Remove includes of <linux/smp_lock.h> where it is not used/needed.
Suggested by Al Viro.
Builds cleanly on x86_64, i386, alpha, ia64, powerpc, sparc,
sparc64, and arm (all 59 defconfigs).
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following section mismatch warnings on x86_64:
(build using defconfig)
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.text:mtrr_bp_init from .text between 'identify_cpu' (at offset 0x65eb) and 'IRQ0x20_interrupt'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data: from .text between 'finish_e820_parsing' (at offset 0x7dc2) and 'early_panic'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.text:e820_print_map from .text between 'finish_e820_parsing' (at offset 0x7de1) and 'early_panic'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:num_processors from .text between 'acpi_unmap_lsapic' (at offset 0xc88f) and 'acpi_register_ioapic'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:disabled_cpus from .text between 'MP_processor_info' (at offset 0x11f35) and 'mp_register_lapic'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:num_processors from .text between 'MP_processor_info' (at offset 0x11f6e) and 'mp_register_lapic'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:num_processors from .text between 'MP_processor_info' (at offset 0x11f93) and 'mp_register_lapic'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:fix_aperture from .text between 'gart_parse_options' (at offset 0x15517) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:fix_aperture from .text between 'gart_parse_options' (at offset 0x1552c) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:iommu_aperture_allowed from .text between 'gart_parse_options' (at offset 0x1553d) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:iommu_aperture_allowed from .text between 'gart_parse_options' (at offset 0x15552) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:iommu_aperture_allowed from .text between 'gart_parse_options' (at offset 0x15561) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:iommu_aperture_allowed from .text between 'gart_parse_options' (at offset 0x15577) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:fallback_aper_force from .text between 'gart_parse_options' (at offset 0x1558a) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:fallback_aper_order from .text between 'gart_parse_options' (at offset 0x155bf) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:timer_over_8254 from .text between 'ati_bugs' (at offset 0x16344) and 'via_bugs'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:timer_over_8254 from .text between 'ati_bugs' (at offset 0x16356) and 'via_bugs'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:iommu_aperture_allowed from .text between 'via_bugs' (at offset 0x16380) and 'nvidia_bugs'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:iommu_aperture_disabled from .text between 'via_bugs' (at offset 0x16397) and 'nvidia_bugs'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:acpi_use_timer_override from .text between 'nvidia_bugs' (at offset 0x163a7) and 'arch_unregister_cpu'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.text:nvidia_hpet_check from .text between 'nvidia_bugs' (at offset 0x163b1) and 'arch_unregister_cpu'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data: from .text between 'nvidia_bugs' (at offset 0x163be) and 'arch_unregister_cpu'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data: from .text between 'nvidia_bugs' (at offset 0x163d1) and 'arch_unregister_cpu'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:acpi_skip_timer_override from .text between 'nvidia_bugs' (at offset 0x163e1) and 'arch_unregister_cpu'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.text:quirk_intel_irqbalance from .text between 'intel_bugs' (at offset 0x1633c) and 'ati_bugs'
But adds:
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.text:get_mtrr_state from .text between 'mtrr_bp_init' (at offset 0xb887) and 'ipi_handler'
The warnings does not show up during a normal build due to kbuild
failing to check for section mismatch in vmlinux.
To see these warnings run:
scripts/mod/modpost arch/x86_64/kernel/built-in.o
kbuild will be fixed but the 'noise-level' had to be decresed first.
There remains a few section mismatch warnigns for x86_64 for areas where I did
not feel confident.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andi Kleen <ak@suse.de>
With more irqs in the system we don't need this.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rajesh Shah <rajesh.shah@intel.com>
Cc: Andi Kleen <ak@muc.de>
Cc: "Protasevich, Natalie" <Natalie.Protasevich@UNISYS.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- Remove a define that was used only once
- Remove the too large APIC ID check because we always support
the full 8bit range of APICs.
- Restructure code a bit to be simpler.
Cc: len.brown@intel.com
Signed-off-by: Andi Kleen <ak@suse.de>
ACPI went to great trouble to get the APIC version and CPU capabilities
of different CPUs before passing them to the mpparser. But all
that data was used was to print it out. Actually it even faked some data
based on the boot cpu, not on the actual CPU being booted.
Remove all this code because it's not needed.
Cc: len.brown@intel.com
Signed-off-by: Andi Kleen <ak@suse.de>
PIC mode is an outdated way to drive the APICs that was used on
some early MP boards. It is not supported in the ACPI model.
It is unlikely to be ever configured by any x86-64 system
Remove it thus.
Signed-off-by: Andi Kleen <ak@suse.de>
No 64bit EISA or Microchannel systems ever. Remove the left over code
in the IO-APIC driver and the mptable parser
Signed-off-by: Andi Kleen <ak@suse.de>
IO-APIC or local APIC can only be disabled at runtime anyways and
Kconfig has forced these options on for a long time now.
The Kconfigs are kept only now for the benefit of the shared acpi
boot.c code.
Signed-off-by: Andi Kleen <ak@suse.de>
The patch addresses a problem with ACPI SCI interrupt entry, which gets
re-used, and the IRQ is assigned to another unrelated device. The patch
corrects the code such that SCI IRQ is skipped and duplicate entry is
avoided. Second issue came up with VIA chipset, the problem was caused by
original patch assigning IRQs starting 16 and up. The VIA chipset uses
4-bit IRQ register for internal interrupt routing, and therefore cannot
handle IRQ numbers assigned to its devices. The patch corrects this
problem by allowing PCI IRQs below 16.
Cc: len.brown@intel.com
Signed-off by: Natalie Protasevich <Natalie.Protasevich@unisys.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Minor cleanup to lend better for physical CPU hotplug.
Earlier way of using num_processors as index doesnt
fit if CPUs come and go. This makes the code little bit better
to read, and helps physical hotplug use the same functions as boot.
Reserving CPU0 for BSP is too late to be done in smp_prepare_boot_cpu().
Since logical assignments from MADT is already done via
setup_arch()->acpi_boot_init()->parse lapic
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Don't print KERN_INFO in the middle of a printk line.
printk(KERN_INFO "OEM ID: %s ",str);
is just above this. This is already fixed up in i386 copy.
Signed-off-by: Martin J. Bligh <mbligh@google.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Use the #define for ACPI_LEVEL_SENSITIVE instead of assuming
non-zero, because ACPICA 20051021 changes its value to zero.
Also, use uniform variable names:
edge_level -> triggering
active_high_low -> polarity
Signed-off-by: Len Brown <len.brown@intel.com>
Completed a major overhaul of the Resource Manager code -
specifically, optimizations in the area of the AML/internal
resource conversion code. The code has been optimized to
simplify and eliminate duplicated code, CPU stack use has
been decreased by optimizing function parameters and local
variables, and naming conventions across the manager have
been standardized for clarity and ease of maintenance (this
includes function, parameter, variable, and struct/typedef
names.)
All Resource Manager dispatch and information tables have
been moved to a single location for clarity and ease of
maintenance. One new file was created, named "rsinfo.c".
The ACPI return macros (return_ACPI_STATUS, etc.) have
been modified to guarantee that the argument is
not evaluated twice, making them less prone to macro
side-effects. However, since there exists the possibility
of additional stack use if a particular compiler cannot
optimize them (such as in the debug generation case),
the original macros are optionally available. Note that
some invocations of the return_VALUE macro may now cause
size mismatch warnings; the return_UINT8 and return_UINT32
macros are provided to eliminate these. (From Randy Dunlap)
Implemented a new mechanism to enable debug tracing for
individual control methods. A new external interface,
acpi_debug_trace(), is provided to enable this mechanism. The
intent is to allow the host OS to easily enable and disable
tracing for problematic control methods. This interface
can be easily exposed to a user or debugger interface if
desired. See the file psxface.c for details.
acpi_ut_callocate() will now return a valid pointer if a
length of zero is specified - a length of one is used
and a warning is issued. This matches the behavior of
acpi_ut_allocate().
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
This is needed for large multinode IBM systems which have a sparse
APIC space in clustered mode, fully covering the available 8 bits.
The previous kernels would limit the local APIC number to 127,
which caused it to reject some of the CPUs at boot.
I increased the maximum and shrunk the apic_version array a bit
to make up for that (the version is only 8 bit, so don't need
an full int to store)
Cc: Chris McDermott <lcm@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
With a NR_CPUS==128 kernel with CPU hotplug enabled we would waste 4MB
on per CPU data of all possible CPUs. The reason was that HOTPLUG
always set up possible map to NR_CPUS cpus and then we need to allocate
that much (each per CPU data is roughly ~32k now)
The underlying problem is that ACPI didn't tell us how many hotplug CPUs
the platform supports. So the old code just assumed all, which would
lead to this memory wastage.
This implements some new heuristics:
- If the BIOS specified disabled CPUs in the ACPI/mptables assume they
can be enabled later (this is bending the ACPI specification a bit,
but seems like a obvious extension)
- The user can overwrite it with a new additionals_cpus=NUM option
- Otherwise use half of the available CPUs or 2, whatever is more.
Cc: ashok.raj@intel.com
Cc: len.brown@intel.com
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We should zap the low mappings, as soon as possible, so that we can catch
kernel bugs more effectively. Previously early boot had NULL mapped
and didn't trap on NULL references.
This patch introduces boot_level4_pgt, which will always have low identity
addresses mapped. Druing boot, all the processors will use this as their
level4 pgt. On BP, we will switch to init_level4_pgt as soon as we enter C
code and zap the low mappings as soon as we are done with the usage of
identity low mapped addresses. On AP's we will zap the low mappings as
soon as we jump to C code.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Here's a patch that builds on Natalie Protasevich's IRQ compression
patch and tries to work for MPS boots as well as ACPI. It is meant for
a 4-node IBM x460 NUMA box, which was dying because it had interrupt
pins with GSI numbers > NR_IRQS and thus overflowed irq_desc.
The problem is that this system has 270 GSIs (which are 1:1 mapped with
I/O APIC RTEs) and an 8-node box would have 540. This is much bigger
than NR_IRQS (224 for both i386 and x86_64). Also, there aren't enough
vectors to go around. There are about 190 usable vectors, not counting
the reserved ones and the unused vectors at 0x20 to 0x2F. So, my patch
attempts to compress the GSI range and share vectors by sharing IRQs.
Cc: "Protasevich, Natalie" <Natalie.Protasevich@unisys.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
... and with that all instances in arch/x86_64 are gone.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The patch adds boundary check for the MAX_GSI_NUM. Same as the update for
i386, the patch addresses a problem with ACPI SCI IRQ. The patch corrects
the code such that SCI IRQ is skipped and duplicate entry is avoided. The
VIA chipset uses 4-bit IRQ register for internal interrupt routing, and
therefore cannot handle IRQ numbers assigned to its devices. The patch
corrects this problem by allowing PCI IRQs below 16.
Signed-off-by: Natalie Protasevich <Natalie.Protasevich@unisys.com>
Acked-by: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Various code needs this information now before the actual SMP bootup. Instead
of computing it on the fly while booting the other CPUs set it up now while
initial MPtable/MADT parsing.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
I suggest to change the way IRQs are handed out to PCI devices.
Currently, each I/O APIC pin gets associated with an IRQ, no matter if the
pin is used or not. It is expected that each pin can potentually be
engaged by a device inserted into the corresponding PCI slot. However,
this imposes severe limitation on systems that have designs that employ
many I/O APICs, only utilizing couple lines of each, such as P64H2 chipset.
It is used in ES7000, and currently, there is no way to boot the system
with more that 9 I/O APICs.
The simple change below allows to boot a system with say 64 (or more) I/O
APICs, each providing 1 slot, which otherwise impossible because of the IRQ
gaps created for unused lines on each I/O APIC. It does not resolve the
problem with number of devices that exceeds number of possible IRQs, but
eases up a tension for IRQs on any large system with potentually large
number of devices.
I only implemented this for the ACPI boot, since if the system is this big
and using newer chipsets it is probably (better be!) an ACPI based system
:). The change is completely "mechanical" and does not alter any internal
structures or interrupt model/implementation. The patch works for both
i386 and x86_64 archs. It works with MSIs just fine, and should not
intervene with implementations like shared vectors, when they get worked
out and incorporated.
To illustrate, below is the interrupt distribution for 2-cell ES7000 with
20 I/O APICs, and an Ethernet card in the last slot, which should be eth1
and which was not configured because its IRQ exceeded allowable number (it
actially turned out huge - 480!):
zorro-tb2:~ # cat /proc/interrupts
CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
0: 65716 30012 30007 30002 30009 30010 30010 30010 IO-APIC-edge timer
4: 373 0 725 280 0 0 0 0 IO-APIC-edge serial
8: 0 0 0 0 0 0 0 0 IO-APIC-edge rtc
9: 0 0 0 0 0 0 0 0 IO-APIC-level acpi
14: 39 3 0 0 0 0 0 0 IO-APIC-edge ide0
16: 108 13 0 0 0 0 0 0 IO-APIC-level uhci_hcd:usb1
18: 0 0 0 0 0 0 0 0 IO-APIC-level uhci_hcd:usb3
19: 15 0 0 0 0 0 0 0 IO-APIC-level uhci_hcd:usb2
23: 3 0 0 0 0 0 0 0 IO-APIC-level ehci_hcd:usb4
96: 4240 397 18 0 0 0 0 0 IO-APIC-level aic7xxx
97: 15 0 0 0 0 0 0 0 IO-APIC-level aic7xxx
192: 847 0 0 0 0 0 0 0 IO-APIC-level eth0
NMI: 0 0 0 0 0 0 0 0
LOC: 273423 274528 272829 274228 274092 273761 273827 273694
ERR: 7
MIS: 0
Even though the system doesn't have that many devices, some don't get
enabled only because of IRQ numbering model.
This is the IRQ picture after the patch was applied:
zorro-tb2:~ # cat /proc/interrupts
CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
0: 44169 10004 10004 10001 10004 10003 10004 6135 IO-APIC-edge timer
4: 345 0 0 0 0 244 0 0 IO-APIC-edge serial
8: 0 0 0 0 0 0 0 0 IO-APIC-edge rtc
9: 0 0 0 0 0 0 0 0 IO-APIC-level acpi
14: 39 0 3 0 0 0 0 0 IO-APIC-edge ide0
17: 4425 0 9 0 0 0 0 0 IO-APIC-level aic7xxx
18: 15 0 0 0 0 0 0 0 IO-APIC-level aic7xxx, uhci_hcd:usb3
21: 231 0 0 0 0 0 0 0 IO-APIC-level uhci_hcd:usb1
22: 26 0 0 0 0 0 0 0 IO-APIC-level uhci_hcd:usb2
23: 3 0 0 0 0 0 0 0 IO-APIC-level ehci_hcd:usb4
24: 348 0 0 0 0 0 0 0 IO-APIC-level eth0
25: 6 192 0 0 0 0 0 0 IO-APIC-level eth1
NMI: 0 0 0 0 0 0 0 0
LOC: 107981 107636 108899 108698 108489 108326 108331 108254
ERR: 7
MIS: 0
Not only we see the card in the last I/O APIC, but we are not even close to
using up available IRQs, since we didn't waste any.
Signed-off-by: Natalie Protasevich <Natalie.Protasevich@unisys.com>
Acked-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Define pcibus_to_node to be able to figure out which NUMA node contains a
given PCI device. This defines pcibus_to_node(bus) in
include/linux/topology.h and adjusts the macros for i386 and x86_64 that
already provided a way to determine the cpumask of a pci device.
x86_64 was changed to not build an array of cpumasks anymore. Instead an
array of nodes is build which can be used to generate the cpumask via
node_to_cpumask.
Signed-off-by: Christoph Lameter <christoph@lameter.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch removes the assumption that LAPIC entries contain the BSP as its
first entry. This is a slight improvement to the temporary fix submitted by
Suresh Siddha.
- Removes assumption that LAPIC entries contain BSP first.
- Builds x86_acpiid_to_apicid[] and bios_cpu_apicid[] properly with BSP as
first entry.
- Made maxcpus=1 boot on these systems. Since the parsing earlier in
arch/x86_64/kernel/mpparse.c stopped after maxcpus entries, other entries
were not processed, this causes kernel not to boot on these systems.
TBD: x86_acpiid_to_apicid and bios_cpu_apicid[] seem to be exactly the
same. This could be removed, but might need more work to cleanup.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It is unnecessary on modern Intel or AMD systems, and that is all we support
on x86-64
Also causes problems on various systems
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!