If the task never used fpu, initialize the fpu before restoring the FP
state from the signal handler context. This will allocate the fpu
state, if the task never needed it before.
Reported-and-bisected-by: Eric Sesterhenn <snakebyte@gmx.de>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Tested-by: Eric Sesterhenn <snakebyte@gmx.de>
Cc: Frederik Deweerdt <deweerdt@free.fr>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Only allocate the FPU area when the application actually uses FPU, i.e., in the
first lazy FPU trap. This could save memory for non-fpu using apps.
for example: on my system after boot, there are around 300 processes, with
only 17 using FPU.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Split the FPU save area from the task struct. This allows easy migration
of FPU context, and it's generally cleaner. It also allows the following
two optimizations:
1) only allocate when the application actually uses FPU, so in the first
lazy FPU trap. This could save memory for non-fpu using apps. Next patch
does this lazy allocation.
2) allocate the right size for the actual cpu rather than 512 bytes always.
Patches enabling xsave/xrstor support (coming shortly) will take advantage
of this.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
convert_fxsr_to_user() in 2.6.24's i387_32.c did this, and
convert_to_fxsr() also does the inverse, so I assume it's an oversight
that it is no longer being done.
[ mingo@elte.hu:
we encode it this way because there's no space for the 'FPU Last
Instruction Opcode' (->fop) field in the legacy user_i387_ia32_struct
that PTRACE_GETFPREGS/PTRACE_SETFPREGS uses.
it's probably pure legacy - i'd be surprised if any user-space relied on
the FPU Last Opcode in any way. But indeed we used to do it previously
so the most conservative thing is to preserve that piece of information.
]
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This bug got introduced by the recent i387 merge:
commit 4421011120
Author: Roland McGrath <roland@redhat.com>
Date: Wed Jan 30 13:31:50 2008 +0100
x86: x86 i387 user_regset
Current usage of unlazy_fpu() in ptrace specific routines is wrong.
unlazy_fpu() will not init fpu if the task never used math. So the
ptrace calls can expose the parent tasks FPU data in some cases.
Replace it with the init_fpu() which will init the math state, if the
task never used math before.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
This removes a bunch of dead code that is no longer needed now
that the user_regset interfaces are being used for all these jobs.
Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This revamps the i387 code to be shared across 32-bit, 64-bit,
and 32-on-64. It does so by consolidating the code in one place
based on the user_regset accessor interfaces. This switches
32-bit to using the i387_64.h header and 64-bit to using the
i387.c that was previously i387_32.c, but that's what took the
least cleanup in each file. Here i387.h is stubbed to always
include i387_64.h rather than renaming the file, to keep this
diff smaller and easier to read.
Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This renames arch/x86/kernel/{i387_32.c => i387.c}.
This is a pure renaming, but paves the way for merging
the 32-bit and 64-bit versions of this code.
Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>