Secure elements need to be discovered after enabling the NFC controller.
This is typically done by the NCI core and the HCI drivers (HCI does not
specify how to discover SEs, it is left to the specific drivers).
Also, the SE enable/disable API explicitely takes a SE index as its
argument.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Supported secure elements are typically found during a discovery process
initiated when the NFC controller is up and running. For a given NFC
chipset there can be many configurations (embedded SE or not, with or
without a SIM card wired to the NFC controller SWP interface, etc...) and
thus driver code will never know before hand which SEs are available.
So we remove this field, it will be replaced by a real SE discovery
mechanism.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This is a simple forward to the HCI driver. When driver is done with the
operation, it shall directly notify NFC Core by calling
nfc_fw_upload_done().
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Each NFC adapter can have several links to different secure elements and
that property needs to be exported by the drivers.
A secure element link can be enabled and disabled, and card emulation will
be handled by the currently active one. Otherwise card emulation will be
host implemented.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Some chips diverge from the HCI spec in their implementation of standard
features. This adds a new quirks parameter to
nfc_hci_allocate_device() to let the driver indicate its divergence.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
When an adapter is removed, it will unregister itself from hci and/or
nfc core. In order to do that safely, work tasks must first be canceled
and prevented to be scheduled again, before the hci or nfc device can be
destroyed.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The driver now has all HCI stuff isolated in one file, and all the
hardware link specifics in another. Writing a pn544 driver on top of
another hardware link is now just a matter of adding a new file for that
new hardware specifics.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Set the local general bytes and default value for NFCIP1
Target/Initiator registries if the protocol is NFC-DEP
Signed-off-by: Arron Wang <arron.wang@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
xmit callback provided by a driver encapsulates upper layers
data and sends it to the hardware. So, HCI does not know the
exact amount of data being sent and thus can't handle partially
sent frames properly.
Therefore, the driver must return 0 for completely sent frame or
negative for failure.
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Acked-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The previous shdlc HCI driver and its header are removed from the tree.
PN544 now registers directly with HCI and passes the name of the llc it
requires (shdlc).
HCI instantiation now allocates the required llc instance. The llc is
started when the HCI device is brought up.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This enables the completion callback to be called from a different
context, preventing a possible deadlock if the callback resulted in the
invocation of a nested call to the currently locked nfc_dev.
This is also more in line with the im_transceive nfc_ops for NFC Core or
NCI drivers which already behave asynchronously.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This method initiates execution of an HCI cmd. Result will be delivered
through an asynchronous callback.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
NFC is using a number of custom ordered workqueues w/ WQ_MEM_RECLAIM.
WQ_MEM_RECLAIM is unnecessary unless NFC is gonna be used as transport
for storage device, and all use cases match one work item to one
ordered workqueue - IOW, there's no actual ordering going on at all
and using system_nrt_wq gives the same behavior.
There's nothing to be gained by using custom workqueues. Use
system_nrt_wq instead and drop all the custom ones.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Some NFC chips will statically create and open pipes for both standard
and proprietary gates. The driver can now pass this information to HCI
such that HCI will not attempt to create and open them, but will instead
directly use the passed pipe ids.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The NFC core code already does that for them.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This is an implementation of ETSI TS 102 622 specification.
Many NFC chipsets use HCI as the host <-> target protocol on top of a
serial link like i2c.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>