Commit graph

9019 commits

Author SHA1 Message Date
Linus Torvalds
f788baadbd Merge branch 'gadget' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull gadgetfs fixes from Al Viro:
 "Assorted fixes around AIO on gadgetfs: leaks, use-after-free, troubles
  caused by ->f_op flipping"

* 'gadget' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  gadgetfs: really get rid of switching ->f_op
  gadgetfs: get rid of flipping ->f_op in ep_config()
  gadget: switch ep_io_operations to ->read_iter/->write_iter
  gadgetfs: use-after-free in ->aio_read()
  gadget/function/f_fs.c: switch to ->{read,write}_iter()
  gadget/function/f_fs.c: use put iov_iter into io_data
  gadget/function/f_fs.c: close leaks
  move iov_iter.c from mm/ to lib/
  new helper: dup_iter()
2015-03-13 10:55:32 -07:00
Linus Torvalds
c202baf017 Merge branch 'akpm' (patches from Andrew)
Merge misc fixes from Andrew Morton:
 "13 fixes"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
  memcg: disable hierarchy support if bound to the legacy cgroup hierarchy
  mm: reorder can_do_mlock to fix audit denial
  kasan, module: move MODULE_ALIGN macro into <linux/moduleloader.h>
  kasan, module, vmalloc: rework shadow allocation for modules
  fanotify: fix event filtering with FAN_ONDIR set
  mm/nommu.c: export symbol max_mapnr
  arch/c6x/include/asm/pgtable.h: define dummy pgprot_writecombine for !MMU
  nilfs2: fix deadlock of segment constructor during recovery
  mm: cma: fix CMA aligned offset calculation
  mm, hugetlb: close race when setting PageTail for gigantic pages
  mm, oom: do not fail __GFP_NOFAIL allocation if oom killer is disabled
  drivers/rtc/rtc-s3c.c: add .needs_src_clk to s3c6410 RTC data
  ocfs2: make append_dio an incompat feature
2015-03-12 18:46:19 -07:00
Vladimir Davydov
7feee590bb memcg: disable hierarchy support if bound to the legacy cgroup hierarchy
If the memory cgroup controller is initially mounted in the scope of the
default cgroup hierarchy and then remounted to a legacy hierarchy, it will
still have hierarchy support enabled, which is incorrect.  We should
disable hierarchy support if bound to the legacy cgroup hierarchy.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:08 -07:00
Jeff Vander Stoep
a5a6579db3 mm: reorder can_do_mlock to fix audit denial
A userspace call to mmap(MAP_LOCKED) may result in the successful locking
of memory while also producing a confusing audit log denial.  can_do_mlock
checks capable and rlimit.  If either of these return positive
can_do_mlock returns true.  The capable check leads to an LSM hook used by
apparmour and selinux which produce the audit denial.  Reordering so
rlimit is checked first eliminates the denial on success, only recording a
denial when the lock is unsuccessful as a result of the denial.

Signed-off-by: Jeff Vander Stoep <jeffv@google.com>
Acked-by: Nick Kralevich <nnk@google.com>
Cc: Jeff Vander Stoep <jeffv@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Paul Cassella <cassella@cray.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:08 -07:00
Andrey Ryabinin
a5af5aa8b6 kasan, module, vmalloc: rework shadow allocation for modules
Current approach in handling shadow memory for modules is broken.

Shadow memory could be freed only after memory shadow corresponds it is no
longer used.  vfree() called from interrupt context could use memory its
freeing to store 'struct llist_node' in it:

    void vfree(const void *addr)
    {
    ...
        if (unlikely(in_interrupt())) {
            struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
            if (llist_add((struct llist_node *)addr, &p->list))
                    schedule_work(&p->wq);

Later this list node used in free_work() which actually frees memory.
Currently module_memfree() called in interrupt context will free shadow
before freeing module's memory which could provoke kernel crash.

So shadow memory should be freed after module's memory.  However, such
deallocation order could race with kasan_module_alloc() in module_alloc().

Free shadow right before releasing vm area.  At this point vfree()'d
memory is not used anymore and yet not available for other allocations.
New VM_KASAN flag used to indicate that vm area has dynamically allocated
shadow memory so kasan frees shadow only if it was previously allocated.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:08 -07:00
gchen gchen
5b8bf30721 mm/nommu.c: export symbol max_mapnr
Several modules may need max_mapnr, so export, the related error with
allmodconfig under c6x:

  MODPOST 3327 modules
  ERROR: "max_mapnr" [fs/pstore/ramoops.ko] undefined!
  ERROR: "max_mapnr" [drivers/media/v4l2-core/videobuf2-dma-contig.ko] undefined!

Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:08 -07:00
Danesh Petigara
850fc430f4 mm: cma: fix CMA aligned offset calculation
The CMA aligned offset calculation is incorrect for non-zero order_per_bit
values.

For example, if cma->order_per_bit=1, cma->base_pfn= 0x2f800000 and
align_order=12, the function returns a value of 0x17c00 instead of 0x400.

This patch fixes the CMA aligned offset calculation.

The previous calculation was wrong and would return too-large values for
the offset, so that when cma_alloc looks for free pages in the bitmap with
the requested alignment > order_per_bit, it starts too far into the bitmap
and so CMA allocations will fail despite there actually being plenty of
free pages remaining.  It will also probably have the wrong alignment.
With this change, we will get the correct offset into the bitmap.

One affected user is powerpc KVM, which has kvm_cma->order_per_bit set to
KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, or 18 - 12 = 6.

[gregory.0xf0@gmail.com: changelog additions]
Signed-off-by: Danesh Petigara <dpetigara@broadcom.com>
Reviewed-by: Gregory Fong <gregory.0xf0@gmail.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:07 -07:00
David Rientjes
44fc80573c mm, hugetlb: close race when setting PageTail for gigantic pages
Now that gigantic pages are dynamically allocatable, care must be taken to
ensure that p->first_page is valid before setting PageTail.

If this isn't done, then it is possible to race and have compound_head()
return NULL.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:07 -07:00
Michal Hocko
e009d5dc0a mm, oom: do not fail __GFP_NOFAIL allocation if oom killer is disabled
Tetsuo Handa has pointed out that __GFP_NOFAIL allocations might fail
after OOM killer is disabled if the allocation is performed by a kernel
thread.  This behavior was introduced from the very beginning by
7f33d49a2e ("mm, PM/Freezer: Disable OOM killer when tasks are frozen").
 This means that the basic contract for the allocation request is broken
and the context requesting such an allocation might blow up unexpectedly.

There are basically two ways forward.

1) move oom_killer_disable after kernel threads are frozen.  This has a
   risk that the OOM victim wouldn't be able to finish because it would
   depend on an already frozen kernel thread.  This would be really tricky
   to debug.

2) do not fail GFP_NOFAIL allocation no matter what and risk a
   potential Freezable kernel threads will loop and fail the suspend.
   Incidental allocations after kernel threads are frozen will at least
   dump a warning - if we are lucky and the serial console is still active
   of course...

This patch implements the later option because it is safer.  We would see
warning rather than allocation failures for the kernel threads which would
blow up otherwise and have a higher chances to identify __GFP_NOFAIL users
from deeper pm code.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@gooogle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:07 -07:00
Mel Gorman
ba68bc0115 mm: thp: Return the correct value for change_huge_pmd
The wrong value is being returned by change_huge_pmd since commit
10c1045f28 ("mm: numa: avoid unnecessary TLB flushes when setting
NUMA hinting entries") which allows a fallthrough that tries to adjust
non-existent PTEs. This patch corrects it.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 14:07:41 -07:00
Linus Torvalds
53da3bc2ba mm: fix up numa read-only thread grouping logic
Dave Chinner reported that commit 4d94246699 ("mm: convert
p[te|md]_mknonnuma and remaining page table manipulations") slowed down
his xfsrepair test enormously.  In particular, it was using more system
time due to extra TLB flushing.

The ultimate reason turns out to be how the change to use the regular
page table accessor functions broke the NUMA grouping logic.  The old
special mknuma/mknonnuma code accessed the page table present bit and
the magic NUMA bit directly, while the new code just changes the page
protections using PROT_NONE and the regular vma protections.

That sounds equivalent, and from a fault standpoint it really is, but a
subtle side effect is that the *other* protection bits of the page table
entries also change.  And the code to decide how to group the NUMA
entries together used the writable bit to decide whether a particular
page was likely to be shared read-only or not.

And with the change to make the NUMA handling use the regular permission
setting functions, that writable bit was basically always cleared for
private mappings due to COW.  So even if the page actually ends up being
written to in the end, the NUMA balancing would act as if it was always
shared RO.

This code is a heuristic anyway, so the fix - at least for now - is to
instead check whether the page is dirty rather than writable.  The bit
doesn't change with protection changes.

NOTE! This also adds a FIXME comment to revisit this issue,

Not only should we probably re-visit the whole "is this a shared
read-only page" heuristic (we might want to take the vma permissions
into account and base this more on those than the per-page ones, and
also look at whether the particular access that triggers it is a write
or not), but the whole COW issue shows that we should think about the
NUMA fault handling some more.

For example, maybe we should do the early-COW thing that a regular fault
does.  Or maybe we should accept that while using the same bits as
PROTNONE was a good thing (and got rid of the specual NUMA bit), we
might still want to just preseve the other protection bits across NUMA
faulting.

Those are bigger questions, left for later.  This just fixes up the
heuristic so that it at least approximates working again.  More analysis
and work needed.

Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Mel Gorman <mgorman@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>,
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 08:45:46 -07:00
Linus Torvalds
a015d33c98 Merge branch 'for-linus' of git://git.kernel.dk/linux-block
Pull block layer fixes from Jens Axboe:
 "Two smaller fixes for this cycle:

   - A fixup from Keith so that NVMe compiles without BLK_INTEGRITY,
     basically just moving the code around appropriately.

   - A fixup for shm, fixing an oops in shmem_mapping() for mapping with
     no inode.  From Sasha"

[ The shmem fix doesn't look block-layer-related, but fixes a bug that
  happened due to the backing_dev_info removal..  - Linus ]

* 'for-linus' of git://git.kernel.dk/linux-block:
  mm: shmem: check for mapping owner before dereferencing
  NVMe: Fix for BLK_DEV_INTEGRITY not set
2015-02-28 10:21:57 -08:00
Johannes Weiner
cc87317726 mm: page_alloc: revert inadvertent !__GFP_FS retry behavior change
Historically, !__GFP_FS allocations were not allowed to invoke the OOM
killer once reclaim had failed, but nevertheless kept looping in the
allocator.

Commit 9879de7373 ("mm: page_alloc: embed OOM killing naturally into
allocation slowpath"), which should have been a simple cleanup patch,
accidentally changed the behavior to aborting the allocation at that
point.  This creates problems with filesystem callers (?) that currently
rely on the allocator waiting for other tasks to intervene.

Revert the behavior as it shouldn't have been changed as part of a
cleanup patch.

Fixes: 9879de7373 ("mm: page_alloc: embed OOM killing naturally into allocation slowpath")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Dave Chinner <david@fromorbit.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>	[3.19.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-28 09:57:51 -08:00
Johannes Weiner
d2973697b3 mm: memcontrol: use "max" instead of "infinity" in control knobs
The memcg control knobs indicate the highest possible value using the
symbolic name "infinity", which is long and awkward to type.

Switch to the string "max", which is just as descriptive but shorter and
sweeter.

This changes a user interface, so do it before the release and before
the development flag is dropped from the default hierarchy.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-28 09:57:51 -08:00
Michal Hocko
4e54dede38 memcg: fix low limit calculation
A memcg is considered low limited even when the current usage is equal to
the low limit.  This leads to interesting side effects e.g.
groups/hierarchies with no memory accounted are considered protected and
so the reclaim will emit MEMCG_LOW event when encountering them.

Another and much bigger issue was reported by Joonsoo Kim.  He has hit a
NULL ptr dereference with the legacy cgroup API which even doesn't have
low limit exposed.  The limit is 0 by default but the initial check fails
for memcg with 0 consumption and parent_mem_cgroup() would return NULL if
use_hierarchy is 0 and so page_counter_read would try to dereference NULL.

I suppose that the current implementation is just an overlook because the
documentation in Documentation/cgroups/unified-hierarchy.txt says:

  "The memory.low boundary on the other hand is a top-down allocated
  reserve.  A cgroup enjoys reclaim protection when it and all its
  ancestors are below their low boundaries"

Fix the usage and the low limit comparision in mem_cgroup_low accordingly.

Fixes: 241994ed86 (mm: memcontrol: default hierarchy interface for memory)
Reported-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-28 09:57:51 -08:00
Joonsoo Kim
da616534ed mm/nommu: fix memory leak
Maxime reported the following memory leak regression due to commit
dbc8358c72 ("mm/nommu: use alloc_pages_exact() rather than its own
implementation").

On v3.19, I am facing a memory leak.  Each time I run a command one page
is lost.  Here an example with busybox's free command:

  / # free
               total       used       free     shared    buffers     cached
  Mem:          7928       1972       5956          0          0        492
  -/+ buffers/cache:       1480       6448
  / # free
               total       used       free     shared    buffers     cached
  Mem:          7928       1976       5952          0          0        492
  -/+ buffers/cache:       1484       6444
  / # free
               total       used       free     shared    buffers     cached
  Mem:          7928       1980       5948          0          0        492
  -/+ buffers/cache:       1488       6440
  / # free
               total       used       free     shared    buffers     cached
  Mem:          7928       1984       5944          0          0        492
  -/+ buffers/cache:       1492       6436
  / # free
               total       used       free     shared    buffers     cached
  Mem:          7928       1988       5940          0          0        492
  -/+ buffers/cache:       1496       6432

At some point, the system fails to sastisfy 256KB allocations:

  free: page allocation failure: order:6, mode:0xd0
  CPU: 0 PID: 67 Comm: free Not tainted 3.19.0-05389-gacf2cf1-dirty #64
  Hardware name: STM32 (Device Tree Support)
    show_stack+0xb/0xc
    warn_alloc_failed+0x97/0xbc
    __alloc_pages_nodemask+0x295/0x35c
    __get_free_pages+0xb/0x24
    alloc_pages_exact+0x19/0x24
    do_mmap_pgoff+0x423/0x658
    vm_mmap_pgoff+0x3f/0x4e
    load_flat_file+0x20d/0x4f8
    load_flat_binary+0x3f/0x26c
    search_binary_handler+0x51/0xe4
    do_execveat_common+0x271/0x35c
    do_execve+0x19/0x1c
    ret_fast_syscall+0x1/0x4a
  Mem-info:
  Normal per-cpu:
  CPU    0: hi:    0, btch:   1 usd:   0
  active_anon:0 inactive_anon:0 isolated_anon:0
   active_file:0 inactive_file:0 isolated_file:0
   unevictable:123 dirty:0 writeback:0 unstable:0
   free:1515 slab_reclaimable:17 slab_unreclaimable:139
   mapped:0 shmem:0 pagetables:0 bounce:0
   free_cma:0
  Normal free:6060kB min:352kB low:440kB high:528kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:492kB isolated(anon):0ks
  lowmem_reserve[]: 0 0
  Normal: 23*4kB (U) 22*8kB (U) 24*16kB (U) 23*32kB (U) 23*64kB (U) 23*128kB (U) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 6060kB
  123 total pagecache pages
  2048 pages of RAM
  1538 free pages
  66 reserved pages
  109 slab pages
  -46 pages shared
  0 pages swap cached
  nommu: Allocation of length 221184 from process 67 (free) failed
  Normal per-cpu:
  CPU    0: hi:    0, btch:   1 usd:   0
  active_anon:0 inactive_anon:0 isolated_anon:0
   active_file:0 inactive_file:0 isolated_file:0
   unevictable:123 dirty:0 writeback:0 unstable:0
   free:1515 slab_reclaimable:17 slab_unreclaimable:139
   mapped:0 shmem:0 pagetables:0 bounce:0
   free_cma:0
  Normal free:6060kB min:352kB low:440kB high:528kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:492kB isolated(anon):0ks
  lowmem_reserve[]: 0 0
  Normal: 23*4kB (U) 22*8kB (U) 24*16kB (U) 23*32kB (U) 23*64kB (U) 23*128kB (U) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 6060kB
  123 total pagecache pages
  Unable to allocate RAM for process text/data, errno 12 SEGV

This problem happens because we allocate ordered page through
__get_free_pages() in do_mmap_private() in some cases and we try to free
individual pages rather than ordered page in free_page_series().  In
this case, freeing pages whose refcount is not 0 won't be freed to the
page allocator so memory leak happens.

To fix the problem, this patch changes __get_free_pages() to
alloc_pages_exact() since alloc_pages_exact() returns
physically-contiguous pages but each pages are refcounted.

Fixes: dbc8358c72 ("mm/nommu: use alloc_pages_exact() rather than its own implementation").
Reported-by: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Tested-by: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>	[3.19]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-28 09:57:50 -08:00
Sasha Levin
f0774d884b mm: shmem: check for mapping owner before dereferencing
mapping->host can be NULL and shouldn't be dereferenced before being checked.

[ 1295.741844] GPF could be caused by NULL-ptr deref or user memory accessgeneral protection fault: 0000 [#1] SMP KASAN
[ 1295.746387] Dumping ftrace buffer:
[ 1295.748217]    (ftrace buffer empty)
[ 1295.749527] Modules linked in:
[ 1295.750268] CPU: 62 PID: 23410 Comm: trinity-c70 Not tainted 3.19.0-next-20150219-sasha-00045-g9130270f #1939
[ 1295.750268] task: ffff8803a49db000 ti: ffff8803a4dc8000 task.ti: ffff8803a4dc8000
[ 1295.750268] RIP: shmem_mapping (mm/shmem.c:1458)
[ 1295.750268] RSP: 0000:ffff8803a4dcfbf8  EFLAGS: 00010206
[ 1295.750268] RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 00000000000f2804
[ 1295.750268] RDX: 0000000000000005 RSI: 0400000000000794 RDI: 0000000000000028
[ 1295.750268] RBP: ffff8803a4dcfc08 R08: 0000000000000000 R09: 00000000031de000
[ 1295.750268] R10: dffffc0000000000 R11: 00000000031c1000 R12: 0400000000000794
[ 1295.750268] R13: 00000000031c2000 R14: 00000000031de000 R15: ffff880e3bdc1000
[ 1295.750268] FS:  00007f8703c7e700(0000) GS:ffff881164800000(0000) knlGS:0000000000000000
[ 1295.750268] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1295.750268] CR2: 0000000004e58000 CR3: 00000003a9f3c000 CR4: 00000000000007a0
[ 1295.750268] DR0: ffffffff81000000 DR1: 0000009494949494 DR2: 0000000000000000
[ 1295.750268] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 00000000000d0602
[ 1295.750268] Stack:
[ 1295.750268]  ffff8803a4dcfec8 ffffffffbb1dc770 ffff8803a4dcfc38 ffffffffad6f230b
[ 1295.750268]  ffffffffad6f2b0d 0000014100000000 ffff88001e17c08b ffff880d9453fe08
[ 1295.750268]  ffff8803a4dcfd18 ffffffffad6f2ce2 ffff8803a49dbcd8 ffff8803a49dbce0
[ 1295.750268] Call Trace:
[ 1295.750268] mincore_page (mm/mincore.c:61)
[ 1295.750268] ? mincore_pte_range (include/linux/spinlock.h:312 mm/mincore.c:131)
[ 1295.750268] mincore_pte_range (mm/mincore.c:151)
[ 1295.750268] ? mincore_unmapped_range (mm/mincore.c:113)
[ 1295.750268] __walk_page_range (mm/pagewalk.c:51 mm/pagewalk.c:90 mm/pagewalk.c:116 mm/pagewalk.c:204)
[ 1295.750268] walk_page_range (mm/pagewalk.c:275)
[ 1295.750268] SyS_mincore (mm/mincore.c:191 mm/mincore.c:253 mm/mincore.c:220)
[ 1295.750268] ? mincore_pte_range (mm/mincore.c:220)
[ 1295.750268] ? mincore_unmapped_range (mm/mincore.c:113)
[ 1295.750268] ? __mincore_unmapped_range (mm/mincore.c:105)
[ 1295.750268] ? ptlock_free (mm/mincore.c:24)
[ 1295.750268] ? syscall_trace_enter (arch/x86/kernel/ptrace.c:1610)
[ 1295.750268] ia32_do_call (arch/x86/ia32/ia32entry.S:446)
[ 1295.750268] Code: e5 48 c1 ea 03 53 48 89 fb 48 83 ec 08 80 3c 02 00 75 4f 48 b8 00 00 00 00 00 fc ff df 48 8b 1b 48 8d 7b 28 48 89 fa 48 c1 ea 03 <80> 3c 02 00 75 3f 48 b8 00 00 00 00 00 fc ff df 48 8b 5b 28 48

All code
========
   0:	e5 48                	in     $0x48,%eax
   2:	c1 ea 03             	shr    $0x3,%edx
   5:	53                   	push   %rbx
   6:	48 89 fb             	mov    %rdi,%rbx
   9:	48 83 ec 08          	sub    $0x8,%rsp
   d:	80 3c 02 00          	cmpb   $0x0,(%rdx,%rax,1)
  11:	75 4f                	jne    0x62
  13:	48 b8 00 00 00 00 00 	movabs $0xdffffc0000000000,%rax
  1a:	fc ff df
  1d:	48 8b 1b             	mov    (%rbx),%rbx
  20:	48 8d 7b 28          	lea    0x28(%rbx),%rdi
  24:	48 89 fa             	mov    %rdi,%rdx
  27:	48 c1 ea 03          	shr    $0x3,%rdx
  2b:*	80 3c 02 00          	cmpb   $0x0,(%rdx,%rax,1)		<-- trapping instruction
  2f:	75 3f                	jne    0x70
  31:	48 b8 00 00 00 00 00 	movabs $0xdffffc0000000000,%rax
  38:	fc ff df
  3b:	48 8b 5b 28          	mov    0x28(%rbx),%rbx
  3f:	48                   	rex.W
	...

Code starting with the faulting instruction
===========================================
   0:	80 3c 02 00          	cmpb   $0x0,(%rdx,%rax,1)
   4:	75 3f                	jne    0x45
   6:	48 b8 00 00 00 00 00 	movabs $0xdffffc0000000000,%rax
   d:	fc ff df
  10:	48 8b 5b 28          	mov    0x28(%rbx),%rbx
  14:	48                   	rex.W
	...
[ 1295.750268] RIP shmem_mapping (mm/shmem.c:1458)
[ 1295.750268]  RSP <ffff8803a4dcfbf8>

Fixes: 97b713ba3e ("fs: kill BDI_CAP_SWAP_BACKED")
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-02-23 10:00:11 -08:00
Linus Torvalds
be5e6616dd Merge branch 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull more vfs updates from Al Viro:
 "Assorted stuff from this cycle.  The big ones here are multilayer
  overlayfs from Miklos and beginning of sorting ->d_inode accesses out
  from David"

* 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (51 commits)
  autofs4 copy_dev_ioctl(): keep the value of ->size we'd used for allocation
  procfs: fix race between symlink removals and traversals
  debugfs: leave freeing a symlink body until inode eviction
  Documentation/filesystems/Locking: ->get_sb() is long gone
  trylock_super(): replacement for grab_super_passive()
  fanotify: Fix up scripted S_ISDIR/S_ISREG/S_ISLNK conversions
  Cachefiles: Fix up scripted S_ISDIR/S_ISREG/S_ISLNK conversions
  VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry)
  SELinux: Use d_is_positive() rather than testing dentry->d_inode
  Smack: Use d_is_positive() rather than testing dentry->d_inode
  TOMOYO: Use d_is_dir() rather than d_inode and S_ISDIR()
  Apparmor: Use d_is_positive/negative() rather than testing dentry->d_inode
  Apparmor: mediated_filesystem() should use dentry->d_sb not inode->i_sb
  VFS: Split DCACHE_FILE_TYPE into regular and special types
  VFS: Add a fallthrough flag for marking virtual dentries
  VFS: Add a whiteout dentry type
  VFS: Introduce inode-getting helpers for layered/unioned fs environments
  Infiniband: Fix potential NULL d_inode dereference
  posix_acl: fix reference leaks in posix_acl_create
  autofs4: Wrong format for printing dentry
  ...
2015-02-22 17:42:14 -08:00
David Howells
e36cb0b89c VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry)
Convert the following where appropriate:

 (1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry).

 (2) S_ISREG(dentry->d_inode) to d_is_reg(dentry).

 (3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry).  This is actually more
     complicated than it appears as some calls should be converted to
     d_can_lookup() instead.  The difference is whether the directory in
     question is a real dir with a ->lookup op or whether it's a fake dir with
     a ->d_automount op.

In some circumstances, we can subsume checks for dentry->d_inode not being
NULL into this, provided we the code isn't in a filesystem that expects
d_inode to be NULL if the dirent really *is* negative (ie. if we're going to
use d_inode() rather than d_backing_inode() to get the inode pointer).

Note that the dentry type field may be set to something other than
DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS
manages the fall-through from a negative dentry to a lower layer.  In such a
case, the dentry type of the negative union dentry is set to the same as the
type of the lower dentry.

However, if you know d_inode is not NULL at the call site, then you can use
the d_is_xxx() functions even in a filesystem.

There is one further complication: a 0,0 chardev dentry may be labelled
DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE.  Strictly, this was
intended for special directory entry types that don't have attached inodes.

The following perl+coccinelle script was used:

use strict;

my @callers;
open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') ||
    die "Can't grep for S_ISDIR and co. callers";
@callers = <$fd>;
close($fd);
unless (@callers) {
    print "No matches\n";
    exit(0);
}

my @cocci = (
    '@@',
    'expression E;',
    '@@',
    '',
    '- S_ISLNK(E->d_inode->i_mode)',
    '+ d_is_symlink(E)',
    '',
    '@@',
    'expression E;',
    '@@',
    '',
    '- S_ISDIR(E->d_inode->i_mode)',
    '+ d_is_dir(E)',
    '',
    '@@',
    'expression E;',
    '@@',
    '',
    '- S_ISREG(E->d_inode->i_mode)',
    '+ d_is_reg(E)' );

my $coccifile = "tmp.sp.cocci";
open($fd, ">$coccifile") || die $coccifile;
print($fd "$_\n") || die $coccifile foreach (@cocci);
close($fd);

foreach my $file (@callers) {
    chomp $file;
    print "Processing ", $file, "\n";
    system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 ||
	die "spatch failed";
}

[AV: overlayfs parts skipped]

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-02-22 11:38:41 -05:00
Linus Torvalds
b11a278397 Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
Pull kconfig updates from Michal Marek:
 "Yann E Morin was supposed to take over kconfig maintainership, but
  this hasn't happened.  So I'm sending a few kconfig patches that I
  collected:

   - Fix for missing va_end in kconfig
   - merge_config.sh displays used if given too few arguments
   - s/boolean/bool/ in Kconfig files for consistency, with the plan to
     only support bool in the future"

* 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild:
  kconfig: use va_end to match corresponding va_start
  merge_config.sh: Display usage if given too few arguments
  kconfig: use bool instead of boolean for type definition attributes
2015-02-19 10:36:45 -08:00
Al Viro
d879cb8341 move iov_iter.c from mm/ to lib/
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-02-17 22:22:17 -05:00
Al Viro
4b8164b91d new helper: dup_iter()
Copy iter and kmemdup the underlying array for the copy.  Returns
a pointer to result of kmemdup() to be kfree()'d later.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-02-17 22:21:11 -05:00
Linus Torvalds
038911597e Merge branch 'lazytime' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull lazytime mount option support from Al Viro:
 "Lazytime stuff from tytso"

* 'lazytime' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  ext4: add optimization for the lazytime mount option
  vfs: add find_inode_nowait() function
  vfs: add support for a lazytime mount option
2015-02-17 16:12:34 -08:00
Linus Torvalds
66dc830d14 Merge branch 'iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull iov_iter updates from Al Viro:
 "More iov_iter work - missing counterpart of iov_iter_init() for
  bvec-backed ones and vfs_read_iter()/vfs_write_iter() - wrappers for
  sync calls of ->read_iter()/->write_iter()"

* 'iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  fs: add vfs_iter_{read,write} helpers
  new helper: iov_iter_bvec()
2015-02-17 15:48:33 -08:00
Matthew Wilcox
e748dcd095 vfs: remove get_xip_mem
All callers of get_xip_mem() are now gone.  Remove checks for it,
initialisers of it, documentation of it and the only implementation of it.
 Also remove mm/filemap_xip.c as it is now empty.  Also remove
documentation of the long-gone get_xip_page().

Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-16 17:56:03 -08:00
Matthew Wilcox
4c0ccfef2e dax,ext2: replace xip_truncate_page with dax_truncate_page
It takes a get_block parameter just like nobh_truncate_page() and
block_truncate_page()

Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-16 17:56:03 -08:00
Matthew Wilcox
f7ca90b160 dax,ext2: replace the XIP page fault handler with the DAX page fault handler
Instead of calling aops->get_xip_mem from the fault handler, the
filesystem passes a get_block_t that is used to find the appropriate
blocks.

This requires that all architectures implement copy_user_page().  At the
time of writing, mips and arm do not.  Patches exist and are in progress.

[akpm@linux-foundation.org: remap_file_pages went away]
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-16 17:56:03 -08:00
Matthew Wilcox
d475c6346a dax,ext2: replace XIP read and write with DAX I/O
Use the generic AIO infrastructure instead of custom read and write
methods.  In addition to giving us support for AIO, this adds the missing
locking between read() and truncate().

Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-16 17:56:03 -08:00
Matthew Wilcox
fbbbad4bc2 vfs,ext2: introduce IS_DAX(inode)
Use an inode flag to tag inodes which should avoid using the page cache.
Convert ext2 to use it instead of mapping_is_xip().  Prevent I/Os to files
tagged with the DAX flag from falling back to buffered I/O.

Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-16 17:56:03 -08:00
Matthew Wilcox
2e4cdab058 mm: allow page fault handlers to perform the COW
Currently COW of an XIP file is done by first bringing in a read-only
mapping, then retrying the fault and copying the page.  It is much more
efficient to tell the fault handler that a COW is being attempted (by
passing in the pre-allocated page in the vm_fault structure), and allow
the handler to perform the COW operation itself.

The handler cannot insert the page itself if there is already a read-only
mapping at that address, so allow the handler to return VM_FAULT_LOCKED
and set the fault_page to be NULL.  This indicates to the MM code that the
i_mmap_lock is held instead of the page lock.

Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-16 17:56:03 -08:00
Matthew Wilcox
283307c760 mm: fix XIP fault vs truncate race
DAX is a replacement for the variation of XIP currently supported by the
ext2 filesystem.  We have three different things in the tree called 'XIP',
and the new focus is on access to data rather than executables, so a name
change was in order.  DAX stands for Direct Access.  The X is for
eXciting.

The new focus on data access has resulted in more careful attention to
races that exist in the current XIP code, but are not hit by the use-case
that it was designed for.  XIP's architecture worked fine for ext2, but
DAX is architected to work with modern filsystems such as ext4 and XFS.
DAX is not intended for use with btrfs; the value that btrfs adds relies
on manipulating data and writing data to different locations, while DAX's
value is for write-in-place and keeping the kernel from touching the data.

DAX was developed in order to support NV-DIMMs, but it's become clear that
its usefuless extends beyond NV-DIMMs and there are several potential
customers including the tracing machinery.  Other people want to place the
kernel log in an area of memory, as long as they have a BIOS that does not
clear DRAM on reboot.

Patch 1 is a bug fix, probably worth including in 3.18.

Patches 2 & 3 are infrastructure for DAX.

Patches 4-8 replace the XIP code with its DAX equivalents, transforming
ext2 to use the DAX code as we go.  Note that patch 10 is the
Documentation patch.

Patches 9-15 clean up after the XIP code, removing the infrastructure
that is no longer needed and renaming various XIP things to DAX.
Most of these patches were added after Jan found things he didn't
like in an earlier version of the ext4 patch ... that had been copied
from ext2.  So ext2 i being transformed to do things the same way that
ext4 will later.  The ability to mount ext2 filesystems with the 'xip'
option is retained, although the 'dax' option is now preferred.

Patch 16 adds some DAX infrastructure to support ext4.

Patch 17 adds DAX support to ext4.  It is broadly similar to ext2's DAX
support, but it is more efficient than ext4's due to its support for
unwritten extents.

Patch 18 is another cleanup patch renaming XIP to DAX.

My thanks to Mathieu Desnoyers for his reviews of the v11 patchset.  Most
of the changes below were based on his feedback.

This patch (of 18):

Pagecache faults recheck i_size after taking the page lock to ensure that
the fault didn't race against a truncate.  We don't have a page to lock in
the XIP case, so use i_mmap_lock_read() instead.  It is locked in the
truncate path in unmap_mapping_range() after updating i_size.  So while we
hold it in the fault path, we are guaranteed that either i_size has
already been updated in the truncate path, or that the truncate will
subsequently call zap_page_range_single() and so remove the mapping we
have just inserted.

There is a window of time in which i_size has been reduced and the thread
has a mapping to a page which will be removed from the file, but this is
harmless as the page will not be allocated to a different purpose before
the thread's access to it is revoked.

[akpm@linux-foundation.org: switch to i_mmap_lock_read(), add comment in unmap_single_vma()]
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-16 17:56:02 -08:00
Linus Torvalds
c833e17e27 Tighten rules for ACCESS_ONCE
This series tightens the rules for ACCESS_ONCE to only work
 on scalar types. It also contains the necessary fixups as
 indicated by build bots of linux-next.
 Now everything is in place to prevent new non-scalar users
 of ACCESS_ONCE and we can continue to convert code to
 READ_ONCE/WRITE_ONCE.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.14 (GNU/Linux)
 
 iQIcBAABAgAGBQJU2H5MAAoJEBF7vIC1phx8Jm4QALPqKOMDSUBCrqJFWJeujtv2
 ILxJKsnjrAlt3dxnlVI3q6e5wi896hSce75PcvZ/vs/K3GdgMxOjrakBJGTJ2Qjg
 5njW9aGJDDr/SYFX33MLWfqy222TLtpxgSz379UgXjEzB0ymMWbJJ3FnGjVqQJdp
 RXDutpncRySc/rGHh9UPREIRR5GvimONsWE2zxgXjUzB8vIr2fCGvHTXfIb6RKbQ
 yaFoihzn0m+eisc5Gy4tQ1qhhnaYyWEGrINjHTjMFTQOWTlH80BZAyQeLdbyj2K5
 qloBPS/VhBTr/5TxV5onM+nVhu0LiblVNrdMHVeb7jyST4LeFOCaWK98lB3axSB5
 v/2D1YKNb3g1U1x3In/oNGQvs36zGiO1uEdMF1l8ZFXgCvHmATSFSTWBtqUhb5Ew
 JA3YyqMTG6dpRTMSnmu3/frr4wDqnxlB/ktQC1pf3tDp87mr1ZYEy/dQld+tltjh
 9Z5GSdrw0nf91wNI3DJf+26ZDdz5B+EpDnPnOKG8anI1lc/mQneI21/K/xUteFXw
 UZ1XGPLV2vbv9/a13u44SdjenHvQs1egsGeebMxVPoj6WmDLVmcIqinyS6NawYzn
 IlDGy/b3bSnXWMBP0ZVBX94KWLxqDDc4a/ayxsmxsP1tPZ+jDXjVDa7E3zskcHxG
 Uj5ULCPyU087t8Sl76mv
 =Dj70
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux

Pull ACCESS_ONCE() rule tightening from Christian Borntraeger:
 "Tighten rules for ACCESS_ONCE

  This series tightens the rules for ACCESS_ONCE to only work on scalar
  types.  It also contains the necessary fixups as indicated by build
  bots of linux-next.  Now everything is in place to prevent new
  non-scalar users of ACCESS_ONCE and we can continue to convert code to
  READ_ONCE/WRITE_ONCE"

* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux:
  kernel: Fix sparse warning for ACCESS_ONCE
  next: sh: Fix compile error
  kernel: tighten rules for ACCESS ONCE
  mm/gup: Replace ACCESS_ONCE with READ_ONCE
  x86/spinlock: Leftover conversion ACCESS_ONCE->READ_ONCE
  x86/xen/p2m: Replace ACCESS_ONCE with READ_ONCE
  ppc/hugetlbfs: Replace ACCESS_ONCE with READ_ONCE
  ppc/kvm: Replace ACCESS_ONCE with READ_ONCE
2015-02-14 10:54:28 -08:00
Andrey Ryabinin
bebf56a1b1 kasan: enable instrumentation of global variables
This feature let us to detect accesses out of bounds of global variables.
This will work as for globals in kernel image, so for globals in modules.
Currently this won't work for symbols in user-specified sections (e.g.
__init, __read_mostly, ...)

The idea of this is simple.  Compiler increases each global variable by
redzone size and add constructors invoking __asan_register_globals()
function.  Information about global variable (address, size, size with
redzone ...) passed to __asan_register_globals() so we could poison
variable's redzone.

This patch also forces module_alloc() to return 8*PAGE_SIZE aligned
address making shadow memory handling (
kasan_module_alloc()/kasan_module_free() ) more simple.  Such alignment
guarantees that each shadow page backing modules address space correspond
to only one module_alloc() allocation.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:42 -08:00
Andrey Ryabinin
cb9e3c292d mm: vmalloc: pass additional vm_flags to __vmalloc_node_range()
For instrumenting global variables KASan will shadow memory backing memory
for modules.  So on module loading we will need to allocate memory for
shadow and map it at address in shadow that corresponds to the address
allocated in module_alloc().

__vmalloc_node_range() could be used for this purpose, except it puts a
guard hole after allocated area.  Guard hole in shadow memory should be a
problem because at some future point we might need to have a shadow memory
at address occupied by guard hole.  So we could fail to allocate shadow
for module_alloc().

Now we have VM_NO_GUARD flag disabling guard page, so we need to pass into
__vmalloc_node_range().  Add new parameter 'vm_flags' to
__vmalloc_node_range() function.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:42 -08:00
Andrey Ryabinin
71394fe501 mm: vmalloc: add flag preventing guard hole allocation
For instrumenting global variables KASan will shadow memory backing memory
for modules.  So on module loading we will need to allocate memory for
shadow and map it at address in shadow that corresponds to the address
allocated in module_alloc().

__vmalloc_node_range() could be used for this purpose, except it puts a
guard hole after allocated area.  Guard hole in shadow memory should be a
problem because at some future point we might need to have a shadow memory
at address occupied by guard hole.  So we could fail to allocate shadow
for module_alloc().

Add a new vm_struct flag 'VM_NO_GUARD' indicating that vm area doesn't
have a guard hole.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:42 -08:00
Andrey Ryabinin
c420f167db kasan: enable stack instrumentation
Stack instrumentation allows to detect out of bounds memory accesses for
variables allocated on stack.  Compiler adds redzones around every
variable on stack and poisons redzones in function's prologue.

Such approach significantly increases stack usage, so all in-kernel stacks
size were doubled.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:41 -08:00
Andrey Ryabinin
393f203f5f x86_64: kasan: add interceptors for memset/memmove/memcpy functions
Recently instrumentation of builtin functions calls was removed from GCC
5.0.  To check the memory accessed by such functions, userspace asan
always uses interceptors for them.

So now we should do this as well.  This patch declares
memset/memmove/memcpy as weak symbols.  In mm/kasan/kasan.c we have our
own implementation of those functions which checks memory before accessing
it.

Default memset/memmove/memcpy now now always have aliases with '__'
prefix.  For files that built without kasan instrumentation (e.g.
mm/slub.c) original mem* replaced (via #define) with prefixed variants,
cause we don't want to check memory accesses there.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:41 -08:00
Andrey Ryabinin
e79ed2f13f kmemleak: disable kasan instrumentation for kmemleak
kmalloc internally round up allocation size, and kmemleak uses rounded up
size as object's size.  This makes kasan to complain while kmemleak scans
memory or calculates of object's checksum.  The simplest solution here is
to disable kasan.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:41 -08:00
Andrey Ryabinin
0316bec22e mm: slub: add kernel address sanitizer support for slub allocator
With this patch kasan will be able to catch bugs in memory allocated by
slub.  Initially all objects in newly allocated slab page, marked as
redzone.  Later, when allocation of slub object happens, requested by
caller number of bytes marked as accessible, and the rest of the object
(including slub's metadata) marked as redzone (inaccessible).

We also mark object as accessible if ksize was called for this object.
There is some places in kernel where ksize function is called to inquire
size of really allocated area.  Such callers could validly access whole
allocated memory, so it should be marked as accessible.

Code in slub.c and slab_common.c files could validly access to object's
metadata, so instrumentation for this files are disabled.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Signed-off-by: Dmitry Chernenkov <dmitryc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:41 -08:00
Andrey Ryabinin
a79316c617 mm: slub: introduce metadata_access_enable()/metadata_access_disable()
It's ok for slub to access memory that marked by kasan as inaccessible
(object's metadata).  Kasan shouldn't print report in that case because
these accesses are valid.  Disabling instrumentation of slub.c code is not
enough to achieve this because slub passes pointer to object's metadata
into external functions like memchr_inv().

We don't want to disable instrumentation for memchr_inv() because this is
quite generic function, and we don't want to miss bugs.

metadata_access_enable/metadata_access_disable used to tell KASan where
accesses to metadata starts/end, so we could temporarily disable KASan
reports.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:41 -08:00
Andrey Ryabinin
75c66def8d mm: slub: share object_err function
Remove static and add function declarations to linux/slub_def.h so it
could be used by kernel address sanitizer.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:41 -08:00
Andrey Ryabinin
b8c73fc249 mm: page_alloc: add kasan hooks on alloc and free paths
Add kernel address sanitizer hooks to mark allocated page's addresses as
accessible in corresponding shadow region.  Mark freed pages as
inaccessible.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:41 -08:00
Andrey Ryabinin
786a895991 kasan: disable memory hotplug
Currently memory hotplug won't work with KASan.  As we don't have shadow
for hotplugged memory, kernel will crash on the first access to it.  To
make this work we will need to allocate shadow for new memory.

At some future point proper memory hotplug support will be implemented.
Until then, print a warning at startup and disable memory hot-add.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:40 -08:00
Andrey Ryabinin
0b24becc81 kasan: add kernel address sanitizer infrastructure
Kernel Address sanitizer (KASan) is a dynamic memory error detector.  It
provides fast and comprehensive solution for finding use-after-free and
out-of-bounds bugs.

KASAN uses compile-time instrumentation for checking every memory access,
therefore GCC > v4.9.2 required.  v4.9.2 almost works, but has issues with
putting symbol aliases into the wrong section, which breaks kasan
instrumentation of globals.

This patch only adds infrastructure for kernel address sanitizer.  It's
not available for use yet.  The idea and some code was borrowed from [1].

Basic idea:

The main idea of KASAN is to use shadow memory to record whether each byte
of memory is safe to access or not, and use compiler's instrumentation to
check the shadow memory on each memory access.

Address sanitizer uses 1/8 of the memory addressable in kernel for shadow
memory and uses direct mapping with a scale and offset to translate a
memory address to its corresponding shadow address.

Here is function to translate address to corresponding shadow address:

     unsigned long kasan_mem_to_shadow(unsigned long addr)
     {
                return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET;
     }

where KASAN_SHADOW_SCALE_SHIFT = 3.

So for every 8 bytes there is one corresponding byte of shadow memory.
The following encoding used for each shadow byte: 0 means that all 8 bytes
of the corresponding memory region are valid for access; k (1 <= k <= 7)
means that the first k bytes are valid for access, and other (8 - k) bytes
are not; Any negative value indicates that the entire 8-bytes are
inaccessible.  Different negative values used to distinguish between
different kinds of inaccessible memory (redzones, freed memory) (see
mm/kasan/kasan.h).

To be able to detect accesses to bad memory we need a special compiler.
Such compiler inserts a specific function calls (__asan_load*(addr),
__asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16.

These functions check whether memory region is valid to access or not by
checking corresponding shadow memory.  If access is not valid an error
printed.

Historical background of the address sanitizer from Dmitry Vyukov:

	"We've developed the set of tools, AddressSanitizer (Asan),
	ThreadSanitizer and MemorySanitizer, for user space. We actively use
	them for testing inside of Google (continuous testing, fuzzing,
	running prod services). To date the tools have found more than 10'000
	scary bugs in Chromium, Google internal codebase and various
	open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and
	lots of others): [2] [3] [4].
	The tools are part of both gcc and clang compilers.

	We have not yet done massive testing under the Kernel AddressSanitizer
	(it's kind of chicken and egg problem, you need it to be upstream to
	start applying it extensively). To date it has found about 50 bugs.
	Bugs that we've found in upstream kernel are listed in [5].
	We've also found ~20 bugs in out internal version of the kernel. Also
	people from Samsung and Oracle have found some.

	[...]

	As others noted, the main feature of AddressSanitizer is its
	performance due to inline compiler instrumentation and simple linear
	shadow memory. User-space Asan has ~2x slowdown on computational
	programs and ~2x memory consumption increase. Taking into account that
	kernel usually consumes only small fraction of CPU and memory when
	running real user-space programs, I would expect that kernel Asan will
	have ~10-30% slowdown and similar memory consumption increase (when we
	finish all tuning).

	I agree that Asan can well replace kmemcheck. We have plans to start
	working on Kernel MemorySanitizer that finds uses of unitialized
	memory. Asan+Msan will provide feature-parity with kmemcheck. As
	others noted, Asan will unlikely replace debug slab and pagealloc that
	can be enabled at runtime. Asan uses compiler instrumentation, so even
	if it is disabled, it still incurs visible overheads.

	Asan technology is easily portable to other architectures. Compiler
	instrumentation is fully portable. Runtime has some arch-dependent
	parts like shadow mapping and atomic operation interception. They are
	relatively easy to port."

Comparison with other debugging features:
========================================

KMEMCHECK:

  - KASan can do almost everything that kmemcheck can.  KASan uses
    compile-time instrumentation, which makes it significantly faster than
    kmemcheck.  The only advantage of kmemcheck over KASan is detection of
    uninitialized memory reads.

    Some brief performance testing showed that kasan could be
    x500-x600 times faster than kmemcheck:

$ netperf -l 30
		MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET
		Recv   Send    Send
		Socket Socket  Message  Elapsed
		Size   Size    Size     Time     Throughput
		bytes  bytes   bytes    secs.    10^6bits/sec

no debug:	87380  16384  16384    30.00    41624.72

kasan inline:	87380  16384  16384    30.00    12870.54

kasan outline:	87380  16384  16384    30.00    10586.39

kmemcheck: 	87380  16384  16384    30.03      20.23

  - Also kmemcheck couldn't work on several CPUs.  It always sets
    number of CPUs to 1.  KASan doesn't have such limitation.

DEBUG_PAGEALLOC:
	- KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page
	  granularity level, so it able to find more bugs.

SLUB_DEBUG (poisoning, redzones):
	- SLUB_DEBUG has lower overhead than KASan.

	- SLUB_DEBUG in most cases are not able to detect bad reads,
	  KASan able to detect both reads and writes.

	- In some cases (e.g. redzone overwritten) SLUB_DEBUG detect
	  bugs only on allocation/freeing of object. KASan catch
	  bugs right before it will happen, so we always know exact
	  place of first bad read/write.

[1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel
[2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs
[3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs
[4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs
[5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies

Based on work by Andrey Konovalov.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:40 -08:00
Tejun Heo
9e763e0f4f mm: use %*pb[l] to print bitmaps including cpumasks and nodemasks
printk and friends can now format bitmaps using '%*pb[l]'.  cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:38 -08:00
Tejun Heo
5024c1d71b slub: use %*pb[l] to print bitmaps including cpumasks and nodemasks
printk and friends can now format bitmaps using '%*pb[l]'.  cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.

* This is an equivalent conversion but the whole function should be
  converted to use scnprinf famiily of functions rather than
  performing custom output length predictions in multiple places.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:38 -08:00
Tejun Heo
807de073bb percpu: use %*pb[l] to print bitmaps including cpumasks and nodemasks
printk and friends can now format bitmaps using '%*pb[l]'.  cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:37 -08:00
Andrzej Hajda
3dec16ea38 mm/slab: convert cache name allocations to kstrdup_const
slab frequently performs duplication of strings located in read-only
memory section.  Replacing kstrdup by kstrdup_const allows to avoid such
operations.

[akpm@linux-foundation.org: make the handling of kmem_cache.name const-correct]
Signed-off-by: Andrzej Hajda <a.hajda@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Mike Turquette <mturquette@linaro.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg KH <greg@kroah.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:36 -08:00
Andrzej Hajda
a4bb1e43e2 mm/util: add kstrdup_const
kstrdup() is often used to duplicate strings where neither source neither
destination will be ever modified.  In such case we can just reuse the
source instead of duplicating it.  The problem is that we must be sure
that the source is non-modifiable and its life-time is long enough.

I suspect the good candidates for such strings are strings located in
kernel .rodata section, they cannot be modifed because the section is
read-only and their life-time is equal to kernel life-time.

This small patchset proposes alternative version of kstrdup -
kstrdup_const, which returns source string if it is located in .rodata
otherwise it fallbacks to kstrdup.  To verify if the source is in
.rodata function checks if the address is between sentinels
__start_rodata, __end_rodata.  I guess it should work with all
architectures.

The main patch is accompanied by four patches constifying kstrdup for
cases where situtation described above happens frequently.

I have tested the patchset on mobile platform (exynos4210-trats) and it
saves 3272 string allocations.  Since minimal allocation is 32 or 64
bytes depending on Kconfig options the patchset saves respectively about
100KB or 200KB of memory.

Stats from tested platform show that the main offender is sysfs:

By caller:
  2260 __kernfs_new_node
    631 clk_register+0xc8/0x1b8
    318 clk_register+0x34/0x1b8
      51 kmem_cache_create
      12 alloc_vfsmnt

By string (with count >= 5):
    883 power
    876 subsystem
    135 parameters
    132 device
     61 iommu_group
    ...

This patch (of 5):

Add an alternative version of kstrdup which returns pointer to constant
char array.  The function checks if input string is in persistent and
read-only memory section, if yes it returns the input string, otherwise it
fallbacks to kstrdup.

kstrdup_const is accompanied by kfree_const performing conditional memory
deallocation of the string.

Signed-off-by: Andrzej Hajda <a.hajda@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Mike Turquette <mturquette@linaro.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg KH <greg@kroah.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:35 -08:00
Linus Torvalds
818099574b Merge branch 'akpm' (patches from Andrew)
Merge third set of updates from Andrew Morton:

 - the rest of MM

   [ This includes getting rid of the numa hinting bits, in favor of
     just generic protnone logic.  Yay.     - Linus ]

 - core kernel

 - procfs

 - some of lib/ (lots of lib/ material this time)

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (104 commits)
  lib/lcm.c: replace include
  lib/percpu_ida.c: remove redundant includes
  lib/strncpy_from_user.c: replace module.h include
  lib/stmp_device.c: replace module.h include
  lib/sort.c: move include inside #if 0
  lib/show_mem.c: remove redundant include
  lib/radix-tree.c: change to simpler include
  lib/plist.c: remove redundant include
  lib/nlattr.c: remove redundant include
  lib/kobject_uevent.c: remove redundant include
  lib/llist.c: remove redundant include
  lib/md5.c: simplify include
  lib/list_sort.c: rearrange includes
  lib/genalloc.c: remove redundant include
  lib/idr.c: remove redundant include
  lib/halfmd4.c: simplify includes
  lib/dynamic_queue_limits.c: simplify includes
  lib/sort.c: use simpler includes
  lib/interval_tree.c: simplify includes
  hexdump: make it return number of bytes placed in buffer
  ...
2015-02-12 18:54:28 -08:00