All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
The workqueue implementation in 2.6.36-rcX has changed, resulting
in the workqueues no longer having dedicated threads for work
processing. This has caused severe livelocks under heavy parallel
create workloads because the log IO completions have been getting
held up behind metadata IO completions. Hence log commits would
stall, memory allocation would stall because pages could not be
cleaned, and lock contention on the AIL during inode IO completion
processing was being seen to slow everything down even further.
By making the log Io completion workqueue a high priority workqueue,
they are queued ahead of all data/metadata IO completions and
processed before the data/metadata completions. Hence the log never
gets stalled, and operations needed to clean memory can continue as
quickly as possible. This avoids the livelock conditions and allos
the system to keep running under heavy load as per normal.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
An execve with a very large total of argument/environment strings
can take a really long time in the execve system call. It runs
uninterruptibly to count and copy all the strings. This change
makes it abort the exec quickly if sent a SIGKILL.
Note that this is the conservative change, to interrupt only for
SIGKILL, by using fatal_signal_pending(). It would be perfectly
correct semantics to let any signal interrupt the string-copying in
execve, i.e. use signal_pending() instead of fatal_signal_pending().
We'll save that change for later, since it could have user-visible
consequences, such as having a timer set too quickly make it so that
an execve can never complete, though it always happened to work before.
Signed-off-by: Roland McGrath <roland@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds a preemption point during the copying of the argument and
environment strings for execve, in copy_strings(). There is already
a preemption point in the count() loop, so this doesn't add any new
points in the abstract sense.
When the total argument+environment strings are very large, the time
spent copying them can be much more than a normal user time slice.
So this change improves the interactivity of the rest of the system
when one process is doing an execve with very large arguments.
Signed-off-by: Roland McGrath <roland@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The CONFIG_STACK_GROWSDOWN variant of setup_arg_pages() does not
check the size of the argument/environment area on the stack.
When it is unworkably large, shift_arg_pages() hits its BUG_ON.
This is exploitable with a very large RLIMIT_STACK limit, to
create a crash pretty easily.
Check that the initial stack is not too large to make it possible
to map in any executable. We're not checking that the actual
executable (or intepreter, for binfmt_elf) will fit. So those
mappings might clobber part of the initial stack mapping. But
that is just userland lossage that userland made happen, not a
kernel problem.
Signed-off-by: Roland McGrath <roland@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.dk/linux-2.6-block:
block: Range check cpu in blk_cpu_to_group
scatterlist: prevent invalid free when alloc fails
writeback: Fix lost wake-up shutting down writeback thread
writeback: do not lose wakeup events when forking bdi threads
cciss: fix reporting of max queue depth since init
block: switch s390 tape_block and mg_disk to elevator_change()
block: add function call to switch the IO scheduler from a driver
fs/bio-integrity.c: return -ENOMEM on kmalloc failure
bio-integrity.c: remove dependency on __GFP_NOFAIL
BLOCK: fix bio.bi_rw handling
block: put dev->kobj in blk_register_queue fail path
cciss: handle allocation failure
cfq-iosched: Documentation help for new tunables
cfq-iosched: blktrace print per slice sector stats
cfq-iosched: Implement tunable group_idle
cfq-iosched: Do group share accounting in IOPS when slice_idle=0
cfq-iosched: Do not idle if slice_idle=0
cciss: disable doorbell reset on reset_devices
blkio: Fix return code for mkdir calls
The XFS_IOC_FSGETXATTR ioctl allows unprivileged users to read 12
bytes of uninitialized stack memory, because the fsxattr struct
declared on the stack in xfs_ioc_fsgetxattr() does not alter (or zero)
the 12-byte fsx_pad member before copying it back to the user. This
patch takes care of it.
Signed-off-by: Dan Rosenberg <dan.j.rosenberg@gmail.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
O_NONBLOCK on parisc has a dual value:
#define O_NONBLOCK 000200004 /* HPUX has separate NDELAY & NONBLOCK */
It is caught by the O_* bits uniqueness check and leads to a parisc
compile error. The fix would be to take O_NONBLOCK out.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
Cc: Jamie Lokier <jamie@shareable.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 74641f584d ("alpha: binfmt_aout fix") (May 2009) introduced a
regression - binfmt_misc is now consulted after binfmt_elf, which will
unfortunately break ia32el. ia32 ELF binaries on ia64 used to be matched
using binfmt_misc and executed using wrapper. As 32bit binaries are now
matched by binfmt_elf before bindmt_misc kicks in, the wrapper is ignored.
The fix increases precedence of binfmt_misc to the original state.
Signed-off-by: Jan Sembera <jsembera@suse.cz>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Richard Henderson <rth@twiddle.net
Cc: <stable@kernel.org> [2.6.everything.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the left-over old ifdef for PG_uncached in /proc/kpageflags. Now it's
used by x86, too.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit c2c6ca4 (direct-io: do not merge logically non-contiguous requests)
introduced a bug whereby all O_DIRECT I/Os were submitted a page at a time
to the block layer. The problem is that the code expected
dio->block_in_file to correspond to the current page in the dio. In fact,
it corresponds to the previous page submitted via submit_page_section.
This was purely an oversight, as the dio->cur_page_fs_offset field was
introduced for just this purpose. This patch simply uses the correct
variable when calculating whether there is a mismatch between contiguous
logical blocks and contiguous physical blocks (as described in the
comments).
I also switched the if conditional following this check to an else if, to
ensure that we never call dio_bio_submit twice for the same dio (in
theory, this should not happen, anyway).
I've tested this by running blktrace and verifying that a 64KB I/O was
submitted as a single I/O. I also ran the patched kernel through
xfstests' aio tests using xfs, ext4 (with 1k and 4k block sizes) and btrfs
and verified that there were no regressions as compared to an unpatched
kernel.
Signed-off-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Josef Bacik <jbacik@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: <stable@kernel.org> [2.6.35.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
So it can be used by all that need to check for that.
Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'fixes' of git://oss.oracle.com/git/tma/linux-2.6:
ocfs2: Fix orphan add in ocfs2_create_inode_in_orphan
ocfs2: split out ocfs2_prepare_orphan_dir() into locking and prep functions
ocfs2: allow return of new inode block location before allocation of the inode
ocfs2: use ocfs2_alloc_dinode_update_counts() instead of open coding
ocfs2: split out inode alloc code from ocfs2_mknod_locked
Ocfs2: Fix a regression bug from mainline commit(6b933c8e6f).
ocfs2: Fix deadlock when allocating page
ocfs2: properly set and use inode group alloc hint
ocfs2: Use the right group in nfs sync check.
ocfs2: Flush drive's caches on fdatasync
ocfs2: make __ocfs2_page_mkwrite handle file end properly.
ocfs2: Fix incorrect checksum validation error
ocfs2: Fix metaecc error messages
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse:
fuse: fix lock annotations
fuse: flush background queue on connection close
ocfs2_create_inode_in_orphan() is used by reflink to create the newly
reflinked inode simultaneously in the orphan dir. This allows us to easily
handle partially-reflinked files during recovery cleanup.
We have a problem though - the orphan dir stringifies inode # to determine
a unique name under which the orphan entry dirent can be created. Since
ocfs2_create_inode_in_orphan() needs the space allocated in the orphan dir
before it can allocate the inode, we currently call into the orphan code:
/*
* We give the orphan dir the root blkno to fake an orphan name,
* and allocate enough space for our insertion.
*/
status = ocfs2_prepare_orphan_dir(osb, &orphan_dir,
osb->root_blkno,
orphan_name, &orphan_insert);
Using osb->root_blkno might work fine on unindexed directories, but the
orphan dir can have an index. When it has that index, the above code fails
to allocate the proper index entry. Later, when we try to remove the file
from the orphan dir (using the actual inode #), the reflink operation will
fail.
To fix this, I created a function ocfs2_alloc_orphaned_file() which uses the
newly split out orphan and inode alloc code to figure out what the inode
block number will be (once allocated) and then prepare the orphan dir from
that data.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
We do this because ocfs2_create_inode_in_orphan() wants to order locking of
the orphan dir with respect to locking of the inode allocator *before*
making any changes to the directory.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
This allows code which needs to know the eventual block number of an inode
but can't allocate it yet due to transaction or lock ordering. For example,
ocfs2_create_inode_in_orphan() currently gives a junk blkno for preparation
of the orphan dir because it can't yet know where the actual inode is placed
- that code is actually in ocfs2_mknod_locked. This is a problem when the
orphan dirs are indexed as the junk inode number will create an index entry
which goes unused (and fails the later removal from the orphan dir). Now
with these interfaces, ocfs2_create_inode_in_orphan() can run the block
group search (and get back the inode block number) *before* any actual
allocation occurs.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
ocfs2_search_chain() makes the same updates as
ocfs2_alloc_dinode_update_counts to the alloc inode. Instead of open coding
the bitmap update, use our helper function.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Do this by splitting the bulk of the function away from the inode allocation
code at the very tom of ocfs2_mknod_locked(). Existing callers don't need to
change and won't see any difference. The new function created,
__ocfs2_mknod_locked() will be used shortly.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
The patch is to fix the regression bug brought from commit 6b933c8...( 'ocfs2:
Avoid direct write if we fall back to buffered I/O'):
http://oss.oracle.com/bugzilla/show_bug.cgi?id=1285
The commit 6b933c8e6f changed __generic_file_aio_write
to generic_file_buffered_write, which didn't call filemap_{write,wait}_range to flush
the pagecaches when we were falling O_DIRECT writes back to buffered ones. it did hurt
the O_DIRECT semantics somehow in extented odirect writes.
This patch tries to guarantee O_DIRECT writes of 'fall back to buffered' to be correctly
flushed.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
We cannot call grab_cache_page() when holding filesystem locks or with
a transaction started as grab_cache_page() calls page allocation with
GFP_KERNEL flag and thus page reclaim can recurse back into the filesystem
causing deadlocks or various assertion failures. We have to use
find_or_create_page() instead and pass it GFP_NOFS as we do with other
allocations.
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
We were setting ac->ac_last_group in ocfs2_claim_suballoc_bits from
res->sr_bg_blkno. Unfortunately, res->sr_bg_blkno is going to be zero under
normal (non-fragmented) circumstances. The discontig block group patches
effectively turned off that feature. Fix this by correctly calculating what
the next group hint should be.
Acked-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.de>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
We have added discontig block group now, and now an inode
can be allocated in an discontig block group. So get
it in ocfs2_get_suballoc_slot_bit.
The old ocfs2_test_suballoc_bit gets group block no
from the allocation inode which is wrong. Fix it by
passing the right group.
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
When 'barrier' mount option is specified, we have to issue a cache flush
during fdatasync(2). We have to do this even if inode doesn't have
I_DIRTY_DATASYNC set because we still have to get written *data* to disk so
that they are not lost in case of crash.
Acked-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Singed-off-by: Tao Ma <tao.ma@oracle.com>
__ocfs2_page_mkwrite now is broken in handling file end.
1. the last page should be the page contains i_size - 1.
2. the len in the last page is also calculated wrong.
So change them accordingly.
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
For local mounts, ocfs2_read_locked_inode() calls ocfs2_read_blocks_sync() to
read the inode off the disk. The latter first checks to see if that block is
cached in the journal, and, if so, returns that block. That is ok.
But ocfs2_read_locked_inode() goes wrong when it tries to validate the checksum
of such blocks. Blocks that are cached in the journal may not have had their
checksum computed as yet. We should not validate the checksums of such blocks.
Fixes ossbz#1282
http://oss.oracle.com/bugzilla/show_bug.cgi?id=1282
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Cc: stable@kernel.org
Singed-off-by: Tao Ma <tao.ma@oracle.com>
Like tools, the checksum validate function now prints the values in hex.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Singed-off-by: Tao Ma <tao.ma@oracle.com>
* 'for-linus' of git://oss.sgi.com/xfs/xfs:
xfs: Make fiemap work with sparse files
xfs: prevent 32bit overflow in space reservation
xfs: Disallow 32bit project quota id
xfs: improve buffer cache hash scalability
Sanity check the flags passed to change_mnt_propagation(). Exactly
one flag should be set. Return EINVAL otherwise.
Userspace can pass in arbitrary combinations of MS_* flags to mount().
do_change_type() is called if any of MS_SHARED, MS_PRIVATE, MS_SLAVE,
or MS_UNBINDABLE is set. do_change_type() clears MS_REC and then
calls change_mnt_propagation() with the rest of the user-supplied
flags. change_mnt_propagation() clearly assumes only one flag is set
but do_change_type() does not check that this is true. For example,
mount() with flags MS_SHARED | MS_RDONLY does not actually make the
mount shared or read-only but does clear MNT_UNBINDABLE.
Signed-off-by: Valerie Aurora <vaurora@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse doesn't understand lock annotations of the form
__releases(&foo->lock). Change them to __releases(foo->lock). Same
for __acquires().
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
David Bartly reported that fuse can hang in fuse_get_req_nofail() when
the connection to the filesystem server is no longer active.
If bg_queue is not empty then flush_bg_queue() called from
request_end() can put more requests on to the pending queue. If this
happens while ending requests on the processing queue then those
background requests will be queued to the pending list and never
ended.
Another problem is that fuse_dev_release() didn't wake up processes
sleeping on blocked_waitq.
Solve this by:
a) flushing the background queue before calling end_requests() on the
pending and processing queues
b) setting blocked = 0 and waking up processes waiting on
blocked_waitq()
Thanks to David for an excellent bug report.
Reported-by: David Bartley <andareed@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
CC: stable@kernel.org
d_path() returns an ERR_PTR and it doesn't return NULL.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Cc: stable <stable@kernel.org>
Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
In xfs_vn_fiemap, we set bvm_count to fi_extent_max + 1 and want
to return fi_extent_max extents, but actually it won't work for
a sparse file. The reason is that in xfs_getbmap we will
calculate holes and set it in 'out', while out is malloced by
bmv_count(fi_extent_max+1) which didn't consider holes. So in the
worst case, if 'out' vector looks like
[hole, extent, hole, extent, hole, ... hole, extent, hole],
we will only return half of fi_extent_max extents.
This patch add a new parameter BMV_IF_NO_HOLES for bvm_iflags.
So with this flags, we don't use our 'out' in xfs_getbmap for
a hole. The solution is a bit ugly by just don't increasing
index of 'out' vector. I felt that it is not easy to skip it
at the very beginning since we have the complicated check and
some function like xfs_getbmapx_fix_eof_hole to adjust 'out'.
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
If we attempt to preallocate more than 2^32 blocks of space in a
single syscall, the transaction block reservation will overflow
leading to a hangs in the superblock block accounting code. This
is trivially reproduced with xfs_io. Fix the problem by capping the
allocation reservation to the maximum number of blocks a single
xfs_bmapi() call can allocate (2^21 blocks).
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Currently on-disk structure is able to keep only 16bit project quota
id, so disallow 32bit ones. This fixes a problem where parts of
kernel structures holding project quota id are 32bit while parts
(on-disk) are 16bit variables which causes project quota member
files to be inaccessible for some operations (like mv/rm).
Signed-off-by: Arkadiusz Mi?kiewicz <arekm@maven.pl>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
When doing large parallel file creates on a 16p machines, large amounts of
time is being spent in _xfs_buf_find(). A system wide profile with perf top
shows this:
1134740.00 19.3% _xfs_buf_find
733142.00 12.5% __ticket_spin_lock
The problem is that the hash contains 45,000 buffers, and the hash table width
is only 256 buffers. That means we've got around 200 buffers per chain, and
searching it is quite expensive. The hash table size needs to increase.
Secondly, every time we do a lookup, we promote the buffer we find to the head
of the hash chain. This is causing cachelines to be dirtied and causes
invalidation of cachelines across all CPUs that may have walked the hash chain
recently. hence every walk of the hash chain is effectively a cold cache walk.
Remove the promotion to avoid this invalidation.
The results are:
1045043.00 21.2% __ticket_spin_lock
326184.00 6.6% _xfs_buf_find
A 70% drop in the CPU usage when looking up buffers. Unfortunately that does
not result in an increase in performance underthis workload as contention on
the inode_lock soaks up most of the reduction in CPU usage.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
p9_client_walk() can return error values if we run out of space or there
is a problem with the network.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
If load_nilfs() gets an error while doing recovery, it will fail to
free the shadow inode of dat (nilfs->ns_gc_dat).
This fixes the leak issue.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* 'for-linus' of git://git.infradead.org/users/eparis/notify:
fsnotify: drop two useless bools in the fnsotify main loop
fsnotify: fix list walk order
fanotify: Return EPERM when a process is not privileged
fanotify: resize pid and reorder structure
fanotify: drop duplicate pr_debug statement
fanotify: flush outstanding perm requests on group destroy
fsnotify: fix ignored mask handling between inode and vfsmount marks
fanotify: add MAINTAINERS entry
fsnotify: reset used_inode and used_vfsmount on each pass
fanotify: do not dereference inode_mark when it is unset
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client:
ceph: fix get_ticket_handler() error handling
ceph: don't BUG on ENOMEM during mds reconnect
ceph: ceph_mdsc_build_path() returns an ERR_PTR
ceph: Fix warnings
ceph: ceph_get_inode() returns an ERR_PTR
ceph: initialize fields on new dentry_infos
ceph: maintain i_head_snapc when any caps are dirty, not just for data
ceph: fix osd request lru adjustment when sending request
ceph: don't improperly set dir complete when holding EXCL cap
mm: exporting account_page_dirty
ceph: direct requests in snapped namespace based on nonsnap parent
ceph: queue cap snap writeback for realm children on snap update
ceph: include dirty xattrs state in snapped caps
ceph: fix xattr cap writeback
ceph: fix multiple mds session shutdown
* 'for-2.6.36' of git://linux-nfs.org/~bfields/linux:
nfsd: fix NULL dereference in nfsd_statfs()
nfsd4: fix downgrade/lock logic
nfsd4: typo fix in find_any_file
nfsd4: bad BUG() in preprocess_stateid_op