of alu op with pointer / scalar
type from different paths"), namely fixup_bpf_calls() only checks
whether aux has a non-zero alu_state, but it also needs to test for
the case of BPF_ALU_NON_POINTER since in both occasions we need to
skip the masking rewrite (as there is nothing to mask).

Fixes: d3bd7413e0ca ("bpf: fix sanitation of alu op with pointer / scalar type from different paths")
Reported-by: Marek Majkowski <marek@cloudflare.com>
Reported-by: Arthur Fabre <afabre@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/netdev/CAJPywTJqP34cK20iLM5YmUMz9KXQOdu1-+BZrGMAGgLuBWz7fg@mail.gmail.com/T/
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-10 07:17:22 +01:00
Stanislav Fomichev
5c6fdd877e bpf: zero out build_id for BPF_STACK_BUILD_ID_IP
[ Upstream commit 4af396ae4836c4ecab61e975b8e61270c551894d ]

When returning BPF_STACK_BUILD_ID_IP from stack_map_get_build_id_offset,
make sure that build_id field is empty. Since we are using percpu
free list, there is a possibility that we might reuse some previous
bpf_stack_build_id with non-zero build_id.

Fixes: 615755a77b ("bpf: extend stackmap to save binary_build_id+offset instead of address")
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-27 10:08:56 +01:00
Stanislav Fomichev
c4555b9f28 bpf: don't assume build-id length is always 20 bytes
[ Upstream commit 0b698005a9d11c0e91141ec11a2c4918a129f703 ]

Build-id length is not fixed to 20, it can be (`man ld` /--build-id):
  * 128-bit (uuid)
  * 160-bit (sha1)
  * any length specified in ld --build-id=0xhexstring

To fix the issue of missing BPF_STACK_BUILD_ID_VALID for shorter build-ids,
assume that build-id is somewhere in the range of 1 .. 20.
Set the remaining bytes to zero.

v2:
* don't introduce new "len = min(BPF_BUILD_ID_SIZE, nhdr->n_descsz)",
  we already know that nhdr->n_descsz <= BPF_BUILD_ID_SIZE if we enter
  this 'if' condition

Fixes: 615755a77b ("bpf: extend stackmap to save binary_build_id+offset instead of address")
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-27 10:08:56 +01:00
Song Liu
2f3480e340 bpf: fix panic in stack_map_get_build_id() on i386 and arm32
[ Upstream commit beaf3d1901f4ea46fbd5c9d857227d99751de469 ]

As Naresh reported, test_stacktrace_build_id() causes panic on i386 and
arm32 systems. This is caused by page_address() returns NULL in certain
cases.

This patch fixes this error by using kmap_atomic/kunmap_atomic instead
of page_address.

Fixes: 615755a77b (" bpf: extend stackmap to save binary_build_id+offset instead of address")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-27 10:08:54 +01:00
Daniel Borkmann
37c9e3ee42 bpf: fix inner map masking to prevent oob under speculation
[ commit 9d5564ddcf2a0f5ba3fa1c3a1f8a1b59ad309553 upstream ]

During review I noticed that inner meta map setup for map in
map is buggy in that it does not propagate all needed data
from the reference map which the verifier is later accessing.

In particular one such case is index masking to prevent out of
bounds access under speculative execution due to missing the
map's unpriv_array/index_mask field propagation. Fix this such
that the verifier is generating the correct code for inlined
lookups in case of unpriviledged use.

Before patch (test_verifier's 'map in map access' dump):

  # bpftool prog dump xla id 3
     0: (62) *(u32 *)(r10 -4) = 0
     1: (bf) r2 = r10
     2: (07) r2 += -4
     3: (18) r1 = map[id:4]
     5: (07) r1 += 272                |
     6: (61) r0 = *(u32 *)(r2 +0)     |
     7: (35) if r0 >= 0x1 goto pc+6   | Inlined map in map lookup
     8: (54) (u32) r0 &= (u32) 0      | with index masking for
     9: (67) r0 <<= 3                 | map->unpriv_array.
    10: (0f) r0 += r1                 |
    11: (79) r0 = *(u64 *)(r0 +0)     |
    12: (15) if r0 == 0x0 goto pc+1   |
    13: (05) goto pc+1                |
    14: (b7) r0 = 0                   |
    15: (15) if r0 == 0x0 goto pc+11
    16: (62) *(u32 *)(r10 -4) = 0
    17: (bf) r2 = r10
    18: (07) r2 += -4
    19: (bf) r1 = r0
    20: (07) r1 += 272                |
    21: (61) r0 = *(u32 *)(r2 +0)     | Index masking missing (!)
    22: (35) if r0 >= 0x1 goto pc+3   | for inner map despite
    23: (67) r0 <<= 3                 | map->unpriv_array set.
    24: (0f) r0 += r1                 |
    25: (05) goto pc+1                |
    26: (b7) r0 = 0                   |
    27: (b7) r0 = 0
    28: (95) exit

After patch:

  # bpftool prog dump xla id 1
     0: (62) *(u32 *)(r10 -4) = 0
     1: (bf) r2 = r10
     2: (07) r2 += -4
     3: (18) r1 = map[id:2]
     5: (07) r1 += 272                |
     6: (61) r0 = *(u32 *)(r2 +0)     |
     7: (35) if r0 >= 0x1 goto pc+6   | Same inlined map in map lookup
     8: (54) (u32) r0 &= (u32) 0      | with index masking due to
     9: (67) r0 <<= 3                 | map->unpriv_array.
    10: (0f) r0 += r1                 |
    11: (79) r0 = *(u64 *)(r0 +0)     |
    12: (15) if r0 == 0x0 goto pc+1   |
    13: (05) goto pc+1                |
    14: (b7) r0 = 0                   |
    15: (15) if r0 == 0x0 goto pc+12
    16: (62) *(u32 *)(r10 -4) = 0
    17: (bf) r2 = r10
    18: (07) r2 += -4
    19: (bf) r1 = r0
    20: (07) r1 += 272                |
    21: (61) r0 = *(u32 *)(r2 +0)     |
    22: (35) if r0 >= 0x1 goto pc+4   | Now fixed inlined inner map
    23: (54) (u32) r0 &= (u32) 0      | lookup with proper index masking
    24: (67) r0 <<= 3                 | for map->unpriv_array.
    25: (0f) r0 += r1                 |
    26: (05) goto pc+1                |
    27: (b7) r0 = 0                   |
    28: (b7) r0 = 0
    29: (95) exit

Fixes: b2157399cc ("bpf: prevent out-of-bounds speculation")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31 08:14:41 +01:00
Daniel Borkmann
eed84f94ff bpf: fix sanitation of alu op with pointer / scalar type from different paths
[ commit d3bd7413e0ca40b60cf60d4003246d067cafdeda upstream ]

While 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer
arithmetic") took care of rejecting alu op on pointer when e.g. pointer
came from two different map values with different map properties such as
value size, Jann reported that a case was not covered yet when a given
alu op is used in both "ptr_reg += reg" and "numeric_reg += reg" from
different branches where we would incorrectly try to sanitize based
on the pointer's limit. Catch this corner case and reject the program
instead.

Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31 08:14:41 +01:00
Daniel Borkmann
f92a819b4c bpf: prevent out of bounds speculation on pointer arithmetic
[ commit 979d63d50c0c0f7bc537bf821e056cc9fe5abd38 upstream ]

Jann reported that the original commit back in b2157399cc
("bpf: prevent out-of-bounds speculation") was not sufficient
to stop CPU from speculating out of bounds memory access:
While b2157399cc only focussed on masking array map access
for unprivileged users for tail calls and data access such
that the user provided index gets sanitized from BPF program
and syscall side, there is still a more generic form affected
from BPF programs that applies to most maps that hold user
data in relation to dynamic map access when dealing with
unknown scalars or "slow" known scalars as access offset, for
example:

  - Load a map value pointer into R6
  - Load an index into R7
  - Do a slow computation (e.g. with a memory dependency) that
    loads a limit into R8 (e.g. load the limit from a map for
    high latency, then mask it to make the verifier happy)
  - Exit if R7 >= R8 (mispredicted branch)
  - Load R0 = R6[R7]
  - Load R0 = R6[R0]

For unknown scalars there are two options in the BPF verifier
where we could derive knowledge from in order to guarantee
safe access to the memory: i) While </>/<=/>= variants won't
allow to derive any lower or upper bounds from the unknown
scalar where it would be safe to add it to the map value
pointer, it is possible through ==/!= test however. ii) another
option is to transform the unknown scalar into a known scalar,
for example, through ALU ops combination such as R &= <imm>
followed by R |= <imm> or any similar combination where the
original information from the unknown scalar would be destroyed
entirely leaving R with a constant. The initial slow load still
precedes the latter ALU ops on that register, so the CPU
executes speculatively from that point. Once we have the known
scalar, any compare operation would work then. A third option
only involving registers with known scalars could be crafted
as described in [0] where a CPU port (e.g. Slow Int unit)
would be filled with many dependent computations such that
the subsequent condition depending on its outcome has to wait
for evaluation on its execution port and thereby executing
speculatively if the speculated code can be scheduled on a
different execution port, or any other form of mistraining
as described in [1], for example. Given this is not limited
to only unknown scalars, not only map but also stack access
is affected since both is accessible for unprivileged users
and could potentially be used for out of bounds access under
speculation.

In order to prevent any of these cases, the verifier is now
sanitizing pointer arithmetic on the offset such that any
out of bounds speculation would be masked in a way where the
pointer arithmetic result in the destination register will
stay unchanged, meaning offset masked into zero similar as
in array_index_nospec() case. With regards to implementation,
there are three options that were considered: i) new insn
for sanitation, ii) push/pop insn and sanitation as inlined
BPF, iii) reuse of ax register and sanitation as inlined BPF.

Option i) has the downside that we end up using from reserved
bits in the opcode space, but also that we would require
each JIT to emit masking as native arch opcodes meaning
mitigation would have slow adoption till everyone implements
it eventually which is counter-productive. Option ii) and iii)
have both in common that a temporary register is needed in
order to implement the sanitation as inlined BPF since we
are not allowed to modify the source register. While a push /
pop insn in ii) would be useful to have in any case, it
requires once again that every JIT needs to implement it
first. While possible, amount of changes needed would also
be unsuitable for a -stable patch. Therefore, the path which
has fewer changes, less BPF instructions for the mitigation
and does not require anything to be changed in the JITs is
option iii) which this work is pursuing. The ax register is
already mapped to a register in all JITs (modulo arm32 where
it's mapped to stack as various other BPF registers there)
and used in constant blinding for JITs-only so far. It can
be reused for verifier rewrites under certain constraints.
The interpreter's tmp "register" has therefore been remapped
into extending the register set with hidden ax register and
reusing that for a number of instructions that needed the
prior temporary variable internally (e.g. div, mod). This
allows for zero increase in stack space usage in the interpreter,
and enables (restricted) generic use in rewrites otherwise as
long as such a patchlet does not make use of these instructions.
The sanitation mask is dynamic and relative to the offset the
map value or stack pointer currently holds.

There are various cases that need to be taken under consideration
for the masking, e.g. such operation could look as follows:
ptr += val or val += ptr or ptr -= val. Thus, the value to be
sanitized could reside either in source or in destination
register, and the limit is different depending on whether
the ALU op is addition or subtraction and depending on the
current known and bounded offset. The limit is derived as
follows: limit := max_value_size - (smin_value + off). For
subtraction: limit := umax_value + off. This holds because
we do not allow any pointer arithmetic that would
temporarily go out of bounds or would have an unknown
value with mixed signed bounds where it is unclear at
verification time whether the actual runtime value would
be either negative or positive. For example, we have a
derived map pointer value with constant offset and bounded
one, so limit based on smin_value works because the verifier
requires that statically analyzed arithmetic on the pointer
must be in bounds, and thus it checks if resulting
smin_value + off and umax_value + off is still within map
value bounds at time of arithmetic in addition to time of
access. Similarly, for the case of stack access we derive
the limit as follows: MAX_BPF_STACK + off for subtraction
and -off for the case of addition where off := ptr_reg->off +
ptr_reg->var_off.value. Subtraction is a special case for
the masking which can be in form of ptr += -val, ptr -= -val,
or ptr -= val. In the first two cases where we know that
the value is negative, we need to temporarily negate the
value in order to do the sanitation on a positive value
where we later swap the ALU op, and restore original source
register if the value was in source.

The sanitation of pointer arithmetic alone is still not fully
sufficient as is, since a scenario like the following could
happen ...

  PTR += 0x1000 (e.g. K-based imm)
  PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON
  PTR += 0x1000
  PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON
  [...]

... which under speculation could end up as ...

  PTR += 0x1000
  PTR -= 0 [ truncated by mitigation ]
  PTR += 0x1000
  PTR -= 0 [ truncated by mitigation ]
  [...]

... and therefore still access out of bounds. To prevent such
case, the verifier is also analyzing safety for potential out
of bounds access under speculative execution. Meaning, it is
also simulating pointer access under truncation. We therefore
"branch off" and push the current verification state after the
ALU operation with known 0 to the verification stack for later
analysis. Given the current path analysis succeeded it is
likely that the one under speculation can be pruned. In any
case, it is also subject to existing complexity limits and
therefore anything beyond this point will be rejected. In
terms of pruning, it needs to be ensured that the verification
state from speculative execution simulation must never prune
a non-speculative execution path, therefore, we mark verifier
state accordingly at the time of push_stack(). If verifier
detects out of bounds access under speculative execution from
one of the possible paths that includes a truncation, it will
reject such program.

Given we mask every reg-based pointer arithmetic for
unprivileged programs, we've been looking into how it could
affect real-world programs in terms of size increase. As the
majority of programs are targeted for privileged-only use
case, we've unconditionally enabled masking (with its alu
restrictions on top of it) for privileged programs for the
sake of testing in order to check i) whether they get rejected
in its current form, and ii) by how much the number of
instructions and size will increase. We've tested this by
using Katran, Cilium and test_l4lb from the kernel selftests.
For Katran we've evaluated balancer_kern.o, Cilium bpf_lxc.o
and an older test object bpf_lxc_opt_-DUNKNOWN.o and l4lb
we've used test_l4lb.o as well as test_l4lb_noinline.o. We
found that none of the programs got rejected by the verifier
with this change, and that impact is rather minimal to none.
balancer_kern.o had 13,904 bytes (1,738 insns) xlated and
7,797 bytes JITed before and after the change. Most complex
program in bpf_lxc.o had 30,544 bytes (3,817 insns) xlated
and 18,538 bytes JITed before and after and none of the other
tail call programs in bpf_lxc.o had any changes either. For
the older bpf_lxc_opt_-DUNKNOWN.o object we found a small
increase from 20,616 bytes (2,576 insns) and 12,536 bytes JITed
before to 20,664 bytes (2,582 insns) and 12,558 bytes JITed
after the change. Other programs from that object file had
similar small increase. Both test_l4lb.o had no change and
remained at 6,544 bytes (817 insns) xlated and 3,401 bytes
JITed and for test_l4lb_noinline.o constant at 5,080 bytes
(634 insns) xlated and 3,313 bytes JITed. This can be explained
in that LLVM typically optimizes stack based pointer arithmetic
by using K-based operations and that use of dynamic map access
is not overly frequent. However, in future we may decide to
optimize the algorithm further under known guarantees from
branch and value speculation. Latter seems also unclear in
terms of prediction heuristics that today's CPUs apply as well
as whether there could be collisions in e.g. the predictor's
Value History/Pattern Table for triggering out of bounds access,
thus masking is performed unconditionally at this point but could
be subject to relaxation later on. We were generally also
brainstorming various other approaches for mitigation, but the
blocker was always lack of available registers at runtime and/or
overhead for runtime tracking of limits belonging to a specific
pointer. Thus, we found this to be minimally intrusive under
given constraints.

With that in place, a simple example with sanitized access on
unprivileged load at post-verification time looks as follows:

  # bpftool prog dump xlated id 282
  [...]
  28: (79) r1 = *(u64 *)(r7 +0)
  29: (79) r2 = *(u64 *)(r7 +8)
  30: (57) r1 &= 15
  31: (79) r3 = *(u64 *)(r0 +4608)
  32: (57) r3 &= 1
  33: (47) r3 |= 1
  34: (2d) if r2 > r3 goto pc+19
  35: (b4) (u32) r11 = (u32) 20479  |
  36: (1f) r11 -= r2                | Dynamic sanitation for pointer
  37: (4f) r11 |= r2                | arithmetic with registers
  38: (87) r11 = -r11               | containing bounded or known
  39: (c7) r11 s>>= 63              | scalars in order to prevent
  40: (5f) r11 &= r2                | out of bounds speculation.
  41: (0f) r4 += r11                |
  42: (71) r4 = *(u8 *)(r4 +0)
  43: (6f) r4 <<= r1
  [...]

For the case where the scalar sits in the destination register
as opposed to the source register, the following code is emitted
for the above example:

  [...]
  16: (b4) (u32) r11 = (u32) 20479
  17: (1f) r11 -= r2
  18: (4f) r11 |= r2
  19: (87) r11 = -r11
  20: (c7) r11 s>>= 63
  21: (5f) r2 &= r11
  22: (0f) r2 += r0
  23: (61) r0 = *(u32 *)(r2 +0)
  [...]

JIT blinding example with non-conflicting use of r10:

  [...]
   d5:	je     0x0000000000000106    _
   d7:	mov    0x0(%rax),%edi       |
   da:	mov    $0xf153246,%r10d     | Index load from map value and
   e0:	xor    $0xf153259,%r10      | (const blinded) mask with 0x1f.
   e7:	and    %r10,%rdi            |_
   ea:	mov    $0x2f,%r10d          |
   f0:	sub    %rdi,%r10            | Sanitized addition. Both use r10
   f3:	or     %rdi,%r10            | but do not interfere with each
   f6:	neg    %r10                 | other. (Neither do these instructions
   f9:	sar    $0x3f,%r10           | interfere with the use of ax as temp
   fd:	and    %r10,%rdi            | in interpreter.)
  100:	add    %rax,%rdi            |_
  103:	mov    0x0(%rdi),%eax
 [...]

Tested that it fixes Jann's reproducer, and also checked that test_verifier
and test_progs suite with interpreter, JIT and JIT with hardening enabled
on x86-64 and arm64 runs successfully.

  [0] Speculose: Analyzing the Security Implications of Speculative
      Execution in CPUs, Giorgi Maisuradze and Christian Rossow,
      https://arxiv.org/pdf/1801.04084.pdf

  [1] A Systematic Evaluation of Transient Execution Attacks and
      Defenses, Claudio Canella, Jo Van Bulck, Michael Schwarz,
      Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens,
      Dmitry Evtyushkin, Daniel Gruss,
      https://arxiv.org/pdf/1811.05441.pdf

Fixes: b2157399cc ("bpf: prevent out-of-bounds speculation")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31 08:14:41 +01:00