With the sockopt extension we can set a per-channel MaxTx value.
Signed-off-by: Gustavo F. Padovan <padovan@profusion.mobi>
Reviewed-by: João Paulo Rechi Vita <jprvita@profusion.mobi>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Now that we can set the txWindow we need to change the acknowledgement
procedure to ack after each (pi->txWindow/6 + 1). The plus 1 is to avoid
the zero value.
It also renames pi->num_to_ack to a better name: pi->num_acked.
Signed-off-by: Gustavo F. Padovan <padovan@profusion.mobi>
Reviewed-by: João Paulo Rechi Vita <jprvita@profusion.mobi>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Now we can set/get Transmission Window size via sockopt.
Signed-off-by: Gustavo F. Padovan <padovan@profusion.mobi>
Reviewed-by: João Paulo Rechi Vita <jprvita@profusion.mobi>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
We were accepting values bigger than we can accept. This was leading
ERTM to drop packets because of wrong FCS checks.
Signed-off-by: Gustavo F. Padovan <padovan@profusion.mobi>
Reviewed-by: João Paulo Rechi Vita <jprvita@profusion.mobi>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
We ack I-frames on each txWindow/5 I-frames received, but if the sender
stop to send I-frames and it's not a txWindow multiple we can leave some
frames unacked.
So I added a timer to ack I-frames on this case. The timer expires in
200ms.
Signed-off-by: Gustavo F. Padovan <padovan@profusion.mobi>
Reviewed-by: João Paulo Rechi Vita <jprvita@profusion.mobi>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
After receive a RR with P bit set ERTM shall use this funcion to choose
what type of frame to reply with F bit = 1.
Signed-off-by: Gustavo F. Padovan <padovan@profusion.mobi>
Reviewed-by: João Paulo Rechi Vita <jprvita@profusion.mobi>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
It also removes an unneeded check for the MTU. The check is done before
on sco_send_frame()
Signed-off-by: Gustavo F. Padovan <padovan@profusion.mobi>
Reviewed-by: João Paulo Rechi Vita <jprvita@profusion.mobi>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Some of the debug files ended up wrongly in sysfs, because at that point
of time, debugfs didn't exist. Convert these files to use debugfs and
also seq_file. This patch converts all of these files at once and then
removes the exported symbol for the Bluetooth sysfs class.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
With the Bluetooth 3.0 specification and the introduction of alternate
MAC/PHY (AMP) support, it is required to differentiate between primary
BR/EDR controllers and 802.11 AMP controllers. So introduce a special
type inside HCI device for differentiation.
For now all AMP controllers will be treated as raw devices until an
AMP manager has been implemented.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The output of the inquiry cache is only useful for debugging purposes
and so move it into debugfs.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
RejActioned is used to prevent retransmission when a entity is on the
WAIT_F state, i.e., waiting for a frame with F-bit set due local busy
condition or a expired retransmission timer. (When these two events raise
they send a frame with the Poll bit set and enters in the WAIT_F state to
wait for a frame with the Final bit set.)
The local entity doesn't send I-frames(the data frames) until the receipt
of a frame with F-bit set. When that happens it also set RejActioned to false.
RejActioned is a mandatory feature of ERTM spec.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
As specified by ERTM spec an ERTM channel can acknowledge received
I-frames(the data frames) by sending an I-frame with the proper ReqSeq
value (i.e. ReqSeq is set to BufferSeq). Until now we aren't setting the
ReqSeq value on I-frame control bits. That way we can save sending
S-frames(Supervise frames) only to acknowledge receipt of I-frames. It
is very helpful to the full-duplex channel.
ReqSeq is the packet sequence number sent in an acknowledgement frame to
acknowledge receipt of frames up to (ReqSeq - 1).
BufferSeq controls the receiver buffer, it is used to delay
acknowledgement of new frames to not cause buffer overflow. BufferSeq
value is not increased until frames are pulled by reassembly function.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The tasklet schedule function helpers are just an obfuscation. So remove
them and call the schedule functions directly.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
For future simplification it is important that the hci_recv_frame
function is no longer an inline function. So move it into the module
itself and export it.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
All usages of structure net_proto_ops should be declared const.
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Implement all issues related to RemoteBusy in the RECV state table.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
When using DEFER_SETUP on a RFCOMM socket, a SABM frame triggers
authorization which when rejected send a DM response. This is fine
according to the RFCOMM spec:
the responding implementation may replace the "proper" response
on the Multiplexer Control channel with a DM frame, sent on the
referenced DLCI to indicate that the DLCI is not open, and that
the responder would not grant a request to open it later either.
But some stacks doesn't seems to cope with this leaving DLCI 0 open after
receiving DM frame.
To fix it properly a timer was introduced to rfcomm_session which is used
to set a timeout when the last active DLC of a session is unlinked, this
will give the remote stack some time to reply with a proper DISC frame on
DLCI 0 avoiding both sides sending DISC to each other on stacks that
follow the specification and taking care of those who don't by taking
down DLCI 0.
Signed-off-by: Luiz Augusto von Dentz <luiz.dentz@openbossa.org>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Support for receiving of SREJ frames as specified by the state table.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
When L2CAP loses an I-frame we send a SREJ frame to the transmitter side
requesting the lost packet. This patch implement all Recv I-frame events
on SREJ_SENT state table except the ones that deal with SendRej (the REJ
exception at receiver side is yet not implemented).
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Implement CRC16 check for L2CAP packets. FCS is used by Streaming Mode and
Enhanced Retransmission Mode and is a extra check for the packet content.
Using CRC16 is the default, L2CAP won't use FCS only when both side send
a "No FCS" request.
Initially based on a patch from Nathan Holstein <nathan@lampreynetworks.com>
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
L2CAP uses retransmission and monitor timers to inquiry the other side
about unacked I-frames. After sending each I-frame we (re)start the
retransmission timer. If it expires, we start a monitor timer that send a
S-frame with P bit set and wait for S-frame with F bit set. If monitor
timer expires, try again, at a maximum of L2CAP_DEFAULT_MAX_TX.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
When receiving an I-frame with unexpected txSeq, receiver side start the
recovery procedure by sending a REJ S-frame to the transmitter side. So
the transmitter can re-send the lost I-frame.
This patch just adds a basic support for retransmission, it doesn't
mean that ERTM now has full support for packet retransmission.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
ERTM should use Segmentation and Reassembly to break down a SDU in many
PDUs on sending data to the other side.
On sending packets we queue all 'segments' until end of segmentation and
just the add them to the queue for sending. On receiving we create a new
SKB with the SDU reassembled.
Initially based on a patch from Nathan Holstein <nathan@lampreynetworks.com>
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
This patch adds support for ERTM transfers, without retransmission, with
txWindow up to 63 and with acknowledgement of packets received. Now the
packets are queued before call l2cap_do_send(), so packets couldn't be
sent at the time we call l2cap_sock_sendmsg(). They will be sent in
an asynchronous way on later calls of l2cap_ertm_send(). Besides if an
error occurs on calling l2cap_do_send() we disconnect the channel.
Initially based on a patch from Nathan Holstein <nathan@lampreynetworks.com>
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Add support to config_req and config_rsp to configure ERTM and Streaming
mode. If the remote device specifies ERTM or Streaming mode, then the
same mode is proposed. Otherwise ERTM or Basic mode is used. And in case
of a state 2 device, the remote device should propose the same mode. If
not, then the channel gets disconnected.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
To enable Enhanced Retransmission mode it needs to be set via a socket
option. A different mode can be set on a socket, but on listen() and
connect() the mode is checked and ERTM is only allowed if it is enabled
via the module parameter.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
hdev->req_lock is used as mutex so make it a mutex.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The device model itself has no real usable reference counting at the
moment and this causes problems if parents are deleted before their
children. The device model itself handles the memory details of this
correctly, but the uevent order is not consistent. This causes various
problems for systems like HAL or even X.
So until device_put() does a proper cleanup, the device for Bluetooth
connection will be protected with an extra reference counting to ensure
the correct order of uevents when connections are terminated.
This is not an automatic feature. Higher Bluetooth layers like HIDP or
BNEP should grab this new reference to ensure that their uevents are
send before the ones from the parent device.
Based on a report by Brian Rogers <brian@xyzw.org>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
rfcomm tty may be used before rfcomm_tty_driver initilized,
The problem is that now socket layer init before tty layer, if userspace
program do socket callback right here then oops will happen.
reporting in:
http://marc.info/?l=linux-bluetooth&m=124404919324542&w=2
make 3 changes:
1. remove #ifdef in rfcomm/core.c,
make it blank function when rfcomm tty not selected in rfcomm.h
2. tune the rfcomm_init error patch to ensure
tty driver initilized before rfcomm socket usage.
3. remove __exit for rfcomm_cleanup_sockets
because above change need call it in a __init function.
Reported-by: Oliver Hartkopp <oliver@hartkopp.net>
Tested-by: Oliver Hartkopp <oliver@hartkopp.net>
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Furthermore, it twiddles with the details of SKB list handling
directly, which we're trying to eliminate.
Signed-off-by: David S. Miller <davem@davemloft.net>
With the re-write of the RFKILL subsystem it is now possible to easily
integrate RFKILL soft-switch support into the Bluetooth subsystem. All
Bluetooth devices will now get automatically RFKILL support.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The Bluetooth source uses some endian conversion helpers, that in the end
translate to kernel standard routines. So remove this obfuscation since it
is fully pointless.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
This adds the basic constants required to add support for L2CAP Enhanced
Retransmission feature.
Based on a patch from Nathan Holstein <nathan@lampreynetworks.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Using the L2CAP_CONF_HINT macro is easier to understand than using a
hardcoded 0x80 value.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Use macros instead of hardcoded numbers to make the L2CAP source code
more readable.
Signed-off-by: Gustavo F. Padovan <gustavo@las.ic.unicamp.br>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Due to a semantic changes in flush_workqueue() the current approach of
synchronizing the sysfs handling for connections doesn't work anymore. The
whole approach is actually fully broken and based on assumptions that are
no longer valid.
With the introduction of Simple Pairing support, the creation of low-level
ACL links got changed. This change invalidates the reason why in the past
two independent work queues have been used for adding/removing sysfs
devices. The adding of the actual sysfs device is now postponed until the
host controller successfully assigns an unique handle to that link. So
the real synchronization happens inside the controller and not the host.
The only left-over problem is that some internals of the sysfs device
handling are not initialized ahead of time. This leaves potential access
to invalid data and can cause various NULL pointer dereferences. To fix
this a new function makes sure that all sysfs details are initialized
when an connection attempt is made. The actual sysfs device is only
registered when the connection has been successfully established. To
avoid a race condition with the registration, the check if a device is
registered has been moved into the removal work.
As an extra protection two flush_work() calls are left in place to
make sure a previous add/del work has been completed first.
Based on a report by Marc Pignat <marc.pignat@hevs.ch>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Tested-by: Justin P. Mattock <justinmattock@gmail.com>
Tested-by: Roger Quadros <ext-roger.quadros@nokia.com>
Tested-by: Marc Pignat <marc.pignat@hevs.ch>
The Bluetooth stack uses a reference counting for all established ACL
links and if no user (L2CAP connection) is present, the link will be
terminated to save power. The problem part is the dedicated pairing
when using Legacy Pairing (Bluetooth 2.0 and before). At that point
no user is present and pairing attempts will be disconnected within
10 seconds or less. In previous kernel version this was not a problem
since the disconnect timeout wasn't triggered on incoming connections
for the first time. However this caused issues with broken host stacks
that kept the connections around after dedicated pairing. When the
support for Simple Pairing got added, the link establishment procedure
needed to be changed and now causes issues when using Legacy Pairing
When using Simple Pairing it is possible to do a proper reference
counting of ACL link users. With Legacy Pairing this is not possible
since the specification is unclear in some areas and too many broken
Bluetooth devices have already been deployed. So instead of trying to
deal with all the broken devices, a special pairing timeout will be
introduced that increases the timeout to 60 seconds when pairing is
triggered.
If a broken devices now puts the stack into an unforeseen state, the
worst that happens is the disconnect timeout triggers after 120 seconds
instead of 4 seconds. This allows successful pairings with legacy and
broken devices now.
Based on a report by Johan Hedberg <johan.hedberg@nokia.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Some of the qualification tests demand that in case of failures in L2CAP
the HCI disconnect should indicate a reason why L2CAP fails. This is a
bluntly layer violation since multiple L2CAP connections could be using
the same ACL and thus forcing a disconnect reason is not a good idea.
To comply with the Bluetooth test specification, the disconnect reason
is now stored in the L2CAP connection structure and every time a new
L2CAP channel is added it will set back to its default. So only in the
case where the L2CAP channel with the disconnect reason is really the
last one, it will propagated to the HCI layer.
The HCI layer has been extended with a disconnect indication that allows
it to ask upper layers for a disconnect reason. The upper layer must not
support this callback and in that case it will nicely default to the
existing behavior. If an upper layer like L2CAP can provide a disconnect
reason that one will be used to disconnect the ACL or SCO link.
No modification to the ACL disconnect timeout have been made. So in case
of Linux to Linux connection the initiator will disconnect the ACL link
before the acceptor side can signal the specific disconnect reason. That
is perfectly fine since Linux doesn't make use of this value anyway. The
L2CAP layer has a perfect valid error code for rejecting connection due
to a security violation. It is unclear why the Bluetooth specification
insists on having specific HCI disconnect reason.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
In preparation for L2CAP fixed channel support, the CID value of a
L2CAP connection needs to be accessible via the socket interface. The
CID is the connection identifier and exists as source and destination
value. So extend the L2CAP socket address structure with this field and
change getsockname() and getpeername() to fill it in.
The bind() and connect() functions have been modified to handle L2CAP
socket address structures of variable sizes. This makes them future
proof if additional fields need to be added.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
If the extended features mask indicates support for fixed channels,
request the list of available fixed channels. This also enables the
fixed channel features bit so remote implementations can request
information about it. Currently only the signal channel will be
listed.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The recommendation for the L2CAP PSM 1 (SDP) is to not use any kind
of authentication or encryption. So don't trigger authentication
for incoming and outgoing SDP connections.
For L2CAP PSM 3 (RFCOMM) there is no clear requirement, but with
Bluetooth 2.1 the initiator is required to enable authentication
and encryption first and this gets enforced. So there is no need
to trigger an additional authentication step. The RFCOMM service
security will make sure that a secure enough link key is present.
When the encryption gets enabled after the SDP connection setup,
then switch the security level from SDP to low security.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
If the remote L2CAP server uses authentication pending stage and
encryption is enabled it can happen that a L2CAP connection request is
sent twice due to a race condition in the connection state machine.
When the remote side indicates any kind of connection pending, then
track this state and skip sending of L2CAP commands for this period.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
When two L2CAP connections are requested quickly after the ACL link has
been established there exists a window for a race condition where a
connection request is sent before the information response has been
received. Any connection request should only be sent after an exchange
of the extended features mask has been finished.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
When receiving incoming connection to specific services, always use
general bonding. This ensures that the link key gets stored and can be
used for further authentications.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
When attempting to setup eSCO connections it can happen that some link
manager implementations fail to properly negotiate the eSCO parameters
and thus fail the eSCO setup. Normally the link manager is responsible
for the negotiation of the parameters and actually fallback to SCO if
no agreement can be reached. In cases where the link manager is just too
stupid, then at least try to establish a SCO link if eSCO fails.
For the Bluetooth devices with EDR support this includes handling packet
types of EDR basebands. This is particular tricky since for the EDR the
logic of enabling/disabling one specific packet type is turned around.
This fix contains an extra bitmask to disable eSCO EDR packet when
trying to fallback to a SCO connection.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
A role switch with devices following the Bluetooth pre-2.1 standards
or without Encryption Pause and Resume support is not possible if
encryption is enabled. Most newer headsets require the role switch,
but also require that the connection is encrypted.
For connections with a high security mode setting, the link will be
immediately dropped. When the connection uses medium security mode
setting, then a grace period is introduced where the TX is halted and
the remote device gets a change to re-enable encryption after the
role switch. If not re-enabled the link will be dropped.
Based on initial work by Ville Tervo <ville.tervo@nokia.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>