Merge these two small .c modules as they implement two aspects
of idle task handling.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Split the housekeeping config from CONFIG_NO_HZ_FULL. This way we finally
separate the isolation code from NOHZ.
Although a dependency to CONFIG_NO_HZ_FULL remains for now, while the
housekeeping code still deals with NOHZ internals.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-8-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The housekeeping code is currently tied to the NOHZ code. As we are
planning to make housekeeping independent from it, start with moving
the relevant code to its own file.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-2-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built
from all runqueues for which current thread's mm is the same as the
thread calling sys_membarrier. It executes faster than the non-expedited
variant (no blocking). It also works on NOHZ_FULL configurations.
Scheduler-wise, it requires a memory barrier before and after context
switching between processes (which have different mm). The memory
barrier before context switch is already present. For the barrier after
context switch:
* Our TSO archs can do RELEASE without being a full barrier. Look at
x86 spin_unlock() being a regular STORE for example. But for those
archs, all atomics imply smp_mb and all of them have atomic ops in
switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full
barrier.
* From all weakly ordered machines, only ARM64 and PPC can do RELEASE,
the rest does indeed do smp_mb(), so there the spin_unlock() is a full
barrier and we're good.
* ARM64 has a very heavy barrier in switch_to(), which suffices.
* PPC just removed its barrier from switch_to(), but appears to be
talking about adding something to switch_mm(). So add a
smp_mb__after_unlock_lock() for now, until this is settled on the PPC
side.
Changes since v3:
- Properly document the memory barriers provided by each architecture.
Changes since v2:
- Address comments from Peter Zijlstra,
- Add smp_mb__after_unlock_lock() after finish_lock_switch() in
finish_task_switch() to add the memory barrier we need after storing
to rq->curr. This is much simpler than the previous approach relying
on atomic_dec_and_test() in mmdrop(), which actually added a memory
barrier in the common case of switching between userspace processes.
- Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full
kernel, rather than having the whole membarrier system call returning
-ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full.
Adapt the CMD_QUERY mask accordingly.
Changes since v1:
- move membarrier code under kernel/sched/ because it uses the
scheduler runqueue,
- only add the barrier when we switch from a kernel thread. The case
where we switch from a user-space thread is already handled by
the atomic_dec_and_test() in mmdrop().
- add a comment to mmdrop() documenting the requirement on the implicit
memory barrier.
CC: Peter Zijlstra <peterz@infradead.org>
CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
CC: Boqun Feng <boqun.feng@gmail.com>
CC: Andrew Hunter <ahh@google.com>
CC: Maged Michael <maged.michael@gmail.com>
CC: gromer@google.com
CC: Avi Kivity <avi@scylladb.com>
CC: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: Paul Mackerras <paulus@samba.org>
CC: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Dave Watson <davejwatson@fb.com>
Conflicts:
kernel/sched/Makefile
Pick up the waitqueue related renames - it didn't get much feedback,
so it appears to be uncontroversial. Famous last words? ;-)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The wait_bit*() types and APIs are mixed into wait.h, but they
are a pretty orthogonal extension of wait-queues.
Furthermore, only about 50 kernel files use these APIs, while
over 1000 use the regular wait-queue functionality.
So clean up the main wait.h by moving the wait-bit functionality
out of it, into a separate .h and .c file:
include/linux/wait_bit.h for types and APIs
kernel/sched/wait_bit.c for the implementation
Update all header dependencies.
This reduces the size of wait.h rather significantly, by about 30%.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The stop class is invoked through stop_machine only.
This is dead code on UP builds.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170529210302.26868-3-nicolas.pitre@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The names are all 'autogroup', not 'auto_group' - so rename
the kernel/sched/auto_group.[ch] to match the existing
nomenclature.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a new cpufreq scaling governor, called "schedutil", that uses
scheduler-provided CPU utilization information as input for making
its decisions.
Doing that is possible after commit 34e2c555f3 (cpufreq: Add
mechanism for registering utilization update callbacks) that
introduced cpufreq_update_util() called by the scheduler on
utilization changes (from CFS) and RT/DL task status updates.
In particular, CPU frequency scaling decisions may be based on
the the utilization data passed to cpufreq_update_util() by CFS.
The new governor is relatively simple.
The frequency selection formula used by it depends on whether or not
the utilization is frequency-invariant. In the frequency-invariant
case the new CPU frequency is given by
next_freq = 1.25 * max_freq * util / max
where util and max are the last two arguments of cpufreq_update_util().
In turn, if util is not frequency-invariant, the maximum frequency in
the above formula is replaced with the current frequency of the CPU:
next_freq = 1.25 * curr_freq * util / max
The coefficient 1.25 corresponds to the frequency tipping point at
(util / max) = 0.8.
All of the computations are carried out in the utilization update
handlers provided by the new governor. One of those handlers is
used for cpufreq policies shared between multiple CPUs and the other
one is for policies with one CPU only (and therefore it doesn't need
to use any extra synchronization means).
The governor supports fast frequency switching if that is supported
by the cpufreq driver in use and possible for the given policy.
In the fast switching case, all operations of the governor take
place in its utilization update handlers. If fast switching cannot
be used, the frequency switch operations are carried out with the
help of a work item which only calls __cpufreq_driver_target()
(under a mutex) to trigger a frequency update (to a value already
computed beforehand in one of the utilization update handlers).
Currently, the governor treats all of the RT and DL tasks as
"unknown utilization" and sets the frequency to the allowed
maximum when updated from the RT or DL sched classes. That
heavy-handed approach should be replaced with something more
subtle and specifically targeted at RT and DL tasks.
The governor shares some tunables management code with the
"ondemand" and "conservative" governors and uses some common
definitions from cpufreq_governor.h, but apart from that it
is stand-alone.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Redesign of cpufreq governors and the intel_pstate driver to
make them use callbacks invoked by the scheduler to trigger CPU
frequency evaluation instead of using per-CPU deferrable timers
for that purpose (Rafael Wysocki).
- Reorganization and cleanup of cpufreq governor code to make it
more straightforward and fix some concurrency problems in it
(Rafael Wysocki, Viresh Kumar).
- Cleanup and improvements of locking in the cpufreq core (Viresh
Kumar).
- Assorted cleanups in the cpufreq core (Rafael Wysocki, Viresh
Kumar, Eric Biggers).
- intel_pstate driver updates including fixes, optimizations and a
modification to make it enable enable hardware-coordinated P-state
selection (HWP) by default if supported by the processor (Philippe
Longepe, Srinivas Pandruvada, Rafael Wysocki, Viresh Kumar, Felipe
Franciosi).
- Operating Performance Points (OPP) framework updates to improve
its handling of voltage regulators and device clocks and updates
of the cpufreq-dt driver on top of that (Viresh Kumar, Jon Hunter).
- Updates of the powernv cpufreq driver to fix initialization
and cleanup problems in it and correct its worker thread handling
with respect to CPU offline, new powernv_throttle tracepoint
(Shilpasri Bhat).
- ACPI cpufreq driver optimization and cleanup (Rafael Wysocki).
- ACPICA updates including one fix for a regression introduced
by previos changes in the ACPICA code (Bob Moore, Lv Zheng,
David Box, Colin Ian King).
- Support for installing ACPI tables from initrd (Lv Zheng).
- Optimizations of the ACPI CPPC code (Prashanth Prakash, Ashwin
Chaugule).
- Support for _HID(ACPI0010) devices (ACPI processor containers)
and ACPI processor driver cleanups (Sudeep Holla).
- Support for ACPI-based enumeration of the AMBA bus (Graeme Gregory,
Aleksey Makarov).
- Modification of the ACPI PCI IRQ management code to make it treat
255 in the Interrupt Line register as "not connected" on x86 (as
per the specification) and avoid attempts to use that value as
a valid interrupt vector (Chen Fan).
- ACPI APEI fixes related to resource leaks (Josh Hunt).
- Removal of modularity from a few ACPI drivers (BGRT, GHES,
intel_pmic_crc) that cannot be built as modules in practice (Paul
Gortmaker).
- PNP framework update to make it treat ACPI_RESOURCE_TYPE_SERIAL_BUS
as a valid resource type (Harb Abdulhamid).
- New device ID (future AMD I2C controller) in the ACPI driver for
AMD SoCs (APD) and in the designware I2C driver (Xiangliang Yu).
- Assorted ACPI cleanups (Colin Ian King, Kaiyen Chang, Oleg Drokin).
- cpuidle menu governor optimization to avoid a square root
computation in it (Rasmus Villemoes).
- Fix for potential use-after-free in the generic device properties
framework (Heikki Krogerus).
- Updates of the generic power domains (genpd) framework including
support for multiple power states of a domain, fixes and debugfs
output improvements (Axel Haslam, Jon Hunter, Laurent Pinchart,
Geert Uytterhoeven).
- Intel RAPL power capping driver updates to reduce IPI overhead in
it (Jacob Pan).
- System suspend/hibernation code cleanups (Eric Biggers, Saurabh
Sengar).
- Year 2038 fix for the process freezer (Abhilash Jindal).
- turbostat utility updates including new features (decoding of more
registers and CPUID fields, sub-second intervals support, GFX MHz
and RC6 printout, --out command line option), fixes (syscall jitter
detection and workaround, reductioin of the number of syscalls made,
fixes related to Xeon x200 processors, compiler warning fixes) and
cleanups (Len Brown, Hubert Chrzaniuk, Chen Yu).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJW50NXAAoJEILEb/54YlRxvr8QAIktC9+ft0y5AmU46hDcBWcK
QutyWJL9X9BS6DWBJZA2qclDYFmhMfi5Fza1se0gQ9TnLB/KrBwHWLsiYoTsb1k+
nPKf214aPk+qAhkVuyB4leNWML9Qz9n9jwku/EYxWWpgtbSRf3+0ioIKZeWWc/8V
JvuaOu4O+g/tkmL7QTrnGWBwhIIssAAV85QPsHkx+g68MrCj4UMMzm7z9G21SPXX
bmP8yIHsczX/XnRsY0W2NSno7Vdk6ImHpDJ26IAZg28WRNPWICHgGYHvB0TTWMvb
tts+yqfF7/7QLRjT/M8k9CzDBDE/DnVqoZ0fNJ+aYr7hNKF32mtAN+jH9ZB9dl/P
fEFapJkPxnWyzAoVoB9Dz0rkcZkYMlbxlLWzUGpaPq0JflUUTzLk0ApSjmMn4HRO
UddwCDdyHTaYThp3gn6GbOb0pIP0SdOVbI1M2QV2x/4PLcT2Ft8Np1+1RFWOeinZ
Bdl9AE890big0808mqbBzw/buETwr9FjHtCdDPXpP0vJpkBLu3nIYRNb0LCt39es
mWMp6dFhGgvGj3D3ahTuV3GI8hdpDkh9SObexa11RCjkTKrXcwEmFxHxLeFXwKYq
alG278bo6cSChRMziS1lis+W/3tsJRN4TXUSv1PPzJHrFgptQVFRStU9ngBKP+pN
WB+itPc4Fw0YHOrAFsrx
=cfty
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.6-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI updates from Rafael Wysocki:
"This time the majority of changes go into cpufreq and they are
significant.
First off, the way CPU frequency updates are triggered is different
now. Instead of having to set up and manage a deferrable timer for
each CPU in the system to evaluate and possibly change its frequency
periodically, cpufreq governors set up callbacks to be invoked by the
scheduler on a regular basis (basically on utilization updates). The
"old" governors, "ondemand" and "conservative", still do all of their
work in process context (although that is triggered by the scheduler
now), but intel_pstate does it all in the callback invoked by the
scheduler with no need for any additional asynchronous processing.
Of course, this eliminates the overhead related to the management of
all those timers, but also it allows the cpufreq governor code to be
simplified quite a bit. On top of that, the common code and data
structures used by the "ondemand" and "conservative" governors are
cleaned up and made more straightforward and some long-standing and
quite annoying problems are addressed. In particular, the handling of
governor sysfs attributes is modified and the related locking becomes
more fine grained which allows some concurrency problems to be avoided
(particularly deadlocks with the core cpufreq code).
In principle, the new mechanism for triggering frequency updates
allows utilization information to be passed from the scheduler to
cpufreq. Although the current code doesn't make use of it, in the
works is a new cpufreq governor that will make decisions based on the
scheduler's utilization data. That should allow the scheduler and
cpufreq to work more closely together in the long run.
In addition to the core and governor changes, cpufreq drivers are
updated too. Fixes and optimizations go into intel_pstate, the
cpufreq-dt driver is updated on top of some modification in the
Operating Performance Points (OPP) framework and there are fixes and
other updates in the powernv cpufreq driver.
Apart from the cpufreq updates there is some new ACPICA material,
including a fix for a problem introduced by previous ACPICA updates,
and some less significant changes in the ACPI code, like CPPC code
optimizations, ACPI processor driver cleanups and support for loading
ACPI tables from initrd.
Also updated are the generic power domains framework, the Intel RAPL
power capping driver and the turbostat utility and we have a bunch of
traditional assorted fixes and cleanups.
Specifics:
- Redesign of cpufreq governors and the intel_pstate driver to make
them use callbacks invoked by the scheduler to trigger CPU
frequency evaluation instead of using per-CPU deferrable timers for
that purpose (Rafael Wysocki).
- Reorganization and cleanup of cpufreq governor code to make it more
straightforward and fix some concurrency problems in it (Rafael
Wysocki, Viresh Kumar).
- Cleanup and improvements of locking in the cpufreq core (Viresh
Kumar).
- Assorted cleanups in the cpufreq core (Rafael Wysocki, Viresh
Kumar, Eric Biggers).
- intel_pstate driver updates including fixes, optimizations and a
modification to make it enable enable hardware-coordinated P-state
selection (HWP) by default if supported by the processor (Philippe
Longepe, Srinivas Pandruvada, Rafael Wysocki, Viresh Kumar, Felipe
Franciosi).
- Operating Performance Points (OPP) framework updates to improve its
handling of voltage regulators and device clocks and updates of the
cpufreq-dt driver on top of that (Viresh Kumar, Jon Hunter).
- Updates of the powernv cpufreq driver to fix initialization and
cleanup problems in it and correct its worker thread handling with
respect to CPU offline, new powernv_throttle tracepoint (Shilpasri
Bhat).
- ACPI cpufreq driver optimization and cleanup (Rafael Wysocki).
- ACPICA updates including one fix for a regression introduced by
previos changes in the ACPICA code (Bob Moore, Lv Zheng, David Box,
Colin Ian King).
- Support for installing ACPI tables from initrd (Lv Zheng).
- Optimizations of the ACPI CPPC code (Prashanth Prakash, Ashwin
Chaugule).
- Support for _HID(ACPI0010) devices (ACPI processor containers) and
ACPI processor driver cleanups (Sudeep Holla).
- Support for ACPI-based enumeration of the AMBA bus (Graeme Gregory,
Aleksey Makarov).
- Modification of the ACPI PCI IRQ management code to make it treat
255 in the Interrupt Line register as "not connected" on x86 (as
per the specification) and avoid attempts to use that value as a
valid interrupt vector (Chen Fan).
- ACPI APEI fixes related to resource leaks (Josh Hunt).
- Removal of modularity from a few ACPI drivers (BGRT, GHES,
intel_pmic_crc) that cannot be built as modules in practice (Paul
Gortmaker).
- PNP framework update to make it treat ACPI_RESOURCE_TYPE_SERIAL_BUS
as a valid resource type (Harb Abdulhamid).
- New device ID (future AMD I2C controller) in the ACPI driver for
AMD SoCs (APD) and in the designware I2C driver (Xiangliang Yu).
- Assorted ACPI cleanups (Colin Ian King, Kaiyen Chang, Oleg Drokin).
- cpuidle menu governor optimization to avoid a square root
computation in it (Rasmus Villemoes).
- Fix for potential use-after-free in the generic device properties
framework (Heikki Krogerus).
- Updates of the generic power domains (genpd) framework including
support for multiple power states of a domain, fixes and debugfs
output improvements (Axel Haslam, Jon Hunter, Laurent Pinchart,
Geert Uytterhoeven).
- Intel RAPL power capping driver updates to reduce IPI overhead in
it (Jacob Pan).
- System suspend/hibernation code cleanups (Eric Biggers, Saurabh
Sengar).
- Year 2038 fix for the process freezer (Abhilash Jindal).
- turbostat utility updates including new features (decoding of more
registers and CPUID fields, sub-second intervals support, GFX MHz
and RC6 printout, --out command line option), fixes (syscall jitter
detection and workaround, reductioin of the number of syscalls
made, fixes related to Xeon x200 processors, compiler warning
fixes) and cleanups (Len Brown, Hubert Chrzaniuk, Chen Yu)"
* tag 'pm+acpi-4.6-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (182 commits)
tools/power turbostat: bugfix: TDP MSRs print bits fixing
tools/power turbostat: correct output for MSR_NHM_SNB_PKG_CST_CFG_CTL dump
tools/power turbostat: call __cpuid() instead of __get_cpuid()
tools/power turbostat: indicate SMX and SGX support
tools/power turbostat: detect and work around syscall jitter
tools/power turbostat: show GFX%rc6
tools/power turbostat: show GFXMHz
tools/power turbostat: show IRQs per CPU
tools/power turbostat: make fewer systems calls
tools/power turbostat: fix compiler warnings
tools/power turbostat: add --out option for saving output in a file
tools/power turbostat: re-name "%Busy" field to "Busy%"
tools/power turbostat: Intel Xeon x200: fix turbo-ratio decoding
tools/power turbostat: Intel Xeon x200: fix erroneous bclk value
tools/power turbostat: allow sub-sec intervals
ACPI / APEI: ERST: Fixed leaked resources in erst_init
ACPI / APEI: Fix leaked resources
intel_pstate: Do not skip samples partially
intel_pstate: Remove freq calculation from intel_pstate_calc_busy()
intel_pstate: Move intel_pstate_calc_busy() into get_target_pstate_use_performance()
...
Create cpufreq.c under kernel/sched/ and move the cpufreq code
related to the scheduler to that file and to sched.h.
Redefine cpufreq_update_util() as a static inline function to avoid
function calls at its call sites in the scheduler code (as suggested
by Peter Zijlstra).
Also move the definition of struct update_util_data and declaration
of cpufreq_set_update_util_data() from include/linux/cpufreq.h to
include/linux/sched.h.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
The existing wait queue support has support for custom wake up call
backs, wake flags, wake key (passed to call back) and exclusive
flags that allow wakers to be tagged as exclusive, for limiting
the number of wakers.
In a lot of cases, none of these features are used, and hence we
can benefit from a slimmed down version that lowers memory overhead
and reduces runtime overhead.
The concept originated from -rt, where waitqueues are a constant
source of trouble, as we can't convert the head lock to a raw
spinlock due to fancy and long lasting callbacks.
With the removal of custom callbacks, we can use a raw lock for
queue list manipulations, hence allowing the simple wait support
to be used in -rt.
[Patch is from PeterZ which is based on Thomas version. Commit message is
written by Paul G.
Daniel: - Fixed some compile issues
- Added non-lazy implementation of swake_up_locked as suggested
by Boqun Feng.]
Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-2-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
I could not find the loadavg code.. turns out it was hidden in a file
called proc.c. It further got mingled up with the cruft per rq load
indexes (which we really want to get rid of).
Move the per rq load indexes into the fair.c load-balance code (that's
the only thing that uses them) and rename proc.c to loadavg.c so we
can find it again.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
[ Did minor cleanups to the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the kernel is compiled with function tracer support the -pg compile option
is passed to gcc to generate extra code into the prologue of each function.
This patch replaces the "open-coded" -pg compile flag with a CC_FLAGS_FTRACE
makefile variable which architectures can override if a different option
should be used for code generation.
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Integration of cpuidle with the scheduler requires that the idle loop be
closely integrated with the scheduler proper. Moving cpu/idle.c into the
sched directory will allow for a smoother integration, and eliminate a
subdirectory which contained only one source file.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.LFD.2.11.1401301102210.1652@knanqh.ubzr
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Data from tests confirmed that the original active load balancing
logic didn't scale neither in the number of CPU nor in the number of
tasks (as sched_rt does).
Here we provide a global data structure to keep track of deadlines
of the running tasks in the system. The structure is composed by
a bitmask showing the free CPUs and a max-heap, needed when the system
is heavily loaded.
The implementation and concurrent access scheme are kept simple by
design. However, our measurements show that we can compete with sched_rt
on large multi-CPUs machines [1].
Only the push path is addressed, the extension to use this structure
also for pull decisions is straightforward. However, we are currently
evaluating different (in order to decrease/avoid contention) data
structures to solve possibly both problems. We are also going to re-run
tests considering recent changes inside cpupri [2].
[1] http://retis.sssup.it/~jlelli/papers/Ospert11Lelli.pdf
[2] http://www.spinics.net/lists/linux-rt-users/msg06778.html
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-14-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduces the data structures, constants and symbols needed for
SCHED_DEADLINE implementation.
Core data structure of SCHED_DEADLINE are defined, along with their
initializers. Hooks for checking if a task belong to the new policy
are also added where they are needed.
Adds a scheduling class, in sched/dl.c and a new policy called
SCHED_DEADLINE. It is an implementation of the Earliest Deadline
First (EDF) scheduling algorithm, augmented with a mechanism (called
Constant Bandwidth Server, CBS) that makes it possible to isolate
the behaviour of tasks between each other.
The typical -deadline task will be made up of a computation phase
(instance) which is activated on a periodic or sporadic fashion. The
expected (maximum) duration of such computation is called the task's
runtime; the time interval by which each instance need to be completed
is called the task's relative deadline. The task's absolute deadline
is dynamically calculated as the time instant a task (better, an
instance) activates plus the relative deadline.
The EDF algorithms selects the task with the smallest absolute
deadline as the one to be executed first, while the CBS ensures each
task to run for at most its runtime every (relative) deadline
length time interval, avoiding any interference between different
tasks (bandwidth isolation).
Thanks to this feature, also tasks that do not strictly comply with
the computational model sketched above can effectively use the new
policy.
To summarize, this patch:
- introduces the data structures, constants and symbols needed;
- implements the core logic of the scheduling algorithm in the new
scheduling class file;
- provides all the glue code between the new scheduling class and
the core scheduler and refines the interactions between sched/dl
and the other existing scheduling classes.
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com>
Signed-off-by: Fabio Checconi <fchecconi@gmail.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-4-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Completions already have their own header file: linux/completion.h
Move the implementation out of kernel/sched/core.c and into its own
file: kernel/sched/completion.c.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-x2y49rmxu5dljt66ai2lcfuw@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This large chunk of load calculation code can be easily divorced
from the main core.c scheduler file, with only a couple
prototypes and externs added to a kernel/sched header.
Some recent commits expanded the code and the documentation of
it, making it large enough to warrant separation. For example,
see:
556061b, "sched/nohz: Fix rq->cpu_load[] calculations"
5aaa0b7, "sched/nohz: Fix rq->cpu_load calculations some more"
5167e8d, "sched/nohz: Rewrite and fix load-avg computation -- again"
More importantly, it helps reduce the size of the main
sched/core.c by yet another significant amount (~600 lines).
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1366398650-31599-2-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Extract cputime code from the giant sched/core.c and
put it in its own file. This make it easier to deal with
this particular area and de-bloat a bit more core.c
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
All archs define init_task in the same way (except ia64, but there is
no particular reason why ia64 cannot use the common version). Create a
generic instance so all archs can be converted over.
The config switch is temporary and will be removed when all archs are
converted over.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Howells <dhowells@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20120503085034.092585287@linutronix.de
There's too many sched*.[ch] files in kernel/, give them their own
directory.
(No code changed, other than Makefile glue added.)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>