Commit graph

551 commits

Author SHA1 Message Date
Linus Torvalds
7a932516f5 vfs/y2038: inode timestamps conversion to timespec64
This is a late set of changes from Deepa Dinamani doing an automated
 treewide conversion of the inode and iattr structures from 'timespec'
 to 'timespec64', to push the conversion from the VFS layer into the
 individual file systems.
 
 There were no conflicts between this and the contents of linux-next
 until just before the merge window, when we saw multiple problems:
 
 - A minor conflict with my own y2038 fixes, which I could address
   by adding another patch on top here.
 - One semantic conflict with late changes to the NFS tree. I addressed
   this by merging Deepa's original branch on top of the changes that
   now got merged into mainline and making sure the merge commit includes
   the necessary changes as produced by coccinelle.
 - A trivial conflict against the removal of staging/lustre.
 - Multiple conflicts against the VFS changes in the overlayfs tree.
   These are still part of linux-next, but apparently this is no longer
   intended for 4.18 [1], so I am ignoring that part.
 
 As Deepa writes:
 
   The series aims to switch vfs timestamps to use struct timespec64.
   Currently vfs uses struct timespec, which is not y2038 safe.
 
   The series involves the following:
   1. Add vfs helper functions for supporting struct timepec64 timestamps.
   2. Cast prints of vfs timestamps to avoid warnings after the switch.
   3. Simplify code using vfs timestamps so that the actual
      replacement becomes easy.
   4. Convert vfs timestamps to use struct timespec64 using a script.
      This is a flag day patch.
 
   Next steps:
   1. Convert APIs that can handle timespec64, instead of converting
      timestamps at the boundaries.
   2. Update internal data structures to avoid timestamp conversions.
 
 Thomas Gleixner adds:
 
   I think there is no point to drag that out for the next merge window.
   The whole thing needs to be done in one go for the core changes which
   means that you're going to play that catchup game forever. Let's get
   over with it towards the end of the merge window.
 
 [1] https://www.spinics.net/lists/linux-fsdevel/msg128294.html
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJbInZAAAoJEGCrR//JCVInReoQAIlVIIMt5ZX6wmaKbrjy9Itf
 MfgbFihQ/djLnuSPVQ3nztcxF0d66BKHZ9puVjz6+mIHqfDvJTRwZs9nU+sOF/T1
 g78fRkM1cxq6ZCkGYAbzyjyo5aC4PnSMP/NQLmwqvi0MXqqrbDoq5ZdP9DHJw39h
 L9lD8FM/P7T29Fgp9tq/pT5l9X8VU8+s5KQG1uhB5hii4VL6pD6JyLElDita7rg+
 Z7/V7jkxIGEUWF7vGaiR1QTFzEtpUA/exDf9cnsf51OGtK/LJfQ0oiZPPuq3oA/E
 LSbt8YQQObc+dvfnGxwgxEg1k5WP5ekj/Wdibv/+rQKgGyLOTz6Q4xK6r8F2ahxs
 nyZQBdXqHhJYyKr1H1reUH3mrSgQbE5U5R1i3My0xV2dSn+vtK5vgF21v2Ku3A1G
 wJratdtF/kVBzSEQUhsYTw14Un+xhBLRWzcq0cELonqxaKvRQK9r92KHLIWNE7/v
 c0TmhFbkZA+zR8HdsaL3iYf1+0W/eYy8PcvepyldKNeW2pVk3CyvdTfY2Z87G2XK
 tIkK+BUWbG3drEGG3hxZ3757Ln3a9qWyC5ruD3mBVkuug/wekbI8PykYJS7Mx4s/
 WNXl0dAL0Eeu1M8uEJejRAe1Q3eXoMWZbvCYZc+wAm92pATfHVcKwPOh8P7NHlfy
 A3HkjIBrKW5AgQDxfgvm
 =CZX2
 -----END PGP SIGNATURE-----

Merge tag 'vfs-timespec64' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground

Pull inode timestamps conversion to timespec64 from Arnd Bergmann:
 "This is a late set of changes from Deepa Dinamani doing an automated
  treewide conversion of the inode and iattr structures from 'timespec'
  to 'timespec64', to push the conversion from the VFS layer into the
  individual file systems.

  As Deepa writes:

   'The series aims to switch vfs timestamps to use struct timespec64.
    Currently vfs uses struct timespec, which is not y2038 safe.

    The series involves the following:
    1. Add vfs helper functions for supporting struct timepec64
       timestamps.
    2. Cast prints of vfs timestamps to avoid warnings after the switch.
    3. Simplify code using vfs timestamps so that the actual replacement
       becomes easy.
    4. Convert vfs timestamps to use struct timespec64 using a script.
       This is a flag day patch.

    Next steps:
    1. Convert APIs that can handle timespec64, instead of converting
       timestamps at the boundaries.
    2. Update internal data structures to avoid timestamp conversions'

  Thomas Gleixner adds:

   'I think there is no point to drag that out for the next merge
    window. The whole thing needs to be done in one go for the core
    changes which means that you're going to play that catchup game
    forever. Let's get over with it towards the end of the merge window'"

* tag 'vfs-timespec64' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground:
  pstore: Remove bogus format string definition
  vfs: change inode times to use struct timespec64
  pstore: Convert internal records to timespec64
  udf: Simplify calls to udf_disk_stamp_to_time
  fs: nfs: get rid of memcpys for inode times
  ceph: make inode time prints to be long long
  lustre: Use long long type to print inode time
  fs: add timespec64_truncate()
2018-06-15 07:31:07 +09:00
Arnd Bergmann
15eefe2a99 Merge branch 'vfs_timespec64' of https://github.com/deepa-hub/vfs into vfs-timespec64
Pull the timespec64 conversion from Deepa Dinamani:
 "The series aims to switch vfs timestamps to use
  struct timespec64. Currently vfs uses struct timespec,
  which is not y2038 safe.

  The flag patch applies cleanly. I've not seen the timestamps
  update logic change often. The series applies cleanly on 4.17-rc6
  and linux-next tip (top commit: next-20180517).

  I'm not sure how to merge this kind of a series with a flag patch.
  We are targeting 4.18 for this.
  Let me know if you have other suggestions.

  The series involves the following:
  1. Add vfs helper functions for supporting struct timepec64 timestamps.
  2. Cast prints of vfs timestamps to avoid warnings after the switch.
  3. Simplify code using vfs timestamps so that the actual
     replacement becomes easy.
  4. Convert vfs timestamps to use struct timespec64 using a script.
     This is a flag day patch.

  I've tried to keep the conversions with the script simple, to
  aid in the reviews. I've kept all the internal filesystem data
  structures and function signatures the same.

  Next steps:
  1. Convert APIs that can handle timespec64, instead of converting
     timestamps at the boundaries.
  2. Update internal data structures to avoid timestamp conversions."

I've pulled it into a branch based on top of the NFS changes that
are now in mainline, so I could resolve the non-obvious conflict
between the two while merging.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-06-14 14:54:00 +02:00
Kees Cook
6396bb2215 treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:

        kzalloc(a * b, gfp)

with:
        kcalloc(a * b, gfp)

as well as handling cases of:

        kzalloc(a * b * c, gfp)

with:

        kzalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kzalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kzalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kzalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kzalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kzalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kzalloc
+ kcalloc
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kzalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kzalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kzalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kzalloc(sizeof(THING) * C2, ...)
|
  kzalloc(sizeof(TYPE) * C2, ...)
|
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Linus Torvalds
d987f62cce \n
-----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEEq1nRK9aeMoq1VSgcnJ2qBz9kQNkFAlsZTnUACgkQnJ2qBz9k
 QNmSlwf6AwQFhSrrPTOwL9OIUzPnjvFC/Yk2CRmQzC+6jkFoS+cRPsCwDeGOP9KK
 9Col8Dr3M72PLKbyA3Z46YzXsRCB+pifgQKDjpMNKZJxuHSd8JmvAgEuLs8a2119
 4ZM0nNwhFJ2fnrpUwBDKoGB7m+Xb+xxnEY4hQ+jFPrDBuXmcjOz41al4EcZeb1YE
 Eu6zpmB4jIqkOY+LxMtHRSE7GlDAP6g9ERYodjsL/+Vg424wHLRQb/IVaXngalGS
 es1cMOoIqfT0rsODweXP4aGOY+z+Am+Htspqg7mrWk9zu/lP/57vS9Kwy/VsOQfp
 zRoDzuMnxumXVjTjHnd1Y9NIJw+gYg==
 =wZmz
 -----END PGP SIGNATURE-----

Merge tag 'udf_for_v4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs

Pull udf updates from Jan Kara:
 "UDF support for UTF-16 characters in file names"

* tag 'udf_for_v4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
  udf: Add support for decoding UTF-16 characters
  udf: Add support for encoding UTF-16 characters
  udf: Push sb argument to udf_name_[to|from]_CS0()
  udf: Convert ident strings to proper charset
  udf: Use UTF-32 <-> UTF-8 conversion functions from NLS
  udf: Always require NLS support
2018-06-07 09:36:29 -07:00
Deepa Dinamani
95582b0083 vfs: change inode times to use struct timespec64
struct timespec is not y2038 safe. Transition vfs to use
y2038 safe struct timespec64 instead.

The change was made with the help of the following cocinelle
script. This catches about 80% of the changes.
All the header file and logic changes are included in the
first 5 rules. The rest are trivial substitutions.
I avoid changing any of the function signatures or any other
filesystem specific data structures to keep the patch simple
for review.

The script can be a little shorter by combining different cases.
But, this version was sufficient for my usecase.

virtual patch

@ depends on patch @
identifier now;
@@
- struct timespec
+ struct timespec64
  current_time ( ... )
  {
- struct timespec now = current_kernel_time();
+ struct timespec64 now = current_kernel_time64();
  ...
- return timespec_trunc(
+ return timespec64_trunc(
  ... );
  }

@ depends on patch @
identifier xtime;
@@
 struct \( iattr \| inode \| kstat \) {
 ...
-       struct timespec xtime;
+       struct timespec64 xtime;
 ...
 }

@ depends on patch @
identifier t;
@@
 struct inode_operations {
 ...
int (*update_time) (...,
-       struct timespec t,
+       struct timespec64 t,
...);
 ...
 }

@ depends on patch @
identifier t;
identifier fn_update_time =~ "update_time$";
@@
 fn_update_time (...,
- struct timespec *t,
+ struct timespec64 *t,
 ...) { ... }

@ depends on patch @
identifier t;
@@
lease_get_mtime( ... ,
- struct timespec *t
+ struct timespec64 *t
  ) { ... }

@te depends on patch forall@
identifier ts;
local idexpression struct inode *inode_node;
identifier i_xtime =~ "^i_[acm]time$";
identifier ia_xtime =~ "^ia_[acm]time$";
identifier fn_update_time =~ "update_time$";
identifier fn;
expression e, E3;
local idexpression struct inode *node1;
local idexpression struct inode *node2;
local idexpression struct iattr *attr1;
local idexpression struct iattr *attr2;
local idexpression struct iattr attr;
identifier i_xtime1 =~ "^i_[acm]time$";
identifier i_xtime2 =~ "^i_[acm]time$";
identifier ia_xtime1 =~ "^ia_[acm]time$";
identifier ia_xtime2 =~ "^ia_[acm]time$";
@@
(
(
- struct timespec ts;
+ struct timespec64 ts;
|
- struct timespec ts = current_time(inode_node);
+ struct timespec64 ts = current_time(inode_node);
)

<+... when != ts
(
- timespec_equal(&inode_node->i_xtime, &ts)
+ timespec64_equal(&inode_node->i_xtime, &ts)
|
- timespec_equal(&ts, &inode_node->i_xtime)
+ timespec64_equal(&ts, &inode_node->i_xtime)
|
- timespec_compare(&inode_node->i_xtime, &ts)
+ timespec64_compare(&inode_node->i_xtime, &ts)
|
- timespec_compare(&ts, &inode_node->i_xtime)
+ timespec64_compare(&ts, &inode_node->i_xtime)
|
ts = current_time(e)
|
fn_update_time(..., &ts,...)
|
inode_node->i_xtime = ts
|
node1->i_xtime = ts
|
ts = inode_node->i_xtime
|
<+... attr1->ia_xtime ...+> = ts
|
ts = attr1->ia_xtime
|
ts.tv_sec
|
ts.tv_nsec
|
btrfs_set_stack_timespec_sec(..., ts.tv_sec)
|
btrfs_set_stack_timespec_nsec(..., ts.tv_nsec)
|
- ts = timespec64_to_timespec(
+ ts =
...
-)
|
- ts = ktime_to_timespec(
+ ts = ktime_to_timespec64(
...)
|
- ts = E3
+ ts = timespec_to_timespec64(E3)
|
- ktime_get_real_ts(&ts)
+ ktime_get_real_ts64(&ts)
|
fn(...,
- ts
+ timespec64_to_timespec(ts)
,...)
)
...+>
(
<... when != ts
- return ts;
+ return timespec64_to_timespec(ts);
...>
)
|
- timespec_equal(&node1->i_xtime1, &node2->i_xtime2)
+ timespec64_equal(&node1->i_xtime2, &node2->i_xtime2)
|
- timespec_equal(&node1->i_xtime1, &attr2->ia_xtime2)
+ timespec64_equal(&node1->i_xtime2, &attr2->ia_xtime2)
|
- timespec_compare(&node1->i_xtime1, &node2->i_xtime2)
+ timespec64_compare(&node1->i_xtime1, &node2->i_xtime2)
|
node1->i_xtime1 =
- timespec_trunc(attr1->ia_xtime1,
+ timespec64_trunc(attr1->ia_xtime1,
...)
|
- attr1->ia_xtime1 = timespec_trunc(attr2->ia_xtime2,
+ attr1->ia_xtime1 =  timespec64_trunc(attr2->ia_xtime2,
...)
|
- ktime_get_real_ts(&attr1->ia_xtime1)
+ ktime_get_real_ts64(&attr1->ia_xtime1)
|
- ktime_get_real_ts(&attr.ia_xtime1)
+ ktime_get_real_ts64(&attr.ia_xtime1)
)

@ depends on patch @
struct inode *node;
struct iattr *attr;
identifier fn;
identifier i_xtime =~ "^i_[acm]time$";
identifier ia_xtime =~ "^ia_[acm]time$";
expression e;
@@
(
- fn(node->i_xtime);
+ fn(timespec64_to_timespec(node->i_xtime));
|
 fn(...,
- node->i_xtime);
+ timespec64_to_timespec(node->i_xtime));
|
- e = fn(attr->ia_xtime);
+ e = fn(timespec64_to_timespec(attr->ia_xtime));
)

@ depends on patch forall @
struct inode *node;
struct iattr *attr;
identifier i_xtime =~ "^i_[acm]time$";
identifier ia_xtime =~ "^ia_[acm]time$";
identifier fn;
@@
{
+ struct timespec ts;
<+...
(
+ ts = timespec64_to_timespec(node->i_xtime);
fn (...,
- &node->i_xtime,
+ &ts,
...);
|
+ ts = timespec64_to_timespec(attr->ia_xtime);
fn (...,
- &attr->ia_xtime,
+ &ts,
...);
)
...+>
}

@ depends on patch forall @
struct inode *node;
struct iattr *attr;
struct kstat *stat;
identifier ia_xtime =~ "^ia_[acm]time$";
identifier i_xtime =~ "^i_[acm]time$";
identifier xtime =~ "^[acm]time$";
identifier fn, ret;
@@
{
+ struct timespec ts;
<+...
(
+ ts = timespec64_to_timespec(node->i_xtime);
ret = fn (...,
- &node->i_xtime,
+ &ts,
...);
|
+ ts = timespec64_to_timespec(node->i_xtime);
ret = fn (...,
- &node->i_xtime);
+ &ts);
|
+ ts = timespec64_to_timespec(attr->ia_xtime);
ret = fn (...,
- &attr->ia_xtime,
+ &ts,
...);
|
+ ts = timespec64_to_timespec(attr->ia_xtime);
ret = fn (...,
- &attr->ia_xtime);
+ &ts);
|
+ ts = timespec64_to_timespec(stat->xtime);
ret = fn (...,
- &stat->xtime);
+ &ts);
)
...+>
}

@ depends on patch @
struct inode *node;
struct inode *node2;
identifier i_xtime1 =~ "^i_[acm]time$";
identifier i_xtime2 =~ "^i_[acm]time$";
identifier i_xtime3 =~ "^i_[acm]time$";
struct iattr *attrp;
struct iattr *attrp2;
struct iattr attr ;
identifier ia_xtime1 =~ "^ia_[acm]time$";
identifier ia_xtime2 =~ "^ia_[acm]time$";
struct kstat *stat;
struct kstat stat1;
struct timespec64 ts;
identifier xtime =~ "^[acmb]time$";
expression e;
@@
(
( node->i_xtime2 \| attrp->ia_xtime2 \| attr.ia_xtime2 \) = node->i_xtime1  ;
|
 node->i_xtime2 = \( node2->i_xtime1 \| timespec64_trunc(...) \);
|
 node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \);
|
 node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \);
|
 stat->xtime = node2->i_xtime1;
|
 stat1.xtime = node2->i_xtime1;
|
( node->i_xtime2 \| attrp->ia_xtime2 \) = attrp->ia_xtime1  ;
|
( attrp->ia_xtime1 \| attr.ia_xtime1 \) = attrp2->ia_xtime2;
|
- e = node->i_xtime1;
+ e = timespec64_to_timespec( node->i_xtime1 );
|
- e = attrp->ia_xtime1;
+ e = timespec64_to_timespec( attrp->ia_xtime1 );
|
node->i_xtime1 = current_time(...);
|
 node->i_xtime2 = node->i_xtime1 = node->i_xtime3 =
- e;
+ timespec_to_timespec64(e);
|
 node->i_xtime1 = node->i_xtime3 =
- e;
+ timespec_to_timespec64(e);
|
- node->i_xtime1 = e;
+ node->i_xtime1 = timespec_to_timespec64(e);
)

Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: <anton@tuxera.com>
Cc: <balbi@kernel.org>
Cc: <bfields@fieldses.org>
Cc: <darrick.wong@oracle.com>
Cc: <dhowells@redhat.com>
Cc: <dsterba@suse.com>
Cc: <dwmw2@infradead.org>
Cc: <hch@lst.de>
Cc: <hirofumi@mail.parknet.co.jp>
Cc: <hubcap@omnibond.com>
Cc: <jack@suse.com>
Cc: <jaegeuk@kernel.org>
Cc: <jaharkes@cs.cmu.edu>
Cc: <jslaby@suse.com>
Cc: <keescook@chromium.org>
Cc: <mark@fasheh.com>
Cc: <miklos@szeredi.hu>
Cc: <nico@linaro.org>
Cc: <reiserfs-devel@vger.kernel.org>
Cc: <richard@nod.at>
Cc: <sage@redhat.com>
Cc: <sfrench@samba.org>
Cc: <swhiteho@redhat.com>
Cc: <tj@kernel.org>
Cc: <trond.myklebust@primarydata.com>
Cc: <tytso@mit.edu>
Cc: <viro@zeniv.linux.org.uk>
2018-06-05 16:57:31 -07:00
Deepa Dinamani
0220eddac6 udf: Simplify calls to udf_disk_stamp_to_time
Subsequent patches in the series convert inode timestamps
to use struct timespec64 instead of struct timespec as
part of solving the y2038 problem.

commit fd3cfad374 ("udf: Convert udf_disk_stamp_to_time() to use mktime64()")
eliminated the NULL return condition from udf_disk_stamp_to_time().
udf_time_to_disk_time() is always called with a valid dest pointer and
the return value is ignored.
Further, caller can as well check the dest pointer being passed in rather
than return argument.
Make both the functions return void.

This will make the inode timestamp conversion simpler.

Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: jack@suse.com

----
Changes from v1:
* fixed the pointer error pointed by Jan
2018-05-25 15:31:14 -07:00
Linus Torvalds
5997aab0a1 Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs fixes from Al Viro:
 "Assorted fixes all over the place"

* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  aio: fix io_destroy(2) vs. lookup_ioctx() race
  ext2: fix a block leak
  nfsd: vfs_mkdir() might succeed leaving dentry negative unhashed
  cachefiles: vfs_mkdir() might succeed leaving dentry negative unhashed
  unfuck sysfs_mount()
  kernfs: deal with kernfs_fill_super() failures
  cramfs: Fix IS_ENABLED typo
  befs_lookup(): use d_splice_alias()
  affs_lookup: switch to d_splice_alias()
  affs_lookup(): close a race with affs_remove_link()
  fix breakage caused by d_find_alias() semantics change
  fs: don't scan the inode cache before SB_BORN is set
  do d_instantiate/unlock_new_inode combinations safely
  iov_iter: fix memory leak in pipe_get_pages_alloc()
  iov_iter: fix return type of __pipe_get_pages()
2018-05-21 11:54:57 -07:00
Al Viro
1e2e547a93 do d_instantiate/unlock_new_inode combinations safely
For anything NFS-exported we do _not_ want to unlock new inode
before it has grown an alias; original set of fixes got the
ordering right, but missed the nasty complication in case of
lockdep being enabled - unlock_new_inode() does
	lockdep_annotate_inode_mutex_key(inode)
which can only be done before anyone gets a chance to touch
->i_mutex.  Unfortunately, flipping the order and doing
unlock_new_inode() before d_instantiate() opens a window when
mkdir can race with open-by-fhandle on a guessed fhandle, leading
to multiple aliases for a directory inode and all the breakage
that follows from that.

	Correct solution: a new primitive (d_instantiate_new())
combining these two in the right order - lockdep annotate, then
d_instantiate(), then the rest of unlock_new_inode().  All
combinations of d_instantiate() with unlock_new_inode() should
be converted to that.

Cc: stable@kernel.org	# 2.6.29 and later
Tested-by: Mike Marshall <hubcap@omnibond.com>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-05-11 15:36:37 -04:00
Jan Kara
8a0cdef161 udf: Add support for decoding UTF-16 characters
Add support to decode characters outside of Base Multilingual Plane of
UTF-16 encoded in CS0 charset of UDF.

Signed-off-by: Jan Kara <jack@suse.cz>
2018-04-19 16:00:48 +02:00
Jan Kara
ef2e18f1fa udf: Add support for encoding UTF-16 characters
Add support to store characters outside of Base Multilingual Plane of
UTF-16 in CS0 encoding of UDF.

Signed-off-by: Jan Kara <jack@suse.cz>
2018-04-19 16:00:48 +02:00
Jan Kara
d504adc291 udf: Push sb argument to udf_name_[to|from]_CS0()
Push superblock argument to udf_name_[to|from]_CS0() functions so that
we can decide about character conversion functions there.

Signed-off-by: Jan Kara <jack@suse.cz>
2018-04-19 16:00:48 +02:00
Jan Kara
e966fc8d99 udf: Convert ident strings to proper charset
iocharset= mount option specifies the character set used on *console*
(not on disk). So even dstrings from VRS need to be converted from CS0
to the specified charset and not always UTF-8. This is barely user
visible as those strings are shown only in UDF debug messages.

CC: Andrew Gabbasov <andrew_gabbasov@mentor.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-04-19 16:00:48 +02:00
Jan Kara
b8a41c44a4 udf: Use UTF-32 <-> UTF-8 conversion functions from NLS
Instead of implementing our own functions converting to and from UTF-8,
use the ones provided by NLS.

Signed-off-by: Jan Kara <jack@suse.cz>
2018-04-19 16:00:48 +02:00
Jan Kara
b8333ea1ad udf: Always require NLS support
UDF needs to convert strings between OSTA CS0 charset and standard UTF8.
Currently we implement our own utf-16 <-> utf-8 translations which is
unnecessary code duplication. Always select NLS so that we can use
translation functions from there.

Signed-off-by: Jan Kara <jack@suse.cz>
2018-04-19 16:00:48 +02:00
Jan Kara
44f06ba829 udf: Fix leak of UTF-16 surrogates into encoded strings
OSTA UDF specification does not mention whether the CS0 charset in case
of two bytes per character encoding should be treated in UTF-16 or
UCS-2. The sample code in the standard does not treat UTF-16 surrogates
in any special way but on systems such as Windows which work in UTF-16
internally, filenames would be treated as being in UTF-16 effectively.
In Linux it is more difficult to handle characters outside of Base
Multilingual plane (beyond 0xffff) as NLS framework works with 2-byte
characters only. Just make sure we don't leak UTF-16 surrogates into the
resulting string when loading names from the filesystem for now.

CC: stable@vger.kernel.org # >= v4.6
Reported-by: Mingye Wang <arthur200126@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-04-18 16:34:55 +02:00
Chengguang Xu
785dffe1da udf: fix potential refcnt problem of nls module
When specifiying iocharset multiple times in a mount or once/multiple in
a remount, current option parsing may cause inaccurate refcount of nls
module.  Also, in the failure cleanup of option parsing, the condition
of calling unload_nls is not sufficient.

Signed-off-by: Chengguang Xu <cgxu519@icloud.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-03-02 14:23:12 +01:00
Jan Kara
b72e632c6c udf: Do not mark possibly inconsistent filesystems as closed
If logical volume integrity descriptor contains non-closed integrity
type when mounting the volume, there are high chances that the volume is
not consistent (device was detached before the filesystem was
unmounted). Don't touch integrity type of such volume so that fsck can
recognize it and check such filesystem.

Reported-by: Pali Rohár <pali.rohar@gmail.com>
Reviewed-by: Pali Rohár <pali.rohar@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-03-02 14:22:57 +01:00
Jan Kara
f0c4a81711 udf: Remove never implemented mount options
Signed-off-by: Jan Kara <jack@suse.cz>
2018-02-27 10:25:33 +01:00
Jan Kara
116e5258e4 udf: Provide saner default for invalid uid / gid
Currently when UDF filesystem is recorded without uid / gid (ids are set
to -1), we will assign INVALID_[UG]ID to vfs inode unless user uses uid=
and gid= mount options. In such case filesystem could not be modified in
any way as VFS refuses to modify files with invalid ids (even by root).
This is confusing to users and not very useful default since such media
mode is generally used for removable media. Use overflow[ug]id instead
so that at least root can modify the filesystem.

Reported-by: Steve Kenton <skenton@ou.edu>
Reviewed-by: Pali Rohár <pali.rohar@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-02-27 10:25:33 +01:00
Jan Kara
0c9850f4d4 udf: Clean up handling of invalid uid/gid
Current code relies on the fact that invalid uid/gid as defined by UDF
2.60 3.3.3.1 and 3.3.3.2 coincides with invalid uid/gid as used by the
user namespaces implementation. Since this is only lucky coincidence,
clean this up to avoid future surprises in case user namespaces
implementation changes. Also this is more robust in presence of valid
(from UDF point of view) uids / gids which do not map into current user
namespace.

Reviewed-by: Pali Rohár <pali.rohar@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-02-27 10:25:33 +01:00
Jan Kara
ecd10aa428 udf: Apply uid/gid mount options also to new inodes & chown
Currently newly created files belong to current user despite
uid=<number> / gid=<number> mount options. This is confusing to users
(as owner of the file will change after remount / eviction from cache)
and also inconsistent with e.g. FAT with the same mount option. So apply
uid=<number> and gid=<number> also to newly created inodes and similarly
as FAT disallow to change owner of the file in this case.

Reported-by: Steve Kenton <skenton@ou.edu>
Reviewed-by: Pali Rohár <pali.rohar@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-02-27 10:25:33 +01:00
Jan Kara
70260e4475 udf: Ignore [ug]id=ignore mount options
Currently uid=ignore and gid=ignore make no sense without uid=<number>
and gid=<number> respectively as they result in all files having invalid
uid / gid which then doesn't allow even root to modify files and thus
causes confusion. And since commit ca76d2d803 "UDF: fix UID and GID
mount option ignorance" (from over 10 years ago) uid=<number> overrides
all uids on disk as uid=ignore does. So just silently ignore uid=ignore
mount option.

Reviewed-by: Pali Rohár <pali.rohar@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-02-27 10:25:33 +01:00
Jan Kara
7b78fd02fb udf: Fix handling of Partition Descriptors
Current handling of Partition Descriptors in Volume Descriptor Sequence
is buggy in several ways. Firstly, it does not take descriptor sequence
numbers into account at all, thus any volume making serious use of them
would be unmountable. Secondly, it does not handle Volume Descriptor
Pointers or Volume Descriptor Sequence without Terminating Descriptor.

Fix these problems by properly remembering all Partition Descriptors in
the Volume Descriptor Sequence and their sequence numbers. This is made
more complicated by the fact that we don't know number of partitions in
advance and sequence numbers have to be tracked on per-partition basis.

Reported-by: Pali Rohár <pali.rohar@gmail.com>
Acked-by: Pali Rohár <pali.rohar@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-02-27 10:25:33 +01:00
Jan Kara
18cf4781c9 udf: Unify common handling of descriptors
When scanning Volume Descriptor Sequence, several descriptors have
exactly the same handling. Unify it.

Acked-by: Pali Rohár <pali.rohar@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-02-27 10:25:26 +01:00
Jan Kara
4b8d425215 udf: Convert descriptor index definitions to enum
Convert index definitions from defines to enum. It is a shorter
description and easier to modify. Also remove VDS_POS_VOL_DESC_PTR since
it is unused.

Acked-by: Pali Rohár <pali.rohar@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-02-16 11:15:16 +01:00
Jan Kara
67621675e9 udf: Allow volume descriptor sequence to be terminated by unrecorded block
According to ECMA-167 3/8.4.2 a volume descriptor sequence can be
terminated also by an unrecorded block within the extent of volume
descriptor sequence. Currently we errored out in such case making such
volumes unmountable. Handle that case by treating any invalid block as a
block terminating the sequence.

Reported-by: Pali Rohár <pali.rohar@gmail.com>
Acked-by: Pali Rohár <pali.rohar@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-02-16 11:15:09 +01:00
Jan Kara
7b568cba4f udf: Simplify handling of Volume Descriptor Pointers
According to ECMA-167 3/8.4.2 Volume Descriptor Pointer is terminating
current extent of Volume Descriptor Sequence. Also according to ECMA-167
3/8.4.3 Volume Descriptor Sequence Number is not significant for Volume
Descriptor Pointers. Simplify the handling of Volume Descriptor Pointers
to take this into account.

Acked-by: Pali Rohár <pali.rohar@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-02-16 11:15:04 +01:00
Jan Kara
91c9c9ec54 udf: Fix off-by-one in volume descriptor sequence length
We pass one block beyond end of volume descriptor sequence into
process_sequence() as 'lastblock' instead of the last block of the
sequence. When the sequence is not terminated with TD descriptor, this
could lead to false errors due to invalid blocks in volume descriptor
sequence and thus unmountable volumes.

Acked-by: Pali Rohár <pali.rohar@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2018-02-16 11:14:41 +01:00
Jan Kara
d5bd821350 udf: Sanitize nanoseconds for time stamps
Reportedly some UDF filesystems are recorded with bogus subsecond values
resulting in nanoseconds being over 10^9. Sanitize nanoseconds in time
stamps when loading them from disk.

Reported-by: Ian Turner <vectro@vectro.org>
Signed-off-by: Jan Kara <jack@suse.cz>
2017-12-19 08:11:01 +01:00
Linus Torvalds
1751e8a6cb Rename superblock flags (MS_xyz -> SB_xyz)
This is a pure automated search-and-replace of the internal kernel
superblock flags.

The s_flags are now called SB_*, with the names and the values for the
moment mirroring the MS_* flags that they're equivalent to.

Note how the MS_xyz flags are the ones passed to the mount system call,
while the SB_xyz flags are what we then use in sb->s_flags.

The script to do this was:

    # places to look in; re security/*: it generally should *not* be
    # touched (that stuff parses mount(2) arguments directly), but
    # there are two places where we really deal with superblock flags.
    FILES="drivers/mtd drivers/staging/lustre fs ipc mm \
            include/linux/fs.h include/uapi/linux/bfs_fs.h \
            security/apparmor/apparmorfs.c security/apparmor/include/lib.h"
    # the list of MS_... constants
    SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \
          DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \
          POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \
          I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \
          ACTIVE NOUSER"

    SED_PROG=
    for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done

    # we want files that contain at least one of MS_...,
    # with fs/namespace.c and fs/pnode.c excluded.
    L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c')

    for f in $L; do sed -i $f $SED_PROG; done

Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 13:05:09 -08:00
Linus Torvalds
f14fc0ccee Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
Pull quota, ext2, isofs and udf fixes from Jan Kara:

 - two small quota error handling fixes

 - two isofs fixes for architectures with signed char

 - several udf block number overflow and signedness fixes

 - ext2 rework of mount option handling to avoid GFP_KERNEL allocation
   with spinlock held

 - ... it also contains a patch to implement auditing of responses to
   fanotify permission events. That should have been in the fanotify
   pull request but I mistakenly merged that patch into a wrong branch
   and noticed only now at which point I don't think it's worth rebasing
   and redoing.

* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
  quota: be aware of error from dquot_initialize
  quota: fix potential infinite loop
  isofs: use unsigned char types consistently
  isofs: fix timestamps beyond 2027
  udf: Fix some sign-conversion warnings
  udf: Fix signed/unsigned format specifiers
  udf: Fix 64-bit sign extension issues affecting blocks > 0x7FFFFFFF
  udf: Remove some outdate references from documentation
  udf: Avoid overflow when session starts at large offset
  ext2: Fix possible sleep in atomic during mount option parsing
  ext2: Parse mount options into a dedicated structure
  audit: Record fanotify access control decisions
2017-11-14 14:13:11 -08:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Steve Magnani
89a4d970ef udf: Fix some sign-conversion warnings
Fix some warnings that appear when compiling with -Wconversion.
A sub-optimal choice of variable type leads to warnings about
conversion in both directions between unsigned and signed.

Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2017-10-17 12:02:07 +02:00
Steve Magnani
fcbf7637e6 udf: Fix signed/unsigned format specifiers
Fix problems noted in compilion with -Wformat=2 -Wformat-signedness.
In particular, a mismatch between the signedness of a value and the
signedness of its format specifier can result in unsigned values being
printed as negative numbers, e.g.:

  Partition (0 type 1511) starts at physical 460, block length -1779968542

...which occurs when mounting a large (> 1 TiB) UDF partition.

Changes since V1:
* Fixed additional issues noted in udf_bitmap_free_blocks(),
  udf_get_fileident(), udf_show_options()

Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2017-10-17 12:00:58 +02:00
Steve Magnani
b490bdd630 udf: Fix 64-bit sign extension issues affecting blocks > 0x7FFFFFFF
Large (> 1 TiB) UDF filesystems appear subject to several problems when
mounted on 64-bit systems:

* readdir() can fail on a directory containing File Identifiers residing
  above 0x7FFFFFFF. This manifests as a 'ls' command failing with EIO.

* FIBMAP on a file block located above 0x7FFFFFFF can return a negative
  value. The low 32 bits are correct, but applications that don't mask the
  high 32 bits of the result can perform incorrectly.

Per suggestion by Jan Kara, introduce a udf_pblk_t type for representation
of UDF block addresses. Ultimately, all driver functions that manipulate
UDF block addresses should use this type; for now, deployment is limited
to functions with actual or potential sign extension issues.

Changes to udf_readdir() and udf_block_map() address the issues noted
above; other changes address potential similar issues uncovered during
audit of the driver code.

Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2017-10-17 11:56:45 +02:00
Jan Kara
abdc0eb069 udf: Avoid overflow when session starts at large offset
When session starts beyond offset 2^31 the arithmetics in
udf_check_vsd() would overflow. Make sure the computation is done in
large enough type.

Reported-by: Cezary Sliwa <sliwa@ifpan.edu.pl>
Signed-off-by: Jan Kara <jack@suse.cz>
2017-10-16 11:38:11 +02:00
Linus Torvalds
0f0d12728e Merge branch 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull mount flag updates from Al Viro:
 "Another chunk of fmount preparations from dhowells; only trivial
  conflicts for that part. It separates MS_... bits (very grotty
  mount(2) ABI) from the struct super_block ->s_flags (kernel-internal,
  only a small subset of MS_... stuff).

  This does *not* convert the filesystems to new constants; only the
  infrastructure is done here. The next step in that series is where the
  conflicts would be; that's the conversion of filesystems. It's purely
  mechanical and it's better done after the merge, so if you could run
  something like

	list=$(for i in MS_RDONLY MS_NOSUID MS_NODEV MS_NOEXEC MS_SYNCHRONOUS MS_MANDLOCK MS_DIRSYNC MS_NOATIME MS_NODIRATIME MS_SILENT MS_POSIXACL MS_KERNMOUNT MS_I_VERSION MS_LAZYTIME; do git grep -l $i fs drivers/staging/lustre drivers/mtd ipc mm include/linux; done|sort|uniq|grep -v '^fs/namespace.c$')

	sed -i -e 's/\<MS_RDONLY\>/SB_RDONLY/g' \
	        -e 's/\<MS_NOSUID\>/SB_NOSUID/g' \
	        -e 's/\<MS_NODEV\>/SB_NODEV/g' \
	        -e 's/\<MS_NOEXEC\>/SB_NOEXEC/g' \
	        -e 's/\<MS_SYNCHRONOUS\>/SB_SYNCHRONOUS/g' \
	        -e 's/\<MS_MANDLOCK\>/SB_MANDLOCK/g' \
	        -e 's/\<MS_DIRSYNC\>/SB_DIRSYNC/g' \
	        -e 's/\<MS_NOATIME\>/SB_NOATIME/g' \
	        -e 's/\<MS_NODIRATIME\>/SB_NODIRATIME/g' \
	        -e 's/\<MS_SILENT\>/SB_SILENT/g' \
	        -e 's/\<MS_POSIXACL\>/SB_POSIXACL/g' \
	        -e 's/\<MS_KERNMOUNT\>/SB_KERNMOUNT/g' \
	        -e 's/\<MS_I_VERSION\>/SB_I_VERSION/g' \
	        -e 's/\<MS_LAZYTIME\>/SB_LAZYTIME/g' \
	        $list

  and commit it with something along the lines of 'convert filesystems
  away from use of MS_... constants' as commit message, it would save a
  quite a bit of headache next cycle"

* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  VFS: Differentiate mount flags (MS_*) from internal superblock flags
  VFS: Convert sb->s_flags & MS_RDONLY to sb_rdonly(sb)
  vfs: Add sb_rdonly(sb) to query the MS_RDONLY flag on s_flags
2017-09-14 18:54:01 -07:00
Markus Elfring
b5f5245491 fs-udf: Delete an error message for a failed memory allocation in two functions
Omit an extra message for a memory allocation failure in these functions.

This issue was detected by using the Coccinelle software.

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Jan Kara <jack@suse.cz>
2017-08-16 16:43:23 +02:00
Markus Elfring
033c9da008 fs-udf: Improve six size determinations
Replace the specification of data structures by variable references
as the parameter for the operator "sizeof" to make the corresponding size
determination a bit safer according to the Linux coding style convention.

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Jan Kara <jack@suse.cz>
2017-08-16 16:42:03 +02:00
Markus Elfring
ba2eb866a8 fs-udf: Adjust two checks for null pointers
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

The script “checkpatch.pl” pointed information out like the following.

Comparison to NULL could be written !…

Thus fix affected source code places.

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Jan Kara <jack@suse.cz>
2017-08-16 16:38:54 +02:00
David Howells
bc98a42c1f VFS: Convert sb->s_flags & MS_RDONLY to sb_rdonly(sb)
Firstly by applying the following with coccinelle's spatch:

	@@ expression SB; @@
	-SB->s_flags & MS_RDONLY
	+sb_rdonly(SB)

to effect the conversion to sb_rdonly(sb), then by applying:

	@@ expression A, SB; @@
	(
	-(!sb_rdonly(SB)) && A
	+!sb_rdonly(SB) && A
	|
	-A != (sb_rdonly(SB))
	+A != sb_rdonly(SB)
	|
	-A == (sb_rdonly(SB))
	+A == sb_rdonly(SB)
	|
	-!(sb_rdonly(SB))
	+!sb_rdonly(SB)
	|
	-A && (sb_rdonly(SB))
	+A && sb_rdonly(SB)
	|
	-A || (sb_rdonly(SB))
	+A || sb_rdonly(SB)
	|
	-(sb_rdonly(SB)) != A
	+sb_rdonly(SB) != A
	|
	-(sb_rdonly(SB)) == A
	+sb_rdonly(SB) == A
	|
	-(sb_rdonly(SB)) && A
	+sb_rdonly(SB) && A
	|
	-(sb_rdonly(SB)) || A
	+sb_rdonly(SB) || A
	)

	@@ expression A, B, SB; @@
	(
	-(sb_rdonly(SB)) ? 1 : 0
	+sb_rdonly(SB)
	|
	-(sb_rdonly(SB)) ? A : B
	+sb_rdonly(SB) ? A : B
	)

to remove left over excess bracketage and finally by applying:

	@@ expression A, SB; @@
	(
	-(A & MS_RDONLY) != sb_rdonly(SB)
	+(bool)(A & MS_RDONLY) != sb_rdonly(SB)
	|
	-(A & MS_RDONLY) == sb_rdonly(SB)
	+(bool)(A & MS_RDONLY) == sb_rdonly(SB)
	)

to make comparisons against the result of sb_rdonly() (which is a bool)
work correctly.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-07-17 08:45:34 +01:00
Jan Kara
fd3cfad374 udf: Convert udf_disk_stamp_to_time() to use mktime64()
Convert udf_disk_stamp_to_time() to use mktime64() to simplify the code.
As a bonus we get working timestamp conversion for dates before epoch
and after 2038 (both of which are allowed by UDF standard).

Signed-off-by: Jan Kara <jack@suse.cz>
2017-06-14 11:21:02 +02:00
Jan Kara
3c399fa40f udf: Use time64_to_tm for timestamp conversion
UDF on-disk time stamp is stored in a form very similar to struct tm.
Use time64_to_tm() for conversion of seconds since epoch to year, month,
... format and then just copy this as necessary to UDF on-disk
structure to simplify the code.

Signed-off-by: Jan Kara <jack@suse.cz>
2017-06-14 11:21:02 +02:00
Jan Kara
f2e9535589 udf: Fix deadlock between writeback and udf_setsize()
udf_setsize() called truncate_setsize() with i_data_sem held. Thus
truncate_pagecache() called from truncate_setsize() could lock a page
under i_data_sem which can deadlock as page lock ranks below
i_data_sem - e. g. writeback can hold page lock and try to acquire
i_data_sem to map a block.

Fix the problem by moving truncate_setsize() calls from under
i_data_sem. It is safe for us to change i_size without holding
i_data_sem as all the places that depend on i_size being stable already
hold inode_lock.

CC: stable@vger.kernel.org
Fixes: 7e49b6f248
Signed-off-by: Jan Kara <jack@suse.cz>
2017-06-14 11:21:01 +02:00
Jan Kara
146c4ad6ec udf: Use i_size_read() in udf_adinicb_writepage()
We don't hold inode_lock in udf_adinicb_writepage() so use i_size_read()
to get i_size. This cannot cause real problems is i_size is guaranteed
to be small but let's be careful.

Signed-off-by: Jan Kara <jack@suse.cz>
2017-06-14 11:21:01 +02:00
Jan Kara
9795e0e8ac udf: Fix races with i_size changes during readpage
__udf_adinicb_readpage() uses i_size several times. When truncate
changes i_size while the function is running, it can observe several
different values and thus e.g. expose uninitialized parts of page to
userspace. Also use i_size_read() in the function since it does not hold
inode_lock. Since i_size is guaranteed to be small, this cannot really
cause any issues even on 32-bit archs but let's be careful.

CC: stable@vger.kernel.org
Fixes: 9c2fc0de1a
Signed-off-by: Jan Kara <jack@suse.cz>
2017-06-14 11:21:01 +02:00
Jan Kara
a247f7236d udf: Remove unused UDF_DEFAULT_BLOCKSIZE
The define is unused. Remove it.

Signed-off-by: Jan Kara <jack@suse.cz>
2017-06-13 14:59:14 +02:00
Fabian Frederick
5c26eac43a udf: use kmap_atomic for memcpy copying
Use temporary mapping for memory copying operations.

To avoid any sleeping problem,

mark_inode_dirty(inode) was moved after kunmap() in
udf_adinicb_readpage()

down_write(&iinfo->i_data_sem) set before kmap_atomic()
in udf_expand_file_adinicb()

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Jan Kara <jack@suse.cz>
2017-04-24 16:28:02 +02:00
Fabian Frederick
6ff6b2b329 udf: use octal for permissions
According to commit f90774e1fd ("checkpatch: look for symbolic
permissions and suggest octal instead")

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Jan Kara <jack@suse.cz>
2017-04-24 16:27:52 +02:00
David Howells
a528d35e8b statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.

The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode.  This change is propagated to the vfs_getattr*()
function.

Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.

========
OVERVIEW
========

The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.

A number of requests were gathered for features to be included.  The
following have been included:

 (1) Make the fields a consistent size on all arches and make them large.

 (2) Spare space, request flags and information flags are provided for
     future expansion.

 (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
     __s64).

 (4) Creation time: The SMB protocol carries the creation time, which could
     be exported by Samba, which will in turn help CIFS make use of
     FS-Cache as that can be used for coherency data (stx_btime).

     This is also specified in NFSv4 as a recommended attribute and could
     be exported by NFSD [Steve French].

 (5) Lightweight stat: Ask for just those details of interest, and allow a
     netfs (such as NFS) to approximate anything not of interest, possibly
     without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
     Dilger] (AT_STATX_DONT_SYNC).

 (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
     its cached attributes are up to date [Trond Myklebust]
     (AT_STATX_FORCE_SYNC).

And the following have been left out for future extension:

 (7) Data version number: Could be used by userspace NFS servers [Aneesh
     Kumar].

     Can also be used to modify fill_post_wcc() in NFSD which retrieves
     i_version directly, but has just called vfs_getattr().  It could get
     it from the kstat struct if it used vfs_xgetattr() instead.

     (There's disagreement on the exact semantics of a single field, since
     not all filesystems do this the same way).

 (8) BSD stat compatibility: Including more fields from the BSD stat such
     as creation time (st_btime) and inode generation number (st_gen)
     [Jeremy Allison, Bernd Schubert].

 (9) Inode generation number: Useful for FUSE and userspace NFS servers
     [Bernd Schubert].

     (This was asked for but later deemed unnecessary with the
     open-by-handle capability available and caused disagreement as to
     whether it's a security hole or not).

(10) Extra coherency data may be useful in making backups [Andreas Dilger].

     (No particular data were offered, but things like last backup
     timestamp, the data version number and the DOS archive bit would come
     into this category).

(11) Allow the filesystem to indicate what it can/cannot provide: A
     filesystem can now say it doesn't support a standard stat feature if
     that isn't available, so if, for instance, inode numbers or UIDs don't
     exist or are fabricated locally...

     (This requires a separate system call - I have an fsinfo() call idea
     for this).

(12) Store a 16-byte volume ID in the superblock that can be returned in
     struct xstat [Steve French].

     (Deferred to fsinfo).

(13) Include granularity fields in the time data to indicate the
     granularity of each of the times (NFSv4 time_delta) [Steve French].

     (Deferred to fsinfo).

(14) FS_IOC_GETFLAGS value.  These could be translated to BSD's st_flags.
     Note that the Linux IOC flags are a mess and filesystems such as Ext4
     define flags that aren't in linux/fs.h, so translation in the kernel
     may be a necessity (or, possibly, we provide the filesystem type too).

     (Some attributes are made available in stx_attributes, but the general
     feeling was that the IOC flags were to ext[234]-specific and shouldn't
     be exposed through statx this way).

(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
     Michael Kerrisk].

     (Deferred, probably to fsinfo.  Finding out if there's an ACL or
     seclabal might require extra filesystem operations).

(16) Femtosecond-resolution timestamps [Dave Chinner].

     (A __reserved field has been left in the statx_timestamp struct for
     this - if there proves to be a need).

(17) A set multiple attributes syscall to go with this.

===============
NEW SYSTEM CALL
===============

The new system call is:

	int ret = statx(int dfd,
			const char *filename,
			unsigned int flags,
			unsigned int mask,
			struct statx *buffer);

The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat().  There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags.  There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.

Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):

 (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
     respect.

 (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
     its attributes with the server - which might require data writeback to
     occur to get the timestamps correct.

 (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
     network filesystem.  The resulting values should be considered
     approximate.

mask is a bitmask indicating the fields in struct statx that are of
interest to the caller.  The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat().  It should be noted that asking for
more information may entail extra I/O operations.

buffer points to the destination for the data.  This must be 256 bytes in
size.

======================
MAIN ATTRIBUTES RECORD
======================

The following structures are defined in which to return the main attribute
set:

	struct statx_timestamp {
		__s64	tv_sec;
		__s32	tv_nsec;
		__s32	__reserved;
	};

	struct statx {
		__u32	stx_mask;
		__u32	stx_blksize;
		__u64	stx_attributes;
		__u32	stx_nlink;
		__u32	stx_uid;
		__u32	stx_gid;
		__u16	stx_mode;
		__u16	__spare0[1];
		__u64	stx_ino;
		__u64	stx_size;
		__u64	stx_blocks;
		__u64	__spare1[1];
		struct statx_timestamp	stx_atime;
		struct statx_timestamp	stx_btime;
		struct statx_timestamp	stx_ctime;
		struct statx_timestamp	stx_mtime;
		__u32	stx_rdev_major;
		__u32	stx_rdev_minor;
		__u32	stx_dev_major;
		__u32	stx_dev_minor;
		__u64	__spare2[14];
	};

The defined bits in request_mask and stx_mask are:

	STATX_TYPE		Want/got stx_mode & S_IFMT
	STATX_MODE		Want/got stx_mode & ~S_IFMT
	STATX_NLINK		Want/got stx_nlink
	STATX_UID		Want/got stx_uid
	STATX_GID		Want/got stx_gid
	STATX_ATIME		Want/got stx_atime{,_ns}
	STATX_MTIME		Want/got stx_mtime{,_ns}
	STATX_CTIME		Want/got stx_ctime{,_ns}
	STATX_INO		Want/got stx_ino
	STATX_SIZE		Want/got stx_size
	STATX_BLOCKS		Want/got stx_blocks
	STATX_BASIC_STATS	[The stuff in the normal stat struct]
	STATX_BTIME		Want/got stx_btime{,_ns}
	STATX_ALL		[All currently available stuff]

stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.

Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution.  Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.

The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does.  The following
attributes map to FS_*_FL flags and are the same numerical value:

	STATX_ATTR_COMPRESSED		File is compressed by the fs
	STATX_ATTR_IMMUTABLE		File is marked immutable
	STATX_ATTR_APPEND		File is append-only
	STATX_ATTR_NODUMP		File is not to be dumped
	STATX_ATTR_ENCRYPTED		File requires key to decrypt in fs

Within the kernel, the supported flags are listed by:

	KSTAT_ATTR_FS_IOC_FLAGS

[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]

New flags include:

	STATX_ATTR_AUTOMOUNT		Object is an automount trigger

These are for the use of GUI tools that might want to mark files specially,
depending on what they are.

Fields in struct statx come in a number of classes:

 (0) stx_dev_*, stx_blksize.

     These are local system information and are always available.

 (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
     stx_size, stx_blocks.

     These will be returned whether the caller asks for them or not.  The
     corresponding bits in stx_mask will be set to indicate whether they
     actually have valid values.

     If the caller didn't ask for them, then they may be approximated.  For
     example, NFS won't waste any time updating them from the server,
     unless as a byproduct of updating something requested.

     If the values don't actually exist for the underlying object (such as
     UID or GID on a DOS file), then the bit won't be set in the stx_mask,
     even if the caller asked for the value.  In such a case, the returned
     value will be a fabrication.

     Note that there are instances where the type might not be valid, for
     instance Windows reparse points.

 (2) stx_rdev_*.

     This will be set only if stx_mode indicates we're looking at a
     blockdev or a chardev, otherwise will be 0.

 (3) stx_btime.

     Similar to (1), except this will be set to 0 if it doesn't exist.

=======
TESTING
=======

The following test program can be used to test the statx system call:

	samples/statx/test-statx.c

Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.

Here's some example output.  Firstly, an NFS directory that crosses to
another FSID.  Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.

	[root@andromeda ~]# /tmp/test-statx -A /warthog/data
	statx(/warthog/data) = 0
	results=7ff
	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
	Device: 00:26           Inode: 1703937     Links: 125
	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
	Access: 2016-11-24 09:02:12.219699527+0000
	Modify: 2016-11-17 10:44:36.225653653+0000
	Change: 2016-11-17 10:44:36.225653653+0000
	Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)

Secondly, the result of automounting on that directory.

	[root@andromeda ~]# /tmp/test-statx /warthog/data
	statx(/warthog/data) = 0
	results=7ff
	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
	Device: 00:27           Inode: 2           Links: 125
	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
	Access: 2016-11-24 09:02:12.219699527+0000
	Modify: 2016-11-17 10:44:36.225653653+0000
	Change: 2016-11-17 10:44:36.225653653+0000

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-03-02 20:51:15 -05:00