Commit graph

12944 commits

Author SHA1 Message Date
Janne Huttunen
7d0ef9419d mm/vmstat.c: fix NUMA statistics updates
[ Upstream commit 13c9aaf7fa01cc7600c61981609feadeef3354ec ]

Scan through the whole array to see if an update is needed.  While we're
at it, use sizeof() to be safe against any possible type changes in the
future.

The bug here is that we wouldn't sync per-cpu counters into global ones
if there was an update of numa_stats for higher cpus.  Highly
theoretical one though because it is much more probable that zone_stats
are updated so we would refresh anyway.  So I wouldn't bother to mark
this for stable, yet something nice to fix.

[mhocko@suse.com: changelog enhancement]
Link: http://lkml.kernel.org/r/1541601517-17282-1-git-send-email-janne.huttunen@nokia.com
Fixes: 1d90ca897c ("mm: update NUMA counter threshold size")
Signed-off-by: Janne Huttunen <janne.huttunen@nokia.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-13 08:51:27 +01:00
Wentao Wang
5643569bec mm/page_alloc.c: deduplicate __memblock_free_early() and memblock_free()
[ Upstream commit d31cfe7bff9109476da92c245b56083e9b48d60a ]

Link: http://lkml.kernel.org/r/C8ECE1B7A767434691FEEFA3A01765D72AFB8E78@MX203CL03.corp.emc.com
Signed-off-by: Wentao Wang <witallwang@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05 09:20:58 +01:00
Aaron Lu
9696c7656e mm/page_alloc.c: use a single function to free page
[ Upstream commit 742aa7fb52c56fb3b307e704f93e67b698959cc2 ]

There are multiple places of freeing a page, they all do the same things
so a common function can be used to reduce code duplicate.

It also avoids bug fixed in one function but left in another.

Link: http://lkml.kernel.org/r/20181119134834.17765-3-aaron.lu@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pankaj gupta <pagupta@redhat.com>
Cc: Pawel Staszewski <pstaszewski@itcare.pl>
Cc: Tariq Toukan <tariqt@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05 09:20:58 +01:00
Aaron Lu
257ad5fbfe mm/page_alloc.c: free order-0 pages through PCP in page_frag_free()
[ Upstream commit 65895b67ad27df0f62bfaf82dd5622f95ea29196 ]

page_frag_free() calls __free_pages_ok() to free the page back to Buddy.
This is OK for high order page, but for order-0 pages, it misses the
optimization opportunity of using Per-Cpu-Pages and can cause zone lock
contention when called frequently.

Pawel Staszewski recently shared his result of 'how Linux kernel handles
normal traffic'[1] and from perf data, Jesper Dangaard Brouer found the
lock contention comes from page allocator:

  mlx5e_poll_tx_cq
  |
   --16.34%--napi_consume_skb
             |
             |--12.65%--__free_pages_ok
             |          |
             |           --11.86%--free_one_page
             |                     |
             |                     |--10.10%--queued_spin_lock_slowpath
             |                     |
             |                      --0.65%--_raw_spin_lock
             |
             |--1.55%--page_frag_free
             |
              --1.44%--skb_release_data

Jesper explained how it happened: mlx5 driver RX-page recycle mechanism is
not effective in this workload and pages have to go through the page
allocator.  The lock contention happens during mlx5 DMA TX completion
cycle.  And the page allocator cannot keep up at these speeds.[2]

I thought that __free_pages_ok() are mostly freeing high order pages and
thought this is an lock contention for high order pages but Jesper
explained in detail that __free_pages_ok() here are actually freeing
order-0 pages because mlx5 is using order-0 pages to satisfy its page pool
allocation request.[3]

The free path as pointed out by Jesper is:
skb_free_head()
  -> skb_free_frag()
    -> page_frag_free()
And the pages being freed on this path are order-0 pages.

Fix this by doing similar things as in __page_frag_cache_drain() - send
the being freed page to PCP if it's an order-0 page, or directly to Buddy
if it is a high order page.

With this change, Paweł hasn't noticed lock contention yet in his
workload and Jesper has noticed a 7% performance improvement using a micro
benchmark and lock contention is gone.  Ilias' test on a 'low' speed 1Gbit
interface on an cortex-a53 shows ~11% performance boost testing with
64byte packets and __free_pages_ok() disappeared from perf top.

[1]: https://www.spinics.net/lists/netdev/msg531362.html
[2]: https://www.spinics.net/lists/netdev/msg531421.html
[3]: https://www.spinics.net/lists/netdev/msg531556.html

[akpm@linux-foundation.org: add comment]
Link: http://lkml.kernel.org/r/20181120014544.GB10657@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Reported-by: Pawel Staszewski <pstaszewski@itcare.pl>
Analysed-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Tested-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Acked-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Acked-by: Tariq Toukan <tariqt@mellanox.com>
Acked-by: Pankaj gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05 09:20:57 +01:00
Wei Yang
78ce155fb8 vmscan: return NODE_RECLAIM_NOSCAN in node_reclaim() when CONFIG_NUMA is n
[ Upstream commit 8b09549c2bfd9f3f8f4cdad74107ef4f4ff9cdd7 ]

Commit fa5e084e43 ("vmscan: do not unconditionally treat zones that
fail zone_reclaim() as full") changed the return value of
node_reclaim().  The original return value 0 means NODE_RECLAIM_SOME
after this commit.

While the return value of node_reclaim() when CONFIG_NUMA is n is not
changed.  This will leads to call zone_watermark_ok() again.

This patch fixes the return value by adjusting to NODE_RECLAIM_NOSCAN.
Since node_reclaim() is only called in page_alloc.c, move it to
mm/internal.h.

Link: http://lkml.kernel.org/r/20181113080436.22078-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05 09:20:57 +01:00
David Hildenbrand
5779cbc983 mm/memory_hotplug: don't access uninitialized memmaps in shrink_zone_span()
commit 7ce700bf11b5e2cb84e4352bbdf2123a7a239c84 upstream.

Let's limit shrinking to !ZONE_DEVICE so we can fix the current code.
We should never try to touch the memmap of offline sections where we
could have uninitialized memmaps and could trigger BUGs when calling
page_to_nid() on poisoned pages.

There is no reliable way to distinguish an uninitialized memmap from an
initialized memmap that belongs to ZONE_DEVICE, as we don't have
anything like SECTION_IS_ONLINE we can use similar to
pfn_to_online_section() for !ZONE_DEVICE memory.

E.g., set_zone_contiguous() similarly relies on pfn_to_online_section()
and will therefore never set a ZONE_DEVICE zone consecutive.  Stopping
to shrink the ZONE_DEVICE therefore results in no observable changes,
besides /proc/zoneinfo indicating different boundaries - something we
can totally live with.

Before commit d0dc12e86b ("mm/memory_hotplug: optimize memory
hotplug"), the memmap was initialized with 0 and the node with the right
value.  So the zone might be wrong but not garbage.  After that commit,
both the zone and the node will be garbage when touching uninitialized
memmaps.

Toshiki reported a BUG (race between delayed initialization of
ZONE_DEVICE memmaps without holding the memory hotplug lock and
concurrent zone shrinking).

  https://lkml.org/lkml/2019/11/14/1040

"Iteration of create and destroy namespace causes the panic as below:

      kernel BUG at mm/page_alloc.c:535!
      CPU: 7 PID: 2766 Comm: ndctl Not tainted 5.4.0-rc4 #6
      Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.0-0-g63451fca13-prebuilt.qemu-project.org 04/01/2014
      RIP: 0010:set_pfnblock_flags_mask+0x95/0xf0
      Call Trace:
       memmap_init_zone_device+0x165/0x17c
       memremap_pages+0x4c1/0x540
       devm_memremap_pages+0x1d/0x60
       pmem_attach_disk+0x16b/0x600 [nd_pmem]
       nvdimm_bus_probe+0x69/0x1c0
       really_probe+0x1c2/0x3e0
       driver_probe_device+0xb4/0x100
       device_driver_attach+0x4f/0x60
       bind_store+0xc9/0x110
       kernfs_fop_write+0x116/0x190
       vfs_write+0xa5/0x1a0
       ksys_write+0x59/0xd0
       do_syscall_64+0x5b/0x180
       entry_SYSCALL_64_after_hwframe+0x44/0xa9

  While creating a namespace and initializing memmap, if you destroy the
  namespace and shrink the zone, it will initialize the memmap outside
  the zone and trigger VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page),
  pfn), page) in set_pfnblock_flags_mask()."

This BUG is also mitigated by this commit, where we for now stop to
shrink the ZONE_DEVICE zone until we can do it in a safe and clean way.

Link: http://lkml.kernel.org/r/20191006085646.5768-5-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online")	[visible after d0dc12e86b]
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Toshiki Fukasawa <t-fukasawa@vx.jp.nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Damian Tometzki <damian.tometzki@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Halil Pasic <pasic@linux.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Rich Felker <dalias@libc.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Cc: <stable@vger.kernel.org>	[4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-01 09:17:36 +01:00
Vinayak Menon
006360ec33 mm/page_io.c: do not free shared swap slots
[ Upstream commit 5df373e95689b9519b8557da7c5bd0db0856d776 ]

The following race is observed due to which a processes faulting on a
swap entry, finds the page neither in swapcache nor swap.  This causes
zram to give a zero filled page that gets mapped to the process,
resulting in a user space crash later.

Consider parent and child processes Pa and Pb sharing the same swap slot
with swap_count 2.  Swap is on zram with SWP_SYNCHRONOUS_IO set.
Virtual address 'VA' of Pa and Pb points to the shared swap entry.

Pa                                       Pb

fault on VA                              fault on VA
do_swap_page                             do_swap_page
lookup_swap_cache fails                  lookup_swap_cache fails
                                         Pb scheduled out
swapin_readahead (deletes zram entry)
swap_free (makes swap_count 1)
                                         Pb scheduled in
                                         swap_readpage (swap_count == 1)
                                         Takes SWP_SYNCHRONOUS_IO path
                                         zram enrty absent
                                         zram gives a zero filled page

Fix this by making sure that swap slot is freed only when swap count
drops down to one.

Link: http://lkml.kernel.org/r/1571743294-14285-1-git-send-email-vinmenon@codeaurora.org
Fixes: aa8d22a11d ("mm: swap: SWP_SYNCHRONOUS_IO: skip swapcache only if swapped page has no other reference")
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Suggested-by: Minchan Kim <minchan@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01 09:17:35 +01:00
Roman Gushchin
6a2245d828 mm: handle no memcg case in memcg_kmem_charge() properly
[ Upstream commit e68599a3c3ad0f3171a7cb4e48aa6f9a69381902 ]

Mike Galbraith reported a regression caused by the commit 9b6f7e163cd0
("mm: rework memcg kernel stack accounting") on a system with
"cgroup_disable=memory" boot option: the system panics with the following
stack trace:

  BUG: unable to handle kernel NULL pointer dereference at 00000000000000f8
  PGD 0 P4D 0
  Oops: 0002 [#1] PREEMPT SMP PTI
  CPU: 0 PID: 1 Comm: systemd Not tainted 4.19.0-preempt+ #410
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20180531_142017-buildhw-08.phx2.fed4
  RIP: 0010:page_counter_try_charge+0x22/0xc0
  Code: 41 5d c3 c3 0f 1f 40 00 0f 1f 44 00 00 48 85 ff 0f 84 a7 00 00 00 41 56 48 89 f8 49 89 fe 49
  Call Trace:
   try_charge+0xcb/0x780
   memcg_kmem_charge_memcg+0x28/0x80
   memcg_kmem_charge+0x8b/0x1d0
   copy_process.part.41+0x1ca/0x2070
   _do_fork+0xd7/0x3d0
   do_syscall_64+0x5a/0x180
   entry_SYSCALL_64_after_hwframe+0x49/0xbe

The problem occurs because get_mem_cgroup_from_current() returns the NULL
pointer if memory controller is disabled.  Let's check if this is a case
at the beginning of memcg_kmem_charge() and just return 0 if
mem_cgroup_disabled() returns true.  This is how we handle this case in
many other places in the memory controller code.

Link: http://lkml.kernel.org/r/20181029215123.17830-1-guro@fb.com
Fixes: 9b6f7e163cd0 ("mm: rework memcg kernel stack accounting")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reported-by: Mike Galbraith <efault@gmx.de>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01 09:17:14 +01:00
David Hildenbrand
17523d7a1c mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock
[ Upstream commit 381eab4a6ee81266f8dddc62e57376c7e584e5b8 ]

There seem to be some problems as result of 30467e0b3b ("mm, hotplug:
fix concurrent memory hot-add deadlock"), which tried to fix a possible
lock inversion reported and discussed in [1] due to the two locks
	a) device_lock()
	b) mem_hotplug_lock

While add_memory() first takes b), followed by a) during
bus_probe_device(), onlining of memory from user space first took a),
followed by b), exposing a possible deadlock.

In [1], and it was decided to not make use of device_hotplug_lock, but
rather to enforce a locking order.

The problems I spotted related to this:

1. Memory block device attributes: While .state first calls
   mem_hotplug_begin() and the calls device_online() - which takes
   device_lock() - .online does no longer call mem_hotplug_begin(), so
   effectively calls online_pages() without mem_hotplug_lock.

2. device_online() should be called under device_hotplug_lock, however
   onlining memory during add_memory() does not take care of that.

In addition, I think there is also something wrong about the locking in

3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages()
   without locks. This was introduced after 30467e0b3b. And skimming over
   the code, I assume it could need some more care in regards to locking
   (e.g. device_online() called without device_hotplug_lock. This will
   be addressed in the following patches.

Now that we hold the device_hotplug_lock when
- adding memory (e.g. via add_memory()/add_memory_resource())
- removing memory (e.g. via remove_memory())
- device_online()/device_offline()

We can move mem_hotplug_lock usage back into
online_pages()/offline_pages().

Why is mem_hotplug_lock still needed? Essentially to make
get_online_mems()/put_online_mems() be very fast (relying on
device_hotplug_lock would be very slow), and to serialize against
addition of memory that does not create memory block devices (hmm).

[1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/
    2015-February/065324.html

This patch is partly based on a patch by Vitaly Kuznetsov.

Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Rashmica Gupta <rashmica.g@gmail.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01 09:17:10 +01:00
David Hildenbrand
02735d5987 mm/memory_hotplug: make add_memory() take the device_hotplug_lock
[ Upstream commit 8df1d0e4a265f25dc1e7e7624ccdbcb4a6630c89 ]

add_memory() currently does not take the device_hotplug_lock, however
is aleady called under the lock from
	arch/powerpc/platforms/pseries/hotplug-memory.c
	drivers/acpi/acpi_memhotplug.c
to synchronize against CPU hot-remove and similar.

In general, we should hold the device_hotplug_lock when adding memory to
synchronize against online/offline request (e.g.  from user space) - which
already resulted in lock inversions due to device_lock() and
mem_hotplug_lock - see 30467e0b3b ("mm, hotplug: fix concurrent memory
hot-add deadlock").  add_memory()/add_memory_resource() will create memory
block devices, so this really feels like the right thing to do.

Holding the device_hotplug_lock makes sure that a memory block device
can really only be accessed (e.g. via .online/.state) from user space,
once the memory has been fully added to the system.

The lock is not held yet in
	drivers/xen/balloon.c
	arch/powerpc/platforms/powernv/memtrace.c
	drivers/s390/char/sclp_cmd.c
	drivers/hv/hv_balloon.c
So, let's either use the locked variants or take the lock.

Don't export add_memory_resource(), as it once was exported to be used by
XEN, which is never built as a module.  If somebody requires it, we also
have to export a locked variant (as device_hotplug_lock is never
exported).

Link: http://lkml.kernel.org/r/20180925091457.28651-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01 09:17:10 +01:00
Dan Carpenter
30598425ae mm/gup_benchmark.c: prevent integer overflow in ioctl
[ Upstream commit 4b408c74ee5a0b74fc9265c2fe39b0e7dec7c056 ]

The concern here is that "gup->size" is a u64 and "nr_pages" is unsigned
long.  On 32 bit systems we could trick the kernel into allocating fewer
pages than expected.

Link: http://lkml.kernel.org/r/20181025061546.hnhkv33diogf2uis@kili.mountain
Fixes: 64c349f4ae ("mm: add infrastructure for get_user_pages_fast() benchmarking")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01 09:17:07 +01:00
Andrea Arcangeli
4291e97c69 mm: thp: fix MADV_DONTNEED vs migrate_misplaced_transhuge_page race condition
[ Upstream commit d7c3393413fe7e7dc54498ea200ea94742d61e18 ]

Patch series "migrate_misplaced_transhuge_page race conditions".

Aaron found a new instance of the THP MADV_DONTNEED race against
pmdp_clear_flush* variants, that was apparently left unfixed.

While looking into the race found by Aaron, I may have found two more
issues in migrate_misplaced_transhuge_page.

These race conditions would not cause kernel instability, but they'd
corrupt userland data or leave data non zero after MADV_DONTNEED.

I did only minor testing, and I don't expect to be able to reproduce this
(especially the lack of ->invalidate_range before migrate_page_copy,
requires the latest iommu hardware or infiniband to reproduce).  The last
patch is noop for x86 and it needs further review from maintainers of
archs that implement flush_cache_range() (not in CC yet).

To avoid confusion, it's not the first patch that introduces the bug fixed
in the second patch, even before removing the
pmdp_huge_clear_flush_notify, that _notify suffix was called after
migrate_page_copy already run.

This patch (of 3):

This is a corollary of ced108037c ("thp: fix MADV_DONTNEED vs.  numa
balancing race"), 58ceeb6bec ("thp: fix MADV_DONTNEED vs.  MADV_FREE
race") and 5b7abeae3a ("thp: fix MADV_DONTNEED vs clear soft dirty
race).

When the above three fixes where posted Dave asked
https://lkml.kernel.org/r/929b3844-aec2-0111-fef7-8002f9d4e2b9@intel.com
but apparently this was missed.

The pmdp_clear_flush* in migrate_misplaced_transhuge_page() was introduced
in a54a407fbf ("mm: Close races between THP migration and PMD numa
clearing").

The important part of such commit is only the part where the page lock is
not released until the first do_huge_pmd_numa_page() finished disarming
the pagenuma/protnone.

The addition of pmdp_clear_flush() wasn't beneficial to such commit and
there's no commentary about such an addition either.

I guess the pmdp_clear_flush() in such commit was added just in case for
safety, but it ended up introducing the MADV_DONTNEED race condition found
by Aaron.

At that point in time nobody thought of such kind of MADV_DONTNEED race
conditions yet (they were fixed later) so the code may have looked more
robust by adding the pmdp_clear_flush().

This specific race condition won't destabilize the kernel, but it can
confuse userland because after MADV_DONTNEED the memory won't be zeroed
out.

This also optimizes the code and removes a superfluous TLB flush.

[akpm@linux-foundation.org: reflow comment to 80 cols, fix grammar and typo (beacuse)]
Link: http://lkml.kernel.org/r/20181013002430.698-2-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Aaron Tomlin <atomlin@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01 09:17:02 +01:00
Dave Chinner
2d9d6c099e mm/page-writeback.c: fix range_cyclic writeback vs writepages deadlock
[ Upstream commit 64081362e8ff4587b4554087f3cfc73d3e0a4cd7 ]

We've recently seen a workload on XFS filesystems with a repeatable
deadlock between background writeback and a multi-process application
doing concurrent writes and fsyncs to a small range of a file.

range_cyclic
writeback		Process 1		Process 2

xfs_vm_writepages
  write_cache_pages
    writeback_index = 2
    cycled = 0
    ....
    find page 2 dirty
    lock Page 2
    ->writepage
      page 2 writeback
      page 2 clean
      page 2 added to bio
    no more pages
			write()
			locks page 1
			dirties page 1
			locks page 2
			dirties page 1
			fsync()
			....
			xfs_vm_writepages
			write_cache_pages
			  start index 0
			  find page 1 towrite
			  lock Page 1
			  ->writepage
			    page 1 writeback
			    page 1 clean
			    page 1 added to bio
			  find page 2 towrite
			  lock Page 2
			  page 2 is writeback
			  <blocks>
						write()
						locks page 1
						dirties page 1
						fsync()
						....
						xfs_vm_writepages
						write_cache_pages
						  start index 0

    !done && !cycled
      sets index to 0, restarts lookup
    find page 1 dirty
						  find page 1 towrite
						  lock Page 1
						  page 1 is writeback
						  <blocks>

    lock Page 1
    <blocks>

DEADLOCK because:

	- process 1 needs page 2 writeback to complete to make
	  enough progress to issue IO pending for page 1
	- writeback needs page 1 writeback to complete so process 2
	  can progress and unlock the page it is blocked on, then it
	  can issue the IO pending for page 2
	- process 2 can't make progress until process 1 issues IO
	  for page 1

The underlying cause of the problem here is that range_cyclic writeback is
processing pages in descending index order as we hold higher index pages
in a structure controlled from above write_cache_pages().  The
write_cache_pages() caller needs to be able to submit these pages for IO
before write_cache_pages restarts writeback at mapping index 0 to avoid
wcp inverting the page lock/writeback wait order.

generic_writepages() is not susceptible to this bug as it has no private
context held across write_cache_pages() - filesystems using this
infrastructure always submit pages in ->writepage immediately and so there
is no problem with range_cyclic going back to mapping index 0.

However:
	mpage_writepages() has a private bio context,
	exofs_writepages() has page_collect
	fuse_writepages() has fuse_fill_wb_data
	nfs_writepages() has nfs_pageio_descriptor
	xfs_vm_writepages() has xfs_writepage_ctx

All of these ->writepages implementations can hold pages under writeback
in their private structures until write_cache_pages() returns, and hence
they are all susceptible to this deadlock.

Also worth noting is that ext4 has it's own bastardised version of
write_cache_pages() and so it /may/ have an equivalent deadlock.  I looked
at the code long enough to understand that it has a similar retry loop for
range_cyclic writeback reaching the end of the file and then promptly ran
away before my eyes bled too much.  I'll leave it for the ext4 developers
to determine if their code is actually has this deadlock and how to fix it
if it has.

There's a few ways I can see avoid this deadlock.  There's probably more,
but these are the first I've though of:

1. get rid of range_cyclic altogether

2. range_cyclic always stops at EOF, and we start again from
writeback index 0 on the next call into write_cache_pages()

2a. wcp also returns EAGAIN to ->writepages implementations to
indicate range cyclic has hit EOF. writepages implementations can
then flush the current context and call wpc again to continue. i.e.
lift the retry into the ->writepages implementation

3. range_cyclic uses trylock_page() rather than lock_page(), and it
skips pages it can't lock without blocking. It will already do this
for pages under writeback, so this seems like a no-brainer

3a. all non-WB_SYNC_ALL writeback uses trylock_page() to avoid
blocking as per pages under writeback.

I don't think #1 is an option - range_cyclic prevents frequently
dirtied lower file offset from starving background writeback of
rarely touched higher file offsets.

#2 is simple, and I don't think it will have any impact on
performance as going back to the start of the file implies an
immediate seek. We'll have exactly the same number of seeks if we
switch writeback to another inode, and then come back to this one
later and restart from index 0.

#2a is pretty much "status quo without the deadlock". Moving the
retry loop up into the wcp caller means we can issue IO on the
pending pages before calling wcp again, and so avoid locking or
waiting on pages in the wrong order. I'm not convinced we need to do
this given that we get the same thing from #2 on the next writeback
call from the writeback infrastructure.

#3 is really just a band-aid - it doesn't fix the access/wait
inversion problem, just prevents it from becoming a deadlock
situation. I'd prefer we fix the inversion, not sweep it under the
carpet like this.

#3a is really an optimisation that just so happens to include the
band-aid fix of #3.

So it seems that the simplest way to fix this issue is to implement
solution #2

Link: http://lkml.kernel.org/r/20181005054526.21507-1-david@fromorbit.com
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.de>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01 09:17:02 +01:00
Andrey Ryabinin
e8d355befc mm/ksm.c: don't WARN if page is still mapped in remove_stable_node()
commit 9a63236f1ad82d71a98aa80320b6cb618fb32f44 upstream.

It's possible to hit the WARN_ON_ONCE(page_mapped(page)) in
remove_stable_node() when it races with __mmput() and squeezes in
between ksm_exit() and exit_mmap().

  WARNING: CPU: 0 PID: 3295 at mm/ksm.c:888 remove_stable_node+0x10c/0x150

  Call Trace:
   remove_all_stable_nodes+0x12b/0x330
   run_store+0x4ef/0x7b0
   kernfs_fop_write+0x200/0x420
   vfs_write+0x154/0x450
   ksys_write+0xf9/0x1d0
   do_syscall_64+0x99/0x510
   entry_SYSCALL_64_after_hwframe+0x49/0xbe

Remove the warning as there is nothing scary going on.

Link: http://lkml.kernel.org/r/20191119131850.5675-1-aryabinin@virtuozzo.com
Fixes: cbf86cfe04 ("ksm: remove old stable nodes more thoroughly")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-01 09:16:11 +01:00
David Hildenbrand
f8b09a0436 mm/memory_hotplug: fix updating the node span
commit 656d571193262a11c2daa4012e53e4d645bbce56 upstream.

We recently started updating the node span based on the zone span to
avoid touching uninitialized memmaps.

Currently, we will always detect the node span to start at 0, meaning a
node can easily span too many pages.  pgdat_is_empty() will still work
correctly if all zones span no pages.  We should skip over all zones
without spanned pages and properly handle the first detected zone that
spans pages.

Unfortunately, in contrast to the zone span (/proc/zoneinfo), the node
span cannot easily be inspected and tested.  The node span gives no real
guarantees when an architecture supports memory hotplug, meaning it can
easily contain holes or span pages of different nodes.

The node span is not really used after init on architectures that
support memory hotplug.

E.g., we use it in mm/memory_hotplug.c:try_offline_node() and in
mm/kmemleak.c:kmemleak_scan().  These users seem to be fine.

Link: http://lkml.kernel.org/r/20191027222714.5313-1-david@redhat.com
Fixes: 00d6c019b5bc ("mm/memory_hotplug: don't access uninitialized memmaps in shrink_pgdat_span()")
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-24 08:19:13 +01:00
David Hildenbrand
6631def3ee mm/memory_hotplug: don't access uninitialized memmaps in shrink_pgdat_span()
commit 00d6c019b5bc175cee3770e0e659f2b5f4804ea5 upstream.

We might use the nid of memmaps that were never initialized.  For
example, if the memmap was poisoned, we will crash the kernel in
pfn_to_nid() right now.  Let's use the calculated boundaries of the
separate zones instead.  This now also avoids having to iterate over a
whole bunch of subsections again, after shrinking one zone.

Before commit d0dc12e86b ("mm/memory_hotplug: optimize memory
hotplug"), the memmap was initialized to 0 and the node was set to the
right value.  After that commit, the node might be garbage.

We'll have to fix shrink_zone_span() next.

Link: http://lkml.kernel.org/r/20191006085646.5768-4-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online")	[d0dc12e86b]
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Damian Tometzki <damian.tometzki@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Halil Pasic <pasic@linux.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Rich Felker <dalias@libc.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Cc: <stable@vger.kernel.org>	[4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-24 08:19:12 +01:00
zhong jiang
e4cc9c81e2 memfd: Use radix_tree_deref_slot_protected to avoid the warning.
The commit 99b45e7a1b ("memfd: Fix locking when tagging pins")
introduces the following warning messages.

*WARNING: suspicious RCU usage in memfd_wait_for_pins*

It is because we still use radix_tree_deref_slot without read_rcu_lock.
We should use radix_tree_deref_slot_protected instead in the case.

Cc: stable@vger.kernel.org
Fixes: 99b45e7a1b ("memfd: Fix locking when tagging pins")
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-20 18:47:53 +01:00
Roman Gushchin
b4bc6498c3 mm: hugetlb: switch to css_tryget() in hugetlb_cgroup_charge_cgroup()
commit 0362f326d86c645b5e96b7dbc3ee515986ed019d upstream.

An exiting task might belong to an offline cgroup.  In this case an
attempt to grab a cgroup reference from the task can end up with an
infinite loop in hugetlb_cgroup_charge_cgroup(), because neither the
cgroup will become online, neither the task will be migrated to a live
cgroup.

Fix this by switching over to css_tryget().  As css_tryget_online()
can't guarantee that the cgroup won't go offline, in most cases the
check doesn't make sense.  In this particular case users of
hugetlb_cgroup_charge_cgroup() are not affected by this change.

A similar problem is described by commit 18fa84a2db0e ("cgroup: Use
css_tryget() instead of css_tryget_online() in task_get_css()").

Link: http://lkml.kernel.org/r/20191106225131.3543616-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-20 18:45:20 +01:00
Roman Gushchin
bb1bc2d823 mm: memcg: switch to css_tryget() in get_mem_cgroup_from_mm()
commit 00d484f354d85845991b40141d40ba9e5eb60faf upstream.

We've encountered a rcu stall in get_mem_cgroup_from_mm():

  rcu: INFO: rcu_sched self-detected stall on CPU
  rcu: 33-....: (21000 ticks this GP) idle=6c6/1/0x4000000000000002 softirq=35441/35441 fqs=5017
  (t=21031 jiffies g=324821 q=95837) NMI backtrace for cpu 33
  <...>
  RIP: 0010:get_mem_cgroup_from_mm+0x2f/0x90
  <...>
   __memcg_kmem_charge+0x55/0x140
   __alloc_pages_nodemask+0x267/0x320
   pipe_write+0x1ad/0x400
   new_sync_write+0x127/0x1c0
   __kernel_write+0x4f/0xf0
   dump_emit+0x91/0xc0
   writenote+0xa0/0xc0
   elf_core_dump+0x11af/0x1430
   do_coredump+0xc65/0xee0
   get_signal+0x132/0x7c0
   do_signal+0x36/0x640
   exit_to_usermode_loop+0x61/0xd0
   do_syscall_64+0xd4/0x100
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

The problem is caused by an exiting task which is associated with an
offline memcg.  We're iterating over and over in the do {} while
(!css_tryget_online()) loop, but obviously the memcg won't become online
and the exiting task won't be migrated to a live memcg.

Let's fix it by switching from css_tryget_online() to css_tryget().

As css_tryget_online() cannot guarantee that the memcg won't go offline,
the check is usually useless, except some rare cases when for example it
determines if something should be presented to a user.

A similar problem is described by commit 18fa84a2db0e ("cgroup: Use
css_tryget() instead of css_tryget_online() in task_get_css()").

Johannes:

: The bug aside, it doesn't matter whether the cgroup is online for the
: callers.  It used to matter when offlining needed to evacuate all charges
: from the memcg, and so needed to prevent new ones from showing up, but we
: don't care now.

Link: http://lkml.kernel.org/r/20191106225131.3543616-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Shakeel Butt <shakeeb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-20 18:45:19 +01:00
Yang Shi
653d9e0c55 mm: mempolicy: fix the wrong return value and potential pages leak of mbind
commit a85dfc305a21acfc48fa28a0fa0a0cb6ad496120 upstream.

Commit d883544515aa ("mm: mempolicy: make the behavior consistent when
MPOL_MF_MOVE* and MPOL_MF_STRICT were specified") fixed the return value
of mbind() for a couple of corner cases.  But, it altered the errno for
some other cases, for example, mbind() should return -EFAULT when part
or all of the memory range specified by nodemask and maxnode points
outside your accessible address space, or there was an unmapped hole in
the specified memory range specified by addr and len.

Fix this by preserving the errno returned by queue_pages_range().  And,
the pagelist may be not empty even though queue_pages_range() returns
error, put the pages back to LRU since mbind_range() is not called to
really apply the policy so those pages should not be migrated, this is
also the old behavior before the problematic commit.

Link: http://lkml.kernel.org/r/1572454731-3925-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: d883544515aa ("mm: mempolicy: make the behavior consistent when MPOL_MF_MOVE* and MPOL_MF_STRICT were specified")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reported-by: Li Xinhai <lixinhai.lxh@gmail.com>
Reviewed-by: Li Xinhai <lixinhai.lxh@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>	[4.19 and 5.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-20 18:45:19 +01:00
Konstantin Khlebnikov
d3b3c0a146 mm/filemap.c: don't initiate writeback if mapping has no dirty pages
commit c3aab9a0bd91b696a852169479b7db1ece6cbf8c upstream.

Functions like filemap_write_and_wait_range() should do nothing if inode
has no dirty pages or pages currently under writeback.  But they anyway
construct struct writeback_control and this does some atomic operations if
CONFIG_CGROUP_WRITEBACK=y - on fast path it locks inode->i_lock and
updates state of writeback ownership, on slow path might be more work.
Current this path is safely avoided only when inode mapping has no pages.

For example generic_file_read_iter() calls filemap_write_and_wait_range()
at each O_DIRECT read - pretty hot path.

This patch skips starting new writeback if mapping has no dirty tags set.
If writeback is already in progress filemap_write_and_wait_range() will
wait for it.

Link: http://lkml.kernel.org/r/156378816804.1087.8607636317907921438.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12 19:21:20 +01:00
Michal Hocko
6c944fc51f mm, vmstat: hide /proc/pagetypeinfo from normal users
commit abaed0112c1db08be15a784a2c5c8a8b3063cdd3 upstream.

/proc/pagetypeinfo is a debugging tool to examine internal page
allocator state wrt to fragmentation.  It is not very useful for any
other use so normal users really do not need to read this file.

Waiman Long has noticed that reading this file can have negative side
effects because zone->lock is necessary for gathering data and that a)
interferes with the page allocator and its users and b) can lead to hard
lockups on large machines which have very long free_list.

Reduce both issues by simply not exporting the file to regular users.

Link: http://lkml.kernel.org/r/20191025072610.18526-2-mhocko@kernel.org
Fixes: 467c996c1e ("Print out statistics in relation to fragmentation avoidance to /proc/pagetypeinfo")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Waiman Long <longman@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Waiman Long <longman@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Jann Horn <jannh@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12 19:20:36 +01:00
Mel Gorman
7dfa51beac mm, meminit: recalculate pcpu batch and high limits after init completes
commit 3e8fc0075e24338b1117cdff6a79477427b8dbed upstream.

Deferred memory initialisation updates zone->managed_pages during the
initialisation phase but before that finishes, the per-cpu page
allocator (pcpu) calculates the number of pages allocated/freed in
batches as well as the maximum number of pages allowed on a per-cpu
list.  As zone->managed_pages is not up to date yet, the pcpu
initialisation calculates inappropriately low batch and high values.

This increases zone lock contention quite severely in some cases with
the degree of severity depending on how many CPUs share a local zone and
the size of the zone.  A private report indicated that kernel build
times were excessive with extremely high system CPU usage.  A perf
profile indicated that a large chunk of time was lost on zone->lock
contention.

This patch recalculates the pcpu batch and high values after deferred
initialisation completes for every populated zone in the system.  It was
tested on a 2-socket AMD EPYC 2 machine using a kernel compilation
workload -- allmodconfig and all available CPUs.

mmtests configuration: config-workload-kernbench-max Configuration was
modified to build on a fresh XFS partition.

kernbench
                                5.4.0-rc3              5.4.0-rc3
                                  vanilla           resetpcpu-v2
Amean     user-256    13249.50 (   0.00%)    16401.31 * -23.79%*
Amean     syst-256    14760.30 (   0.00%)     4448.39 *  69.86%*
Amean     elsp-256      162.42 (   0.00%)      119.13 *  26.65%*
Stddev    user-256       42.97 (   0.00%)       19.15 (  55.43%)
Stddev    syst-256      336.87 (   0.00%)        6.71 (  98.01%)
Stddev    elsp-256        2.46 (   0.00%)        0.39 (  84.03%)

                   5.4.0-rc3    5.4.0-rc3
                     vanilla resetpcpu-v2
Duration User       39766.24     49221.79
Duration System     44298.10     13361.67
Duration Elapsed      519.11       388.87

The patch reduces system CPU usage by 69.86% and total build time by
26.65%.  The variance of system CPU usage is also much reduced.

Before, this was the breakdown of batch and high values over all zones
was:

    256               batch: 1
    256               batch: 63
    512               batch: 7
    256               high:  0
    256               high:  378
    512               high:  42

512 pcpu pagesets had a batch limit of 7 and a high limit of 42.  After
the patch:

    256               batch: 1
    768               batch: 63
    256               high:  0
    768               high:  378

[mgorman@techsingularity.net: fix merge/linkage snafu]
  Link: http://lkml.kernel.org/r/20191023084705.GD3016@techsingularity.netLink: http://lkml.kernel.org/r/20191021094808.28824-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>	[4.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12 19:20:35 +01:00
Johannes Weiner
8e6bf4bc3a mm: memcontrol: fix network errors from failing __GFP_ATOMIC charges
commit 869712fd3de5a90b7ba23ae1272278cddc66b37b upstream.

While upgrading from 4.16 to 5.2, we noticed these allocation errors in
the log of the new kernel:

  SLUB: Unable to allocate memory on node -1, gfp=0xa20(GFP_ATOMIC)
    cache: tw_sock_TCPv6(960:helper-logs), object size: 232, buffer size: 240, default order: 1, min order: 0
    node 0: slabs: 5, objs: 170, free: 0

        slab_out_of_memory+1
        ___slab_alloc+969
        __slab_alloc+14
        kmem_cache_alloc+346
        inet_twsk_alloc+60
        tcp_time_wait+46
        tcp_fin+206
        tcp_data_queue+2034
        tcp_rcv_state_process+784
        tcp_v6_do_rcv+405
        __release_sock+118
        tcp_close+385
        inet_release+46
        __sock_release+55
        sock_close+17
        __fput+170
        task_work_run+127
        exit_to_usermode_loop+191
        do_syscall_64+212
        entry_SYSCALL_64_after_hwframe+68

accompanied by an increase in machines going completely radio silent
under memory pressure.

One thing that changed since 4.16 is e699e2c6a6 ("net, mm: account
sock objects to kmemcg"), which made these slab caches subject to cgroup
memory accounting and control.

The problem with that is that cgroups, unlike the page allocator, do not
maintain dedicated atomic reserves.  As a cgroup's usage hovers at its
limit, atomic allocations - such as done during network rx - can fail
consistently for extended periods of time.  The kernel is not able to
operate under these conditions.

We don't want to revert the culprit patch, because it indeed tracks a
potentially substantial amount of memory used by a cgroup.

We also don't want to implement dedicated atomic reserves for cgroups.
There is no point in keeping a fixed margin of unused bytes in the
cgroup's memory budget to accomodate a consumer that is impossible to
predict - we'd be wasting memory and get into configuration headaches,
not unlike what we have going with min_free_kbytes.  We do this for
physical mem because we have to, but cgroups are an accounting game.

Instead, account these privileged allocations to the cgroup, but let
them bypass the configured limit if they have to.  This way, we get the
benefits of accounting the consumed memory and have it exert pressure on
the rest of the cgroup, but like with the page allocator, we shift the
burden of reclaimining on behalf of atomic allocations onto the regular
allocations that can block.

Link: http://lkml.kernel.org/r/20191022233708.365764-1-hannes@cmpxchg.org
Fixes: e699e2c6a6 ("net, mm: account sock objects to kmemcg")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>	[4.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12 19:20:35 +01:00
Jane Chu
30cff8ab6e mm/memory-failure: poison read receives SIGKILL instead of SIGBUS if mmaped more than once
commit 3d7fed4ad8ccb691d217efbb0f934e6a4df5ef91 upstream.

Mmap /dev/dax more than once, then read the poison location using
address from one of the mappings.  The other mappings due to not having
the page mapped in will cause SIGKILLs delivered to the process.
SIGKILL succeeds over SIGBUS, so user process loses the opportunity to
handle the UE.

Although one may add MAP_POPULATE to mmap(2) to work around the issue,
MAP_POPULATE makes mapping 128GB of pmem several magnitudes slower, so
isn't always an option.

Details -

  ndctl inject-error --block=10 --count=1 namespace6.0

  ./read_poison -x dax6.0 -o 5120 -m 2
  mmaped address 0x7f5bb6600000
  mmaped address 0x7f3cf3600000
  doing local read at address 0x7f3cf3601400
  Killed

Console messages in instrumented kernel -

  mce: Uncorrected hardware memory error in user-access at edbe201400
  Memory failure: tk->addr = 7f5bb6601000
  Memory failure: address edbe201: call dev_pagemap_mapping_shift
  dev_pagemap_mapping_shift: page edbe201: no PUD
  Memory failure: tk->size_shift == 0
  Memory failure: Unable to find user space address edbe201 in read_poison
  Memory failure: tk->addr = 7f3cf3601000
  Memory failure: address edbe201: call dev_pagemap_mapping_shift
  Memory failure: tk->size_shift = 21
  Memory failure: 0xedbe201: forcibly killing read_poison:22434 because of failure to unmap corrupted page
    => to deliver SIGKILL
  Memory failure: 0xedbe201: Killing read_poison:22434 due to hardware memory corruption
    => to deliver SIGBUS

Link: http://lkml.kernel.org/r/1565112345-28754-3-git-send-email-jane.chu@oracle.com
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-29 09:19:59 +01:00
David Hildenbrand
91eec7692b hugetlbfs: don't access uninitialized memmaps in pfn_range_valid_gigantic()
commit f231fe4235e22e18d847e05cbe705deaca56580a upstream.

Uninitialized memmaps contain garbage and in the worst case trigger
kernel BUGs, especially with CONFIG_PAGE_POISONING.  They should not get
touched.

Let's make sure that we only consider online memory (managed by the
buddy) that has initialized memmaps.  ZONE_DEVICE is not applicable.

page_zone() will call page_to_nid(), which will trigger
VM_BUG_ON_PGFLAGS(PagePoisoned(page), page) with CONFIG_PAGE_POISONING
and CONFIG_DEBUG_VM_PGFLAGS when called on uninitialized memmaps.  This
can be the case when an offline memory block (e.g., never onlined) is
spanned by a zone.

Note: As explained by Michal in [1], alloc_contig_range() will verify
the range.  So it boils down to the wrong access in this function.

[1] http://lkml.kernel.org/r/20180423000943.GO17484@dhcp22.suse.cz

Link: http://lkml.kernel.org/r/20191015120717.4858-1-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online")	[visible after d0dc12e86b]
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: <stable@vger.kernel.org>	[4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-29 09:19:59 +01:00
Qian Cai
f712e3066f mm/page_owner: don't access uninitialized memmaps when reading /proc/pagetypeinfo
commit a26ee565b6cd8dc2bf15ff6aa70bbb28f928b773 upstream.

Uninitialized memmaps contain garbage and in the worst case trigger
kernel BUGs, especially with CONFIG_PAGE_POISONING.  They should not get
touched.

For example, when not onlining a memory block that is spanned by a zone
and reading /proc/pagetypeinfo with CONFIG_DEBUG_VM_PGFLAGS and
CONFIG_PAGE_POISONING, we can trigger a kernel BUG:

  :/# echo 1 > /sys/devices/system/memory/memory40/online
  :/# echo 1 > /sys/devices/system/memory/memory42/online
  :/# cat /proc/pagetypeinfo > test.file
   page:fffff2c585200000 is uninitialized and poisoned
   raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
   raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
   page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p))
   There is not page extension available.
   ------------[ cut here ]------------
   kernel BUG at include/linux/mm.h:1107!
   invalid opcode: 0000 [#1] SMP NOPTI

Please note that this change does not affect ZONE_DEVICE, because
pagetypeinfo_showmixedcount_print() is called from
mm/vmstat.c:pagetypeinfo_showmixedcount() only for populated zones, and
ZONE_DEVICE is never populated (zone->present_pages always 0).

[david@redhat.com: move check to outer loop, add comment, rephrase description]
Link: http://lkml.kernel.org/r/20191011140638.8160-1-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online") # visible after d0dc12e86b
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org>	[4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-29 09:19:58 +01:00
Qian Cai
bb6932c5a4 mm/slub: fix a deadlock in show_slab_objects()
commit e4f8e513c3d353c134ad4eef9fd0bba12406c7c8 upstream.

A long time ago we fixed a similar deadlock in show_slab_objects() [1].
However, it is apparently due to the commits like 01fb58bcba ("slab:
remove synchronous synchronize_sched() from memcg cache deactivation
path") and 03afc0e25f ("slab: get_online_mems for
kmem_cache_{create,destroy,shrink}"), this kind of deadlock is back by
just reading files in /sys/kernel/slab which will generate a lockdep
splat below.

Since the "mem_hotplug_lock" here is only to obtain a stable online node
mask while racing with NUMA node hotplug, in the worst case, the results
may me miscalculated while doing NUMA node hotplug, but they shall be
corrected by later reads of the same files.

  WARNING: possible circular locking dependency detected
  ------------------------------------------------------
  cat/5224 is trying to acquire lock:
  ffff900012ac3120 (mem_hotplug_lock.rw_sem){++++}, at:
  show_slab_objects+0x94/0x3a8

  but task is already holding lock:
  b8ff009693eee398 (kn->count#45){++++}, at: kernfs_seq_start+0x44/0xf0

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #2 (kn->count#45){++++}:
         lock_acquire+0x31c/0x360
         __kernfs_remove+0x290/0x490
         kernfs_remove+0x30/0x44
         sysfs_remove_dir+0x70/0x88
         kobject_del+0x50/0xb0
         sysfs_slab_unlink+0x2c/0x38
         shutdown_cache+0xa0/0xf0
         kmemcg_cache_shutdown_fn+0x1c/0x34
         kmemcg_workfn+0x44/0x64
         process_one_work+0x4f4/0x950
         worker_thread+0x390/0x4bc
         kthread+0x1cc/0x1e8
         ret_from_fork+0x10/0x18

  -> #1 (slab_mutex){+.+.}:
         lock_acquire+0x31c/0x360
         __mutex_lock_common+0x16c/0xf78
         mutex_lock_nested+0x40/0x50
         memcg_create_kmem_cache+0x38/0x16c
         memcg_kmem_cache_create_func+0x3c/0x70
         process_one_work+0x4f4/0x950
         worker_thread+0x390/0x4bc
         kthread+0x1cc/0x1e8
         ret_from_fork+0x10/0x18

  -> #0 (mem_hotplug_lock.rw_sem){++++}:
         validate_chain+0xd10/0x2bcc
         __lock_acquire+0x7f4/0xb8c
         lock_acquire+0x31c/0x360
         get_online_mems+0x54/0x150
         show_slab_objects+0x94/0x3a8
         total_objects_show+0x28/0x34
         slab_attr_show+0x38/0x54
         sysfs_kf_seq_show+0x198/0x2d4
         kernfs_seq_show+0xa4/0xcc
         seq_read+0x30c/0x8a8
         kernfs_fop_read+0xa8/0x314
         __vfs_read+0x88/0x20c
         vfs_read+0xd8/0x10c
         ksys_read+0xb0/0x120
         __arm64_sys_read+0x54/0x88
         el0_svc_handler+0x170/0x240
         el0_svc+0x8/0xc

  other info that might help us debug this:

  Chain exists of:
    mem_hotplug_lock.rw_sem --> slab_mutex --> kn->count#45

   Possible unsafe locking scenario:

         CPU0                    CPU1
         ----                    ----
    lock(kn->count#45);
                                 lock(slab_mutex);
                                 lock(kn->count#45);
    lock(mem_hotplug_lock.rw_sem);

   *** DEADLOCK ***

  3 locks held by cat/5224:
   #0: 9eff00095b14b2a0 (&p->lock){+.+.}, at: seq_read+0x4c/0x8a8
   #1: 0eff008997041480 (&of->mutex){+.+.}, at: kernfs_seq_start+0x34/0xf0
   #2: b8ff009693eee398 (kn->count#45){++++}, at:
  kernfs_seq_start+0x44/0xf0

  stack backtrace:
  Call trace:
   dump_backtrace+0x0/0x248
   show_stack+0x20/0x2c
   dump_stack+0xd0/0x140
   print_circular_bug+0x368/0x380
   check_noncircular+0x248/0x250
   validate_chain+0xd10/0x2bcc
   __lock_acquire+0x7f4/0xb8c
   lock_acquire+0x31c/0x360
   get_online_mems+0x54/0x150
   show_slab_objects+0x94/0x3a8
   total_objects_show+0x28/0x34
   slab_attr_show+0x38/0x54
   sysfs_kf_seq_show+0x198/0x2d4
   kernfs_seq_show+0xa4/0xcc
   seq_read+0x30c/0x8a8
   kernfs_fop_read+0xa8/0x314
   __vfs_read+0x88/0x20c
   vfs_read+0xd8/0x10c
   ksys_read+0xb0/0x120
   __arm64_sys_read+0x54/0x88
   el0_svc_handler+0x170/0x240
   el0_svc+0x8/0xc

I think it is important to mention that this doesn't expose the
show_slab_objects to use-after-free.  There is only a single path that
might really race here and that is the slab hotplug notifier callback
__kmem_cache_shrink (via slab_mem_going_offline_callback) but that path
doesn't really destroy kmem_cache_node data structures.

[1] http://lkml.iu.edu/hypermail/linux/kernel/1101.0/02850.html

[akpm@linux-foundation.org: add comment explaining why we don't need mem_hotplug_lock]
Link: http://lkml.kernel.org/r/1570192309-10132-1-git-send-email-cai@lca.pw
Fixes: 01fb58bcba ("slab: remove synchronous synchronize_sched() from memcg cache deactivation path")
Fixes: 03afc0e25f ("slab: get_online_mems for kmem_cache_{create,destroy,shrink}")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-29 09:19:58 +01:00
David Hildenbrand
9792afbd63 mm/memory-failure.c: don't access uninitialized memmaps in memory_failure()
commit 96c804a6ae8c59a9092b3d5dd581198472063184 upstream.

We should check for pfn_to_online_page() to not access uninitialized
memmaps.  Reshuffle the code so we don't have to duplicate the error
message.

Link: http://lkml.kernel.org/r/20191009142435.3975-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online")	[visible after d0dc12e86b]
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>	[4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-29 09:19:57 +01:00
Matthew Wilcox (Oracle)
99b45e7a1b memfd: Fix locking when tagging pins
The RCU lock is insufficient to protect the radix tree iteration as
a deletion from the tree can occur before we take the spinlock to
tag the entry.  In 4.19, this has manifested as a bug with the following
trace:

kernel BUG at lib/radix-tree.c:1429!
invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 7 PID: 6935 Comm: syz-executor.2 Not tainted 4.19.36 #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
RIP: 0010:radix_tree_tag_set+0x200/0x2f0 lib/radix-tree.c:1429
Code: 00 00 5b 5d 41 5c 41 5d 41 5e 41 5f c3 48 89 44 24 10 e8 a3 29 7e fe 48 8b 44 24 10 48 0f ab 03 e9 d2 fe ff ff e8 90 29 7e fe <0f> 0b 48 c7 c7 e0 5a 87 84 e8 f0 e7 08 ff 4c 89 ef e8 4a ff ac fe
RSP: 0018:ffff88837b13fb60 EFLAGS: 00010016
RAX: 0000000000040000 RBX: ffff8883c5515d58 RCX: ffffffff82cb2ef0
RDX: 0000000000000b72 RSI: ffffc90004cf2000 RDI: ffff8883c5515d98
RBP: ffff88837b13fb98 R08: ffffed106f627f7e R09: ffffed106f627f7e
R10: 0000000000000001 R11: ffffed106f627f7d R12: 0000000000000004
R13: ffffea000d7fea80 R14: 1ffff1106f627f6f R15: 0000000000000002
FS:  00007fa1b8df2700(0000) GS:ffff8883e2fc0000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa1b8df1db8 CR3: 000000037d4d2001 CR4: 0000000000160ee0
Call Trace:
 memfd_tag_pins mm/memfd.c:51 [inline]
 memfd_wait_for_pins+0x2c5/0x12d0 mm/memfd.c:81
 memfd_add_seals mm/memfd.c:215 [inline]
 memfd_fcntl+0x33d/0x4a0 mm/memfd.c:247
 do_fcntl+0x589/0xeb0 fs/fcntl.c:421
 __do_sys_fcntl fs/fcntl.c:463 [inline]
 __se_sys_fcntl fs/fcntl.c:448 [inline]
 __x64_sys_fcntl+0x12d/0x180 fs/fcntl.c:448
 do_syscall_64+0xc8/0x580 arch/x86/entry/common.c:293

The problem does not occur in mainline due to the XArray rewrite which
changed the locking to exclude modification of the tree during iteration.
At the time, nobody realised this was a bugfix.  Backport the locking
changes to stable.

Cc: stable@vger.kernel.org
Reported-by: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-29 09:19:43 +01:00
Dan Carpenter
491a39dcee mm/vmpressure.c: fix a signedness bug in vmpressure_register_event()
commit 518a86713078168acd67cf50bc0b45d54b4cce6c upstream.

The "mode" and "level" variables are enums and in this context GCC will
treat them as unsigned ints so the error handling is never triggered.

I also removed the bogus initializer because it isn't required any more
and it's sort of confusing.

[akpm@linux-foundation.org: reduce implicit and explicit typecasting]
[akpm@linux-foundation.org: fix return value, add comment, per Matthew]
Link: http://lkml.kernel.org/r/20190925110449.GO3264@mwanda
Fixes: 3cadfa2b94 ("mm/vmpressure.c: convert to use match_string() helper")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Enrico Weigelt <info@metux.net>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-17 13:45:19 -07:00
Kees Cook
12c6c4a50f usercopy: Avoid HIGHMEM pfn warning
commit 314eed30ede02fa925990f535652254b5bad6b65 upstream.

When running on a system with >512MB RAM with a 32-bit kernel built with:

	CONFIG_DEBUG_VIRTUAL=y
	CONFIG_HIGHMEM=y
	CONFIG_HARDENED_USERCOPY=y

all execve()s will fail due to argv copying into kmap()ed pages, and on
usercopy checking the calls ultimately of virt_to_page() will be looking
for "bad" kmap (highmem) pointers due to CONFIG_DEBUG_VIRTUAL=y:

 ------------[ cut here ]------------
 kernel BUG at ../arch/x86/mm/physaddr.c:83!
 invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
 CPU: 1 PID: 1 Comm: swapper/0 Not tainted 5.3.0-rc8 #6
 Hardware name: Dell Inc. Inspiron 1318/0C236D, BIOS A04 01/15/2009
 EIP: __phys_addr+0xaf/0x100
 ...
 Call Trace:
  __check_object_size+0xaf/0x3c0
  ? __might_sleep+0x80/0xa0
  copy_strings+0x1c2/0x370
  copy_strings_kernel+0x2b/0x40
  __do_execve_file+0x4ca/0x810
  ? kmem_cache_alloc+0x1c7/0x370
  do_execve+0x1b/0x20
  ...

The check is from arch/x86/mm/physaddr.c:

	VIRTUAL_BUG_ON((phys_addr >> PAGE_SHIFT) > max_low_pfn);

Due to the kmap() in fs/exec.c:

		kaddr = kmap(kmapped_page);
	...
	if (copy_from_user(kaddr+offset, str, bytes_to_copy)) ...

Now we can fetch the correct page to avoid the pfn check. In both cases,
hardened usercopy will need to walk the page-span checker (if enabled)
to do sanity checking.

Reported-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Fixes: f5509cc18d ("mm: Hardened usercopy")
Cc: Matthew Wilcox <willy@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/201909171056.7F2FFD17@keescook
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-11 18:20:58 +02:00
Yafang Shao
4d8bdf7f3a mm/compaction.c: clear total_{migrate,free}_scanned before scanning a new zone
[ Upstream commit a94b525241c0fff3598809131d7cfcfe1d572d8c ]

total_{migrate,free}_scanned will be added to COMPACTMIGRATE_SCANNED and
COMPACTFREE_SCANNED in compact_zone().  We should clear them before
scanning a new zone.  In the proc triggered compaction, we forgot clearing
them.

[laoar.shao@gmail.com: introduce a helper compact_zone_counters_init()]
  Link: http://lkml.kernel.org/r/1563869295-25748-1-git-send-email-laoar.shao@gmail.com
[akpm@linux-foundation.org: expand compact_zone_counters_init() into its single callsite, per mhocko]
[vbabka@suse.cz: squash compact_zone() list_head init as well]
  Link: http://lkml.kernel.org/r/1fb6f7da-f776-9e42-22f8-bbb79b030b98@suse.cz
[akpm@linux-foundation.org: kcompactd_do_work(): avoid unnecessary initialization of cc.zone]
Link: http://lkml.kernel.org/r/1563789275-9639-1-git-send-email-laoar.shao@gmail.com
Fixes: 7f354a548d ("mm, compaction: add vmstats for kcompactd work")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Yafang Shao <shaoyafang@didiglobal.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 13:10:13 +02:00
Michal Hocko
b4a734a529 memcg, kmem: do not fail __GFP_NOFAIL charges
commit e55d9d9bfb69405bd7615c0f8d229d8fafb3e9b8 upstream.

Thomas has noticed the following NULL ptr dereference when using cgroup
v1 kmem limit:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
PGD 0
P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 3 PID: 16923 Comm: gtk-update-icon Not tainted 4.19.51 #42
Hardware name: Gigabyte Technology Co., Ltd. Z97X-Gaming G1/Z97X-Gaming G1, BIOS F9 07/31/2015
RIP: 0010:create_empty_buffers+0x24/0x100
Code: cd 0f 1f 44 00 00 0f 1f 44 00 00 41 54 49 89 d4 ba 01 00 00 00 55 53 48 89 fb e8 97 fe ff ff 48 89 c5 48 89 c2 eb 03 48 89 ca <48> 8b 4a 08 4c 09 22 48 85 c9 75 f1 48 89 6a 08 48 8b 43 18 48 8d
RSP: 0018:ffff927ac1b37bf8 EFLAGS: 00010286
RAX: 0000000000000000 RBX: fffff2d4429fd740 RCX: 0000000100097149
RDX: 0000000000000000 RSI: 0000000000000082 RDI: ffff9075a99fbe00
RBP: 0000000000000000 R08: fffff2d440949cc8 R09: 00000000000960c0
R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000
R13: ffff907601f18360 R14: 0000000000002000 R15: 0000000000001000
FS:  00007fb55b288bc0(0000) GS:ffff90761f8c0000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000008 CR3: 000000007aebc002 CR4: 00000000001606e0
Call Trace:
 create_page_buffers+0x4d/0x60
 __block_write_begin_int+0x8e/0x5a0
 ? ext4_inode_attach_jinode.part.82+0xb0/0xb0
 ? jbd2__journal_start+0xd7/0x1f0
 ext4_da_write_begin+0x112/0x3d0
 generic_perform_write+0xf1/0x1b0
 ? file_update_time+0x70/0x140
 __generic_file_write_iter+0x141/0x1a0
 ext4_file_write_iter+0xef/0x3b0
 __vfs_write+0x17e/0x1e0
 vfs_write+0xa5/0x1a0
 ksys_write+0x57/0xd0
 do_syscall_64+0x55/0x160
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

Tetsuo then noticed that this is because the __memcg_kmem_charge_memcg
fails __GFP_NOFAIL charge when the kmem limit is reached.  This is a wrong
behavior because nofail allocations are not allowed to fail.  Normal
charge path simply forces the charge even if that means to cross the
limit.  Kmem accounting should be doing the same.

Link: http://lkml.kernel.org/r/20190906125608.32129-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Thomas Lindroth <thomas.lindroth@gmail.com>
Debugged-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Thomas Lindroth <thomas.lindroth@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05 13:10:08 +02:00
Tetsuo Handa
d40b3eafb5 memcg, oom: don't require __GFP_FS when invoking memcg OOM killer
commit f9c645621a28e37813a1de96d9cbd89cde94a1e4 upstream.

Masoud Sharbiani noticed that commit 29ef680ae7 ("memcg, oom: move
out_of_memory back to the charge path") broke memcg OOM called from
__xfs_filemap_fault() path.  It turned out that try_charge() is retrying
forever without making forward progress because mem_cgroup_oom(GFP_NOFS)
cannot invoke the OOM killer due to commit 3da88fb3ba ("mm, oom:
move GFP_NOFS check to out_of_memory").

Allowing forced charge due to being unable to invoke memcg OOM killer will
lead to global OOM situation.  Also, just returning -ENOMEM will be risky
because OOM path is lost and some paths (e.g.  get_user_pages()) will leak
-ENOMEM.  Therefore, invoking memcg OOM killer (despite GFP_NOFS) will be
the only choice we can choose for now.

Until 29ef680ae7, we were able to invoke memcg OOM killer when
GFP_KERNEL reclaim failed [1].  But since 29ef680ae7, we need to
invoke memcg OOM killer when GFP_NOFS reclaim failed [2].  Although in the
past we did invoke memcg OOM killer for GFP_NOFS [3], we might get
pre-mature memcg OOM reports due to this patch.

[1]

 leaker invoked oom-killer: gfp_mask=0x6200ca(GFP_HIGHUSER_MOVABLE), nodemask=(null), order=0, oom_score_adj=0
 CPU: 0 PID: 2746 Comm: leaker Not tainted 4.18.0+ #19
 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
 Call Trace:
  dump_stack+0x63/0x88
  dump_header+0x67/0x27a
  ? mem_cgroup_scan_tasks+0x91/0xf0
  oom_kill_process+0x210/0x410
  out_of_memory+0x10a/0x2c0
  mem_cgroup_out_of_memory+0x46/0x80
  mem_cgroup_oom_synchronize+0x2e4/0x310
  ? high_work_func+0x20/0x20
  pagefault_out_of_memory+0x31/0x76
  mm_fault_error+0x55/0x115
  ? handle_mm_fault+0xfd/0x220
  __do_page_fault+0x433/0x4e0
  do_page_fault+0x22/0x30
  ? page_fault+0x8/0x30
  page_fault+0x1e/0x30
 RIP: 0033:0x4009f0
 Code: 03 00 00 00 e8 71 fd ff ff 48 83 f8 ff 49 89 c6 74 74 48 89 c6 bf c0 0c 40 00 31 c0 e8 69 fd ff ff 45 85 ff 7e 21 31 c9 66 90 <41> 0f be 14 0e 01 d3 f7 c1 ff 0f 00 00 75 05 41 c6 04 0e 2a 48 83
 RSP: 002b:00007ffe29ae96f0 EFLAGS: 00010206
 RAX: 000000000000001b RBX: 0000000000000000 RCX: 0000000001ce1000
 RDX: 0000000000000000 RSI: 000000007fffffe5 RDI: 0000000000000000
 RBP: 000000000000000c R08: 0000000000000000 R09: 00007f94be09220d
 R10: 0000000000000002 R11: 0000000000000246 R12: 00000000000186a0
 R13: 0000000000000003 R14: 00007f949d845000 R15: 0000000002800000
 Task in /leaker killed as a result of limit of /leaker
 memory: usage 524288kB, limit 524288kB, failcnt 158965
 memory+swap: usage 0kB, limit 9007199254740988kB, failcnt 0
 kmem: usage 2016kB, limit 9007199254740988kB, failcnt 0
 Memory cgroup stats for /leaker: cache:844KB rss:521136KB rss_huge:0KB shmem:0KB mapped_file:0KB dirty:132KB writeback:0KB inactive_anon:0KB active_anon:521224KB inactive_file:1012KB active_file:8KB unevictable:0KB
 Memory cgroup out of memory: Kill process 2746 (leaker) score 998 or sacrifice child
 Killed process 2746 (leaker) total-vm:536704kB, anon-rss:521176kB, file-rss:1208kB, shmem-rss:0kB
 oom_reaper: reaped process 2746 (leaker), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB

[2]

 leaker invoked oom-killer: gfp_mask=0x600040(GFP_NOFS), nodemask=(null), order=0, oom_score_adj=0
 CPU: 1 PID: 2746 Comm: leaker Not tainted 4.18.0+ #20
 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
 Call Trace:
  dump_stack+0x63/0x88
  dump_header+0x67/0x27a
  ? mem_cgroup_scan_tasks+0x91/0xf0
  oom_kill_process+0x210/0x410
  out_of_memory+0x109/0x2d0
  mem_cgroup_out_of_memory+0x46/0x80
  try_charge+0x58d/0x650
  ? __radix_tree_replace+0x81/0x100
  mem_cgroup_try_charge+0x7a/0x100
  __add_to_page_cache_locked+0x92/0x180
  add_to_page_cache_lru+0x4d/0xf0
  iomap_readpages_actor+0xde/0x1b0
  ? iomap_zero_range_actor+0x1d0/0x1d0
  iomap_apply+0xaf/0x130
  iomap_readpages+0x9f/0x150
  ? iomap_zero_range_actor+0x1d0/0x1d0
  xfs_vm_readpages+0x18/0x20 [xfs]
  read_pages+0x60/0x140
  __do_page_cache_readahead+0x193/0x1b0
  ondemand_readahead+0x16d/0x2c0
  page_cache_async_readahead+0x9a/0xd0
  filemap_fault+0x403/0x620
  ? alloc_set_pte+0x12c/0x540
  ? _cond_resched+0x14/0x30
  __xfs_filemap_fault+0x66/0x180 [xfs]
  xfs_filemap_fault+0x27/0x30 [xfs]
  __do_fault+0x19/0x40
  __handle_mm_fault+0x8e8/0xb60
  handle_mm_fault+0xfd/0x220
  __do_page_fault+0x238/0x4e0
  do_page_fault+0x22/0x30
  ? page_fault+0x8/0x30
  page_fault+0x1e/0x30
 RIP: 0033:0x4009f0
 Code: 03 00 00 00 e8 71 fd ff ff 48 83 f8 ff 49 89 c6 74 74 48 89 c6 bf c0 0c 40 00 31 c0 e8 69 fd ff ff 45 85 ff 7e 21 31 c9 66 90 <41> 0f be 14 0e 01 d3 f7 c1 ff 0f 00 00 75 05 41 c6 04 0e 2a 48 83
 RSP: 002b:00007ffda45c9290 EFLAGS: 00010206
 RAX: 000000000000001b RBX: 0000000000000000 RCX: 0000000001a1e000
 RDX: 0000000000000000 RSI: 000000007fffffe5 RDI: 0000000000000000
 RBP: 000000000000000c R08: 0000000000000000 R09: 00007f6d061ff20d
 R10: 0000000000000002 R11: 0000000000000246 R12: 00000000000186a0
 R13: 0000000000000003 R14: 00007f6ce59b2000 R15: 0000000002800000
 Task in /leaker killed as a result of limit of /leaker
 memory: usage 524288kB, limit 524288kB, failcnt 7221
 memory+swap: usage 0kB, limit 9007199254740988kB, failcnt 0
 kmem: usage 1944kB, limit 9007199254740988kB, failcnt 0
 Memory cgroup stats for /leaker: cache:3632KB rss:518232KB rss_huge:0KB shmem:0KB mapped_file:0KB dirty:0KB writeback:0KB inactive_anon:0KB active_anon:518408KB inactive_file:3908KB active_file:12KB unevictable:0KB
 Memory cgroup out of memory: Kill process 2746 (leaker) score 992 or sacrifice child
 Killed process 2746 (leaker) total-vm:536704kB, anon-rss:518264kB, file-rss:1188kB, shmem-rss:0kB
 oom_reaper: reaped process 2746 (leaker), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB

[3]

 leaker invoked oom-killer: gfp_mask=0x50, order=0, oom_score_adj=0
 leaker cpuset=/ mems_allowed=0
 CPU: 1 PID: 3206 Comm: leaker Not tainted 3.10.0-957.27.2.el7.x86_64 #1
 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
 Call Trace:
  [<ffffffffaf364147>] dump_stack+0x19/0x1b
  [<ffffffffaf35eb6a>] dump_header+0x90/0x229
  [<ffffffffaedbb456>] ? find_lock_task_mm+0x56/0xc0
  [<ffffffffaee32a38>] ? try_get_mem_cgroup_from_mm+0x28/0x60
  [<ffffffffaedbb904>] oom_kill_process+0x254/0x3d0
  [<ffffffffaee36c36>] mem_cgroup_oom_synchronize+0x546/0x570
  [<ffffffffaee360b0>] ? mem_cgroup_charge_common+0xc0/0xc0
  [<ffffffffaedbc194>] pagefault_out_of_memory+0x14/0x90
  [<ffffffffaf35d072>] mm_fault_error+0x6a/0x157
  [<ffffffffaf3717c8>] __do_page_fault+0x3c8/0x4f0
  [<ffffffffaf371925>] do_page_fault+0x35/0x90
  [<ffffffffaf36d768>] page_fault+0x28/0x30
 Task in /leaker killed as a result of limit of /leaker
 memory: usage 524288kB, limit 524288kB, failcnt 20628
 memory+swap: usage 524288kB, limit 9007199254740988kB, failcnt 0
 kmem: usage 0kB, limit 9007199254740988kB, failcnt 0
 Memory cgroup stats for /leaker: cache:840KB rss:523448KB rss_huge:0KB mapped_file:0KB swap:0KB inactive_anon:0KB active_anon:523448KB inactive_file:464KB active_file:376KB unevictable:0KB
 Memory cgroup out of memory: Kill process 3206 (leaker) score 970 or sacrifice child
 Killed process 3206 (leaker) total-vm:536692kB, anon-rss:523304kB, file-rss:412kB, shmem-rss:0kB

Bisected by Masoud Sharbiani.

Link: http://lkml.kernel.org/r/cbe54ed1-b6ba-a056-8899-2dc42526371d@i-love.sakura.ne.jp
Fixes: 3da88fb3ba ("mm, oom: move GFP_NOFS check to out_of_memory") [necessary after 29ef680ae7]
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Masoud Sharbiani <msharbiani@apple.com>
Tested-by: Masoud Sharbiani <msharbiani@apple.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>	[4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05 13:10:07 +02:00
Ralph Campbell
2e7e7c8f94 mm/migrate.c: initialize pud_entry in migrate_vma()
[ Upstream commit 7b358c6f12dc82364f6d317f8c8f1d794adbc3f5 ]

When CONFIG_MIGRATE_VMA_HELPER is enabled, migrate_vma() calls
migrate_vma_collect() which initializes a struct mm_walk but didn't
initialize mm_walk.pud_entry.  (Found by code inspection) Use a C
structure initialization to make sure it is set to NULL.

Link: http://lkml.kernel.org/r/20190719233225.12243-1-rcampbell@nvidia.com
Fixes: 8763cb45ab ("mm/migrate: new memory migration helper for use with device memory")
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-09-16 08:22:22 +02:00
Andrew Morton
5dd2db1ab0 mm/zsmalloc.c: fix build when CONFIG_COMPACTION=n
commit 441e254cd40dc03beec3c650ce6ce6074bc6517f upstream.

Fixes: 701d678599d0c1 ("mm/zsmalloc.c: fix race condition in zs_destroy_pool")
Link: http://lkml.kernel.org/r/201908251039.5oSbEEUT%25lkp@intel.com
Reported-by: kbuild test robot <lkp@intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Jonathan Adams <jwadams@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-06 10:22:08 +02:00
Henry Burns
ed11e60033 mm/zsmalloc.c: fix race condition in zs_destroy_pool
commit 701d678599d0c1623aaf4139c03eea260a75b027 upstream.

In zs_destroy_pool() we call flush_work(&pool->free_work).  However, we
have no guarantee that migration isn't happening in the background at
that time.

Since migration can't directly free pages, it relies on free_work being
scheduled to free the pages.  But there's nothing preventing an
in-progress migrate from queuing the work *after*
zs_unregister_migration() has called flush_work().  Which would mean
pages still pointing at the inode when we free it.

Since we know at destroy time all objects should be free, no new
migrations can come in (since zs_page_isolate() fails for fully-free
zspages).  This means it is sufficient to track a "# isolated zspages"
count by class, and have the destroy logic ensure all such pages have
drained before proceeding.  Keeping that state under the class spinlock
keeps the logic straightforward.

In this case a memory leak could lead to an eventual crash if compaction
hits the leaked page.  This crash would only occur if people are
changing their zswap backend at runtime (which eventually starts
destruction).

Link: http://lkml.kernel.org/r/20190809181751.219326-2-henryburns@google.com
Fixes: 48b4800a1c ("zsmalloc: page migration support")
Signed-off-by: Henry Burns <henryburns@google.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Jonathan Adams <jwadams@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-29 08:28:57 +02:00
Henry Burns
b30a2f608e mm/zsmalloc.c: migration can leave pages in ZS_EMPTY indefinitely
commit 1a87aa03597efa9641e92875b883c94c7f872ccb upstream.

In zs_page_migrate() we call putback_zspage() after we have finished
migrating all pages in this zspage.  However, the return value is
ignored.  If a zs_free() races in between zs_page_isolate() and
zs_page_migrate(), freeing the last object in the zspage,
putback_zspage() will leave the page in ZS_EMPTY for potentially an
unbounded amount of time.

To fix this, we need to do the same thing as zs_page_putback() does:
schedule free_work to occur.

To avoid duplicated code, move the sequence to a new
putback_zspage_deferred() function which both zs_page_migrate() and
zs_page_putback() call.

Link: http://lkml.kernel.org/r/20190809181751.219326-1-henryburns@google.com
Fixes: 48b4800a1c ("zsmalloc: page migration support")
Signed-off-by: Henry Burns <henryburns@google.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Jonathan Adams <jwadams@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-29 08:28:57 +02:00
Vlastimil Babka
db67ac0316 mm, page_owner: handle THP splits correctly
commit f7da677bc6e72033f0981b9d58b5c5d409fa641e upstream.

THP splitting path is missing the split_page_owner() call that
split_page() has.

As a result, split THP pages are wrongly reported in the page_owner file
as order-9 pages.  Furthermore when the former head page is freed, the
remaining former tail pages are not listed in the page_owner file at
all.  This patch fixes that by adding the split_page_owner() call into
__split_huge_page().

Link: http://lkml.kernel.org/r/20190820131828.22684-2-vbabka@suse.cz
Fixes: a9627bc5e3 ("mm/page_owner: introduce split_page_owner and replace manual handling")
Reported-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-29 08:28:57 +02:00
Yang Shi
01d8d08f4c Revert "kmemleak: allow to coexist with fault injection"
[ Upstream commit df9576def004d2cd5beedc00cb6e8901427634b9 ]

When running ltp's oom test with kmemleak enabled, the below warning was
triggerred since kernel detects __GFP_NOFAIL & ~__GFP_DIRECT_RECLAIM is
passed in:

  WARNING: CPU: 105 PID: 2138 at mm/page_alloc.c:4608 __alloc_pages_nodemask+0x1c31/0x1d50
  Modules linked in: loop dax_pmem dax_pmem_core ip_tables x_tables xfs virtio_net net_failover virtio_blk failover ata_generic virtio_pci virtio_ring virtio libata
  CPU: 105 PID: 2138 Comm: oom01 Not tainted 5.2.0-next-20190710+ #7
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.10.2-0-g5f4c7b1-prebuilt.qemu-project.org 04/01/2014
  RIP: 0010:__alloc_pages_nodemask+0x1c31/0x1d50
  ...
   kmemleak_alloc+0x4e/0xb0
   kmem_cache_alloc+0x2a7/0x3e0
   mempool_alloc_slab+0x2d/0x40
   mempool_alloc+0x118/0x2b0
   bio_alloc_bioset+0x19d/0x350
   get_swap_bio+0x80/0x230
   __swap_writepage+0x5ff/0xb20

The mempool_alloc_slab() clears __GFP_DIRECT_RECLAIM, however kmemleak
has __GFP_NOFAIL set all the time due to d9570ee3bd ("kmemleak:
allow to coexist with fault injection").  But, it doesn't make any sense
to have __GFP_NOFAIL and ~__GFP_DIRECT_RECLAIM specified at the same
time.

According to the discussion on the mailing list, the commit should be
reverted for short term solution.  Catalin Marinas would follow up with
a better solution for longer term.

The failure rate of kmemleak metadata allocation may increase in some
circumstances, but this should be expected side effect.

Link: http://lkml.kernel.org/r/1563299431-111710-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: d9570ee3bd ("kmemleak: allow to coexist with fault injection")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-25 10:47:58 +02:00
Isaac J. Manjarres
056368fc3e mm/usercopy: use memory range to be accessed for wraparound check
commit 951531691c4bcaa59f56a316e018bc2ff1ddf855 upstream.

Currently, when checking to see if accessing n bytes starting at address
"ptr" will cause a wraparound in the memory addresses, the check in
check_bogus_address() adds an extra byte, which is incorrect, as the
range of addresses that will be accessed is [ptr, ptr + (n - 1)].

This can lead to incorrectly detecting a wraparound in the memory
address, when trying to read 4 KB from memory that is mapped to the the
last possible page in the virtual address space, when in fact, accessing
that range of memory would not cause a wraparound to occur.

Use the memory range that will actually be accessed when considering if
accessing a certain amount of bytes will cause the memory address to
wrap around.

Link: http://lkml.kernel.org/r/1564509253-23287-1-git-send-email-isaacm@codeaurora.org
Fixes: f5509cc18d ("mm: Hardened usercopy")
Signed-off-by: Prasad Sodagudi <psodagud@codeaurora.org>
Signed-off-by: Isaac J. Manjarres <isaacm@codeaurora.org>
Co-developed-by: Prasad Sodagudi <psodagud@codeaurora.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Trilok Soni <tsoni@codeaurora.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-25 10:47:44 +02:00
Miles Chen
c8282f1b56 mm/memcontrol.c: fix use after free in mem_cgroup_iter()
commit 54a83d6bcbf8f4700013766b974bf9190d40b689 upstream.

This patch is sent to report an use after free in mem_cgroup_iter()
after merging commit be2657752e9e ("mm: memcg: fix use after free in
mem_cgroup_iter()").

I work with android kernel tree (4.9 & 4.14), and commit be2657752e9e
("mm: memcg: fix use after free in mem_cgroup_iter()") has been merged
to the trees.  However, I can still observe use after free issues
addressed in the commit be2657752e9e.  (on low-end devices, a few times
this month)

backtrace:
        css_tryget <- crash here
        mem_cgroup_iter
        shrink_node
        shrink_zones
        do_try_to_free_pages
        try_to_free_pages
        __perform_reclaim
        __alloc_pages_direct_reclaim
        __alloc_pages_slowpath
        __alloc_pages_nodemask

To debug, I poisoned mem_cgroup before freeing it:

  static void __mem_cgroup_free(struct mem_cgroup *memcg)
        for_each_node(node)
        free_mem_cgroup_per_node_info(memcg, node);
        free_percpu(memcg->stat);
  +     /* poison memcg before freeing it */
  +     memset(memcg, 0x78, sizeof(struct mem_cgroup));
        kfree(memcg);
  }

The coredump shows the position=0xdbbc2a00 is freed.

  (gdb) p/x ((struct mem_cgroup_per_node *)0xe5009e00)->iter[8]
  $13 = {position = 0xdbbc2a00, generation = 0x2efd}

  0xdbbc2a00:     0xdbbc2e00      0x00000000      0xdbbc2800      0x00000100
  0xdbbc2a10:     0x00000200      0x78787878      0x00026218      0x00000000
  0xdbbc2a20:     0xdcad6000      0x00000001      0x78787800      0x00000000
  0xdbbc2a30:     0x78780000      0x00000000      0x0068fb84      0x78787878
  0xdbbc2a40:     0x78787878      0x78787878      0x78787878      0xe3fa5cc0
  0xdbbc2a50:     0x78787878      0x78787878      0x00000000      0x00000000
  0xdbbc2a60:     0x00000000      0x00000000      0x00000000      0x00000000
  0xdbbc2a70:     0x00000000      0x00000000      0x00000000      0x00000000
  0xdbbc2a80:     0x00000000      0x00000000      0x00000000      0x00000000
  0xdbbc2a90:     0x00000001      0x00000000      0x00000000      0x00100000
  0xdbbc2aa0:     0x00000001      0xdbbc2ac8      0x00000000      0x00000000
  0xdbbc2ab0:     0x00000000      0x00000000      0x00000000      0x00000000
  0xdbbc2ac0:     0x00000000      0x00000000      0xe5b02618      0x00001000
  0xdbbc2ad0:     0x00000000      0x78787878      0x78787878      0x78787878
  0xdbbc2ae0:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2af0:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b00:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b10:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b20:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b30:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b40:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b50:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b60:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b70:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b80:     0x78787878      0x78787878      0x00000000      0x78787878
  0xdbbc2b90:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2ba0:     0x78787878      0x78787878      0x78787878      0x78787878

In the reclaim path, try_to_free_pages() does not setup
sc.target_mem_cgroup and sc is passed to do_try_to_free_pages(), ...,
shrink_node().

In mem_cgroup_iter(), root is set to root_mem_cgroup because
sc->target_mem_cgroup is NULL.  It is possible to assign a memcg to
root_mem_cgroup.nodeinfo.iter in mem_cgroup_iter().

        try_to_free_pages
        	struct scan_control sc = {...}, target_mem_cgroup is 0x0;
        do_try_to_free_pages
        shrink_zones
        shrink_node
        	 mem_cgroup *root = sc->target_mem_cgroup;
        	 memcg = mem_cgroup_iter(root, NULL, &reclaim);
        mem_cgroup_iter()
        	if (!root)
        		root = root_mem_cgroup;
        	...

        	css = css_next_descendant_pre(css, &root->css);
        	memcg = mem_cgroup_from_css(css);
        	cmpxchg(&iter->position, pos, memcg);

My device uses memcg non-hierarchical mode.  When we release a memcg:
invalidate_reclaim_iterators() reaches only dead_memcg and its parents.
If non-hierarchical mode is used, invalidate_reclaim_iterators() never
reaches root_mem_cgroup.

  static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
  {
        struct mem_cgroup *memcg = dead_memcg;

        for (; memcg; memcg = parent_mem_cgroup(memcg)
        ...
  }

So the use after free scenario looks like:

  CPU1						CPU2

  try_to_free_pages
  do_try_to_free_pages
  shrink_zones
  shrink_node
  mem_cgroup_iter()
      if (!root)
      	root = root_mem_cgroup;
      ...
      css = css_next_descendant_pre(css, &root->css);
      memcg = mem_cgroup_from_css(css);
      cmpxchg(&iter->position, pos, memcg);

        				invalidate_reclaim_iterators(memcg);
        				...
        				__mem_cgroup_free()
        					kfree(memcg);

  try_to_free_pages
  do_try_to_free_pages
  shrink_zones
  shrink_node
  mem_cgroup_iter()
      if (!root)
      	root = root_mem_cgroup;
      ...
      mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
      iter = &mz->iter[reclaim->priority];
      pos = READ_ONCE(iter->position);
      css_tryget(&pos->css) <- use after free

To avoid this, we should also invalidate root_mem_cgroup.nodeinfo.iter
in invalidate_reclaim_iterators().

[cai@lca.pw: fix -Wparentheses compilation warning]
  Link: http://lkml.kernel.org/r/1564580753-17531-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20190730015729.4406-1-miles.chen@mediatek.com
Fixes: 5ac8fb31ad ("mm: memcontrol: convert reclaim iterator to simple css refcounting")
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-25 10:47:44 +02:00
Yang Shi
3c0cb90e92 mm: mempolicy: handle vma with unmovable pages mapped correctly in mbind
commit a53190a4aaa36494f4d7209fd1fcc6f2ee08e0e0 upstream.

When running syzkaller internally, we ran into the below bug on 4.9.x
kernel:

  kernel BUG at mm/huge_memory.c:2124!
  invalid opcode: 0000 [#1] SMP KASAN
  CPU: 0 PID: 1518 Comm: syz-executor107 Not tainted 4.9.168+ #2
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.5.1 01/01/2011
  task: ffff880067b34900 task.stack: ffff880068998000
  RIP: split_huge_page_to_list+0x8fb/0x1030 mm/huge_memory.c:2124
  Call Trace:
    split_huge_page include/linux/huge_mm.h:100 [inline]
    queue_pages_pte_range+0x7e1/0x1480 mm/mempolicy.c:538
    walk_pmd_range mm/pagewalk.c:50 [inline]
    walk_pud_range mm/pagewalk.c:90 [inline]
    walk_pgd_range mm/pagewalk.c:116 [inline]
    __walk_page_range+0x44a/0xdb0 mm/pagewalk.c:208
    walk_page_range+0x154/0x370 mm/pagewalk.c:285
    queue_pages_range+0x115/0x150 mm/mempolicy.c:694
    do_mbind mm/mempolicy.c:1241 [inline]
    SYSC_mbind+0x3c3/0x1030 mm/mempolicy.c:1370
    SyS_mbind+0x46/0x60 mm/mempolicy.c:1352
    do_syscall_64+0x1d2/0x600 arch/x86/entry/common.c:282
    entry_SYSCALL_64_after_swapgs+0x5d/0xdb
  Code: c7 80 1c 02 00 e8 26 0a 76 01 <0f> 0b 48 c7 c7 40 46 45 84 e8 4c
  RIP  [<ffffffff81895d6b>] split_huge_page_to_list+0x8fb/0x1030 mm/huge_memory.c:2124
   RSP <ffff88006899f980>

with the below test:

  uint64_t r[1] = {0xffffffffffffffff};

  int main(void)
  {
        syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
                                intptr_t res = 0;
        res = syscall(__NR_socket, 0x11, 3, 0x300);
        if (res != -1)
                r[0] = res;
        *(uint32_t*)0x20000040 = 0x10000;
        *(uint32_t*)0x20000044 = 1;
        *(uint32_t*)0x20000048 = 0xc520;
        *(uint32_t*)0x2000004c = 1;
        syscall(__NR_setsockopt, r[0], 0x107, 0xd, 0x20000040, 0x10);
        syscall(__NR_mmap, 0x20fed000, 0x10000, 0, 0x8811, r[0], 0);
        *(uint64_t*)0x20000340 = 2;
        syscall(__NR_mbind, 0x20ff9000, 0x4000, 0x4002, 0x20000340, 0x45d4, 3);
        return 0;
  }

Actually the test does:

  mmap(0x20000000, 16777216, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000000
  socket(AF_PACKET, SOCK_RAW, 768)        = 3
  setsockopt(3, SOL_PACKET, PACKET_TX_RING, {block_size=65536, block_nr=1, frame_size=50464, frame_nr=1}, 16) = 0
  mmap(0x20fed000, 65536, PROT_NONE, MAP_SHARED|MAP_FIXED|MAP_POPULATE|MAP_DENYWRITE, 3, 0) = 0x20fed000
  mbind(..., MPOL_MF_STRICT|MPOL_MF_MOVE) = 0

The setsockopt() would allocate compound pages (16 pages in this test)
for packet tx ring, then the mmap() would call packet_mmap() to map the
pages into the user address space specified by the mmap() call.

When calling mbind(), it would scan the vma to queue the pages for
migration to the new node.  It would split any huge page since 4.9
doesn't support THP migration, however, the packet tx ring compound
pages are not THP and even not movable.  So, the above bug is triggered.

However, the later kernel is not hit by this issue due to commit
d44d363f65 ("mm: don't assume anonymous pages have SwapBacked flag"),
which just removes the PageSwapBacked check for a different reason.

But, there is a deeper issue.  According to the semantic of mbind(), it
should return -EIO if MPOL_MF_MOVE or MPOL_MF_MOVE_ALL was specified and
MPOL_MF_STRICT was also specified, but the kernel was unable to move all
existing pages in the range.  The tx ring of the packet socket is
definitely not movable, however, mbind() returns success for this case.

Although the most socket file associates with non-movable pages, but XDP
may have movable pages from gup.  So, it sounds not fine to just check
the underlying file type of vma in vma_migratable().

Change migrate_page_add() to check if the page is movable or not, if it
is unmovable, just return -EIO.  But do not abort pte walk immediately,
since there may be pages off LRU temporarily.  We should migrate other
pages if MPOL_MF_MOVE* is specified.  Set has_unmovable flag if some
paged could not be not moved, then return -EIO for mbind() eventually.

With this change the above test would return -EIO as expected.

[yang.shi@linux.alibaba.com: fix review comments from Vlastimil]
  Link: http://lkml.kernel.org/r/1563556862-54056-3-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1561162809-59140-3-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-25 10:47:44 +02:00
Yang Shi
cd825d8714 mm: mempolicy: make the behavior consistent when MPOL_MF_MOVE* and MPOL_MF_STRICT were specified
commit d883544515aae54842c21730b880172e7894fde9 upstream.

When both MPOL_MF_MOVE* and MPOL_MF_STRICT was specified, mbind() should
try best to migrate misplaced pages, if some of the pages could not be
migrated, then return -EIO.

There are three different sub-cases:
 1. vma is not migratable
 2. vma is migratable, but there are unmovable pages
 3. vma is migratable, pages are movable, but migrate_pages() fails

If #1 happens, kernel would just abort immediately, then return -EIO,
after a7f40cfe3b7a ("mm: mempolicy: make mbind() return -EIO when
MPOL_MF_STRICT is specified").

If #3 happens, kernel would set policy and migrate pages with
best-effort, but won't rollback the migrated pages and reset the policy
back.

Before that commit, they behaves in the same way.  It'd better to keep
their behavior consistent.  But, rolling back the migrated pages and
resetting the policy back sounds not feasible, so just make #1 behave as
same as #3.

Userspace will know that not everything was successfully migrated (via
-EIO), and can take whatever steps it deems necessary - attempt
rollback, determine which exact page(s) are violating the policy, etc.

Make queue_pages_range() return 1 to indicate there are unmovable pages
or vma is not migratable.

The #2 is not handled correctly in the current kernel, the following
patch will fix it.

[yang.shi@linux.alibaba.com: fix review comments from Vlastimil]
  Link: http://lkml.kernel.org/r/1563556862-54056-2-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1561162809-59140-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-25 10:47:43 +02:00
Ralph Campbell
f0fed8283d mm/hmm: fix bad subpage pointer in try_to_unmap_one
commit 1de13ee59225dfc98d483f8cce7d83f97c0b31de upstream.

When migrating an anonymous private page to a ZONE_DEVICE private page,
the source page->mapping and page->index fields are copied to the
destination ZONE_DEVICE struct page and the page_mapcount() is
increased.  This is so rmap_walk() can be used to unmap and migrate the
page back to system memory.

However, try_to_unmap_one() computes the subpage pointer from a swap pte
which computes an invalid page pointer and a kernel panic results such
as:

  BUG: unable to handle page fault for address: ffffea1fffffffc8

Currently, only single pages can be migrated to device private memory so
no subpage computation is needed and it can be set to "page".

[rcampbell@nvidia.com: add comment]
  Link: http://lkml.kernel.org/r/20190724232700.23327-4-rcampbell@nvidia.com
Link: http://lkml.kernel.org/r/20190719192955.30462-4-rcampbell@nvidia.com
Fixes: a5430dda8a ("mm/migrate: support un-addressable ZONE_DEVICE page in migration")
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-25 10:47:43 +02:00
Joerg Roedel
46b306f3cd mm/vmalloc: Sync unmappings in __purge_vmap_area_lazy()
commit 3f8fd02b1bf1d7ba964485a56f2f4b53ae88c167 upstream.

On x86-32 with PTI enabled, parts of the kernel page-tables are not shared
between processes. This can cause mappings in the vmalloc/ioremap area to
persist in some page-tables after the region is unmapped and released.

When the region is re-used the processes with the old mappings do not fault
in the new mappings but still access the old ones.

This causes undefined behavior, in reality often data corruption, kernel
oopses and panics and even spontaneous reboots.

Fix this problem by activly syncing unmaps in the vmalloc/ioremap area to
all page-tables in the system before the regions can be re-used.

References: https://bugzilla.suse.com/show_bug.cgi?id=1118689
Fixes: 5d72b4fba4 ('x86, mm: support huge I/O mapping capability I/F')
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20190719184652.11391-4-joro@8bytes.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-16 10:12:40 +02:00
Yang Shi
beb0cc781b mm: vmscan: check if mem cgroup is disabled or not before calling memcg slab shrinker
commit fa1e512fac717f34e7c12d7a384c46e90a647392 upstream.

Shakeel Butt reported premature oom on kernel with
"cgroup_disable=memory" since mem_cgroup_is_root() returns false even
though memcg is actually NULL.  The drop_caches is also broken.

It is because commit aeed1d325d ("mm/vmscan.c: generalize
shrink_slab() calls in shrink_node()") removed the !memcg check before
!mem_cgroup_is_root().  And, surprisingly root memcg is allocated even
though memory cgroup is disabled by kernel boot parameter.

Add mem_cgroup_disabled() check to make reclaimer work as expected.

Link: http://lkml.kernel.org/r/1563385526-20805-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: aeed1d325d ("mm/vmscan.c: generalize shrink_slab() calls in shrink_node()")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reported-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jan Hadrava <had@kam.mff.cuni.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>	[4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-06 19:06:54 +02:00
Doug Berger
439c79ed77 mm/cma.c: fail if fixed declaration can't be honored
[ Upstream commit c633324e311243586675e732249339685e5d6faa ]

The description of cma_declare_contiguous() indicates that if the
'fixed' argument is true the reserved contiguous area must be exactly at
the address of the 'base' argument.

However, the function currently allows the 'base', 'size', and 'limit'
arguments to be silently adjusted to meet alignment constraints.  This
commit enforces the documented behavior through explicit checks that
return an error if the region does not fit within a specified region.

Link: http://lkml.kernel.org/r/1561422051-16142-1-git-send-email-opendmb@gmail.com
Fixes: 5ea3b1b2f8 ("cma: add placement specifier for "cma=" kernel parameter")
Signed-off-by: Doug Berger <opendmb@gmail.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Yue Hu <huyue2@yulong.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Peng Fan <peng.fan@nxp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-06 19:06:51 +02:00
Konstantin Khlebnikov
b07687243d mm: use down_read_killable for locking mmap_sem in access_remote_vm
[ Upstream commit 1e426fe28261b03f297992e89da3320b42816f4e ]

This function is used by ptrace and proc files like /proc/pid/cmdline and
/proc/pid/environ.

Access_remote_vm never returns error codes, all errors are ignored and
only size of successfully read data is returned.  So, if current task was
killed we'll simply return 0 (bytes read).

Mmap_sem could be locked for a long time or forever if something goes
wrong.  Using a killable lock permits cleanup of stuck tasks and
simplifies investigation.

Link: http://lkml.kernel.org/r/156007494202.3335.16782303099589302087.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-31 07:27:09 +02:00