12944 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Janne Huttunen
|
7d0ef9419d |
mm/vmstat.c: fix NUMA statistics updates
[ Upstream commit 13c9aaf7fa01cc7600c61981609feadeef3354ec ]
Scan through the whole array to see if an update is needed. While we're
at it, use sizeof() to be safe against any possible type changes in the
future.
The bug here is that we wouldn't sync per-cpu counters into global ones
if there was an update of numa_stats for higher cpus. Highly
theoretical one though because it is much more probable that zone_stats
are updated so we would refresh anyway. So I wouldn't bother to mark
this for stable, yet something nice to fix.
[mhocko@suse.com: changelog enhancement]
Link: http://lkml.kernel.org/r/1541601517-17282-1-git-send-email-janne.huttunen@nokia.com
Fixes:
|
||
Wentao Wang
|
5643569bec |
mm/page_alloc.c: deduplicate __memblock_free_early() and memblock_free()
[ Upstream commit d31cfe7bff9109476da92c245b56083e9b48d60a ] Link: http://lkml.kernel.org/r/C8ECE1B7A767434691FEEFA3A01765D72AFB8E78@MX203CL03.corp.emc.com Signed-off-by: Wentao Wang <witallwang@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Aaron Lu
|
9696c7656e |
mm/page_alloc.c: use a single function to free page
[ Upstream commit 742aa7fb52c56fb3b307e704f93e67b698959cc2 ] There are multiple places of freeing a page, they all do the same things so a common function can be used to reduce code duplicate. It also avoids bug fixed in one function but left in another. Link: http://lkml.kernel.org/r/20181119134834.17765-3-aaron.lu@intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Ilias Apalodimas <ilias.apalodimas@linaro.org> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Pankaj gupta <pagupta@redhat.com> Cc: Pawel Staszewski <pstaszewski@itcare.pl> Cc: Tariq Toukan <tariqt@mellanox.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Aaron Lu
|
257ad5fbfe |
mm/page_alloc.c: free order-0 pages through PCP in page_frag_free()
[ Upstream commit 65895b67ad27df0f62bfaf82dd5622f95ea29196 ] page_frag_free() calls __free_pages_ok() to free the page back to Buddy. This is OK for high order page, but for order-0 pages, it misses the optimization opportunity of using Per-Cpu-Pages and can cause zone lock contention when called frequently. Pawel Staszewski recently shared his result of 'how Linux kernel handles normal traffic'[1] and from perf data, Jesper Dangaard Brouer found the lock contention comes from page allocator: mlx5e_poll_tx_cq | --16.34%--napi_consume_skb | |--12.65%--__free_pages_ok | | | --11.86%--free_one_page | | | |--10.10%--queued_spin_lock_slowpath | | | --0.65%--_raw_spin_lock | |--1.55%--page_frag_free | --1.44%--skb_release_data Jesper explained how it happened: mlx5 driver RX-page recycle mechanism is not effective in this workload and pages have to go through the page allocator. The lock contention happens during mlx5 DMA TX completion cycle. And the page allocator cannot keep up at these speeds.[2] I thought that __free_pages_ok() are mostly freeing high order pages and thought this is an lock contention for high order pages but Jesper explained in detail that __free_pages_ok() here are actually freeing order-0 pages because mlx5 is using order-0 pages to satisfy its page pool allocation request.[3] The free path as pointed out by Jesper is: skb_free_head() -> skb_free_frag() -> page_frag_free() And the pages being freed on this path are order-0 pages. Fix this by doing similar things as in __page_frag_cache_drain() - send the being freed page to PCP if it's an order-0 page, or directly to Buddy if it is a high order page. With this change, Paweł hasn't noticed lock contention yet in his workload and Jesper has noticed a 7% performance improvement using a micro benchmark and lock contention is gone. Ilias' test on a 'low' speed 1Gbit interface on an cortex-a53 shows ~11% performance boost testing with 64byte packets and __free_pages_ok() disappeared from perf top. [1]: https://www.spinics.net/lists/netdev/msg531362.html [2]: https://www.spinics.net/lists/netdev/msg531421.html [3]: https://www.spinics.net/lists/netdev/msg531556.html [akpm@linux-foundation.org: add comment] Link: http://lkml.kernel.org/r/20181120014544.GB10657@intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Reported-by: Pawel Staszewski <pstaszewski@itcare.pl> Analysed-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Tested-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Acked-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Acked-by: Tariq Toukan <tariqt@mellanox.com> Acked-by: Pankaj gupta <pagupta@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Wei Yang
|
78ce155fb8 |
vmscan: return NODE_RECLAIM_NOSCAN in node_reclaim() when CONFIG_NUMA is n
[ Upstream commit 8b09549c2bfd9f3f8f4cdad74107ef4f4ff9cdd7 ]
Commit
|
||
David Hildenbrand
|
5779cbc983 |
mm/memory_hotplug: don't access uninitialized memmaps in shrink_zone_span()
commit 7ce700bf11b5e2cb84e4352bbdf2123a7a239c84 upstream. Let's limit shrinking to !ZONE_DEVICE so we can fix the current code. We should never try to touch the memmap of offline sections where we could have uninitialized memmaps and could trigger BUGs when calling page_to_nid() on poisoned pages. There is no reliable way to distinguish an uninitialized memmap from an initialized memmap that belongs to ZONE_DEVICE, as we don't have anything like SECTION_IS_ONLINE we can use similar to pfn_to_online_section() for !ZONE_DEVICE memory. E.g., set_zone_contiguous() similarly relies on pfn_to_online_section() and will therefore never set a ZONE_DEVICE zone consecutive. Stopping to shrink the ZONE_DEVICE therefore results in no observable changes, besides /proc/zoneinfo indicating different boundaries - something we can totally live with. Before commit |
||
Vinayak Menon
|
006360ec33 |
mm/page_io.c: do not free shared swap slots
[ Upstream commit 5df373e95689b9519b8557da7c5bd0db0856d776 ]
The following race is observed due to which a processes faulting on a
swap entry, finds the page neither in swapcache nor swap. This causes
zram to give a zero filled page that gets mapped to the process,
resulting in a user space crash later.
Consider parent and child processes Pa and Pb sharing the same swap slot
with swap_count 2. Swap is on zram with SWP_SYNCHRONOUS_IO set.
Virtual address 'VA' of Pa and Pb points to the shared swap entry.
Pa Pb
fault on VA fault on VA
do_swap_page do_swap_page
lookup_swap_cache fails lookup_swap_cache fails
Pb scheduled out
swapin_readahead (deletes zram entry)
swap_free (makes swap_count 1)
Pb scheduled in
swap_readpage (swap_count == 1)
Takes SWP_SYNCHRONOUS_IO path
zram enrty absent
zram gives a zero filled page
Fix this by making sure that swap slot is freed only when swap count
drops down to one.
Link: http://lkml.kernel.org/r/1571743294-14285-1-git-send-email-vinmenon@codeaurora.org
Fixes:
|
||
Roman Gushchin
|
6a2245d828 |
mm: handle no memcg case in memcg_kmem_charge() properly
[ Upstream commit e68599a3c3ad0f3171a7cb4e48aa6f9a69381902 ] Mike Galbraith reported a regression caused by the commit 9b6f7e163cd0 ("mm: rework memcg kernel stack accounting") on a system with "cgroup_disable=memory" boot option: the system panics with the following stack trace: BUG: unable to handle kernel NULL pointer dereference at 00000000000000f8 PGD 0 P4D 0 Oops: 0002 [#1] PREEMPT SMP PTI CPU: 0 PID: 1 Comm: systemd Not tainted 4.19.0-preempt+ #410 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20180531_142017-buildhw-08.phx2.fed4 RIP: 0010:page_counter_try_charge+0x22/0xc0 Code: 41 5d c3 c3 0f 1f 40 00 0f 1f 44 00 00 48 85 ff 0f 84 a7 00 00 00 41 56 48 89 f8 49 89 fe 49 Call Trace: try_charge+0xcb/0x780 memcg_kmem_charge_memcg+0x28/0x80 memcg_kmem_charge+0x8b/0x1d0 copy_process.part.41+0x1ca/0x2070 _do_fork+0xd7/0x3d0 do_syscall_64+0x5a/0x180 entry_SYSCALL_64_after_hwframe+0x49/0xbe The problem occurs because get_mem_cgroup_from_current() returns the NULL pointer if memory controller is disabled. Let's check if this is a case at the beginning of memcg_kmem_charge() and just return 0 if mem_cgroup_disabled() returns true. This is how we handle this case in many other places in the memory controller code. Link: http://lkml.kernel.org/r/20181029215123.17830-1-guro@fb.com Fixes: 9b6f7e163cd0 ("mm: rework memcg kernel stack accounting") Signed-off-by: Roman Gushchin <guro@fb.com> Reported-by: Mike Galbraith <efault@gmx.de> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
David Hildenbrand
|
17523d7a1c |
mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock
[ Upstream commit 381eab4a6ee81266f8dddc62e57376c7e584e5b8 ] There seem to be some problems as result of |
||
David Hildenbrand
|
02735d5987 |
mm/memory_hotplug: make add_memory() take the device_hotplug_lock
[ Upstream commit 8df1d0e4a265f25dc1e7e7624ccdbcb4a6630c89 ]
add_memory() currently does not take the device_hotplug_lock, however
is aleady called under the lock from
arch/powerpc/platforms/pseries/hotplug-memory.c
drivers/acpi/acpi_memhotplug.c
to synchronize against CPU hot-remove and similar.
In general, we should hold the device_hotplug_lock when adding memory to
synchronize against online/offline request (e.g. from user space) - which
already resulted in lock inversions due to device_lock() and
mem_hotplug_lock - see
|
||
Dan Carpenter
|
30598425ae |
mm/gup_benchmark.c: prevent integer overflow in ioctl
[ Upstream commit 4b408c74ee5a0b74fc9265c2fe39b0e7dec7c056 ]
The concern here is that "gup->size" is a u64 and "nr_pages" is unsigned
long. On 32 bit systems we could trick the kernel into allocating fewer
pages than expected.
Link: http://lkml.kernel.org/r/20181025061546.hnhkv33diogf2uis@kili.mountain
Fixes:
|
||
Andrea Arcangeli
|
4291e97c69 |
mm: thp: fix MADV_DONTNEED vs migrate_misplaced_transhuge_page race condition
[ Upstream commit d7c3393413fe7e7dc54498ea200ea94742d61e18 ] Patch series "migrate_misplaced_transhuge_page race conditions". Aaron found a new instance of the THP MADV_DONTNEED race against pmdp_clear_flush* variants, that was apparently left unfixed. While looking into the race found by Aaron, I may have found two more issues in migrate_misplaced_transhuge_page. These race conditions would not cause kernel instability, but they'd corrupt userland data or leave data non zero after MADV_DONTNEED. I did only minor testing, and I don't expect to be able to reproduce this (especially the lack of ->invalidate_range before migrate_page_copy, requires the latest iommu hardware or infiniband to reproduce). The last patch is noop for x86 and it needs further review from maintainers of archs that implement flush_cache_range() (not in CC yet). To avoid confusion, it's not the first patch that introduces the bug fixed in the second patch, even before removing the pmdp_huge_clear_flush_notify, that _notify suffix was called after migrate_page_copy already run. This patch (of 3): This is a corollary of |
||
Dave Chinner
|
2d9d6c099e |
mm/page-writeback.c: fix range_cyclic writeback vs writepages deadlock
[ Upstream commit 64081362e8ff4587b4554087f3cfc73d3e0a4cd7 ] We've recently seen a workload on XFS filesystems with a repeatable deadlock between background writeback and a multi-process application doing concurrent writes and fsyncs to a small range of a file. range_cyclic writeback Process 1 Process 2 xfs_vm_writepages write_cache_pages writeback_index = 2 cycled = 0 .... find page 2 dirty lock Page 2 ->writepage page 2 writeback page 2 clean page 2 added to bio no more pages write() locks page 1 dirties page 1 locks page 2 dirties page 1 fsync() .... xfs_vm_writepages write_cache_pages start index 0 find page 1 towrite lock Page 1 ->writepage page 1 writeback page 1 clean page 1 added to bio find page 2 towrite lock Page 2 page 2 is writeback <blocks> write() locks page 1 dirties page 1 fsync() .... xfs_vm_writepages write_cache_pages start index 0 !done && !cycled sets index to 0, restarts lookup find page 1 dirty find page 1 towrite lock Page 1 page 1 is writeback <blocks> lock Page 1 <blocks> DEADLOCK because: - process 1 needs page 2 writeback to complete to make enough progress to issue IO pending for page 1 - writeback needs page 1 writeback to complete so process 2 can progress and unlock the page it is blocked on, then it can issue the IO pending for page 2 - process 2 can't make progress until process 1 issues IO for page 1 The underlying cause of the problem here is that range_cyclic writeback is processing pages in descending index order as we hold higher index pages in a structure controlled from above write_cache_pages(). The write_cache_pages() caller needs to be able to submit these pages for IO before write_cache_pages restarts writeback at mapping index 0 to avoid wcp inverting the page lock/writeback wait order. generic_writepages() is not susceptible to this bug as it has no private context held across write_cache_pages() - filesystems using this infrastructure always submit pages in ->writepage immediately and so there is no problem with range_cyclic going back to mapping index 0. However: mpage_writepages() has a private bio context, exofs_writepages() has page_collect fuse_writepages() has fuse_fill_wb_data nfs_writepages() has nfs_pageio_descriptor xfs_vm_writepages() has xfs_writepage_ctx All of these ->writepages implementations can hold pages under writeback in their private structures until write_cache_pages() returns, and hence they are all susceptible to this deadlock. Also worth noting is that ext4 has it's own bastardised version of write_cache_pages() and so it /may/ have an equivalent deadlock. I looked at the code long enough to understand that it has a similar retry loop for range_cyclic writeback reaching the end of the file and then promptly ran away before my eyes bled too much. I'll leave it for the ext4 developers to determine if their code is actually has this deadlock and how to fix it if it has. There's a few ways I can see avoid this deadlock. There's probably more, but these are the first I've though of: 1. get rid of range_cyclic altogether 2. range_cyclic always stops at EOF, and we start again from writeback index 0 on the next call into write_cache_pages() 2a. wcp also returns EAGAIN to ->writepages implementations to indicate range cyclic has hit EOF. writepages implementations can then flush the current context and call wpc again to continue. i.e. lift the retry into the ->writepages implementation 3. range_cyclic uses trylock_page() rather than lock_page(), and it skips pages it can't lock without blocking. It will already do this for pages under writeback, so this seems like a no-brainer 3a. all non-WB_SYNC_ALL writeback uses trylock_page() to avoid blocking as per pages under writeback. I don't think #1 is an option - range_cyclic prevents frequently dirtied lower file offset from starving background writeback of rarely touched higher file offsets. #2 is simple, and I don't think it will have any impact on performance as going back to the start of the file implies an immediate seek. We'll have exactly the same number of seeks if we switch writeback to another inode, and then come back to this one later and restart from index 0. #2a is pretty much "status quo without the deadlock". Moving the retry loop up into the wcp caller means we can issue IO on the pending pages before calling wcp again, and so avoid locking or waiting on pages in the wrong order. I'm not convinced we need to do this given that we get the same thing from #2 on the next writeback call from the writeback infrastructure. #3 is really just a band-aid - it doesn't fix the access/wait inversion problem, just prevents it from becoming a deadlock situation. I'd prefer we fix the inversion, not sweep it under the carpet like this. #3a is really an optimisation that just so happens to include the band-aid fix of #3. So it seems that the simplest way to fix this issue is to implement solution #2 Link: http://lkml.kernel.org/r/20181005054526.21507-1-david@fromorbit.com Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Jan Kara <jack@suse.de> Cc: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Andrey Ryabinin
|
e8d355befc |
mm/ksm.c: don't WARN if page is still mapped in remove_stable_node()
commit 9a63236f1ad82d71a98aa80320b6cb618fb32f44 upstream.
It's possible to hit the WARN_ON_ONCE(page_mapped(page)) in
remove_stable_node() when it races with __mmput() and squeezes in
between ksm_exit() and exit_mmap().
WARNING: CPU: 0 PID: 3295 at mm/ksm.c:888 remove_stable_node+0x10c/0x150
Call Trace:
remove_all_stable_nodes+0x12b/0x330
run_store+0x4ef/0x7b0
kernfs_fop_write+0x200/0x420
vfs_write+0x154/0x450
ksys_write+0xf9/0x1d0
do_syscall_64+0x99/0x510
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Remove the warning as there is nothing scary going on.
Link: http://lkml.kernel.org/r/20191119131850.5675-1-aryabinin@virtuozzo.com
Fixes:
|
||
David Hildenbrand
|
f8b09a0436 |
mm/memory_hotplug: fix updating the node span
commit 656d571193262a11c2daa4012e53e4d645bbce56 upstream. We recently started updating the node span based on the zone span to avoid touching uninitialized memmaps. Currently, we will always detect the node span to start at 0, meaning a node can easily span too many pages. pgdat_is_empty() will still work correctly if all zones span no pages. We should skip over all zones without spanned pages and properly handle the first detected zone that spans pages. Unfortunately, in contrast to the zone span (/proc/zoneinfo), the node span cannot easily be inspected and tested. The node span gives no real guarantees when an architecture supports memory hotplug, meaning it can easily contain holes or span pages of different nodes. The node span is not really used after init on architectures that support memory hotplug. E.g., we use it in mm/memory_hotplug.c:try_offline_node() and in mm/kmemleak.c:kmemleak_scan(). These users seem to be fine. Link: http://lkml.kernel.org/r/20191027222714.5313-1-david@redhat.com Fixes: 00d6c019b5bc ("mm/memory_hotplug: don't access uninitialized memmaps in shrink_pgdat_span()") Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
David Hildenbrand
|
6631def3ee |
mm/memory_hotplug: don't access uninitialized memmaps in shrink_pgdat_span()
commit 00d6c019b5bc175cee3770e0e659f2b5f4804ea5 upstream. We might use the nid of memmaps that were never initialized. For example, if the memmap was poisoned, we will crash the kernel in pfn_to_nid() right now. Let's use the calculated boundaries of the separate zones instead. This now also avoids having to iterate over a whole bunch of subsections again, after shrinking one zone. Before commit |
||
zhong jiang
|
e4cc9c81e2 |
memfd: Use radix_tree_deref_slot_protected to avoid the warning.
The commit |
||
Roman Gushchin
|
b4bc6498c3 |
mm: hugetlb: switch to css_tryget() in hugetlb_cgroup_charge_cgroup()
commit 0362f326d86c645b5e96b7dbc3ee515986ed019d upstream. An exiting task might belong to an offline cgroup. In this case an attempt to grab a cgroup reference from the task can end up with an infinite loop in hugetlb_cgroup_charge_cgroup(), because neither the cgroup will become online, neither the task will be migrated to a live cgroup. Fix this by switching over to css_tryget(). As css_tryget_online() can't guarantee that the cgroup won't go offline, in most cases the check doesn't make sense. In this particular case users of hugetlb_cgroup_charge_cgroup() are not affected by this change. A similar problem is described by commit 18fa84a2db0e ("cgroup: Use css_tryget() instead of css_tryget_online() in task_get_css()"). Link: http://lkml.kernel.org/r/20191106225131.3543616-2-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Tejun Heo <tj@kernel.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Roman Gushchin
|
bb1bc2d823 |
mm: memcg: switch to css_tryget() in get_mem_cgroup_from_mm()
commit 00d484f354d85845991b40141d40ba9e5eb60faf upstream. We've encountered a rcu stall in get_mem_cgroup_from_mm(): rcu: INFO: rcu_sched self-detected stall on CPU rcu: 33-....: (21000 ticks this GP) idle=6c6/1/0x4000000000000002 softirq=35441/35441 fqs=5017 (t=21031 jiffies g=324821 q=95837) NMI backtrace for cpu 33 <...> RIP: 0010:get_mem_cgroup_from_mm+0x2f/0x90 <...> __memcg_kmem_charge+0x55/0x140 __alloc_pages_nodemask+0x267/0x320 pipe_write+0x1ad/0x400 new_sync_write+0x127/0x1c0 __kernel_write+0x4f/0xf0 dump_emit+0x91/0xc0 writenote+0xa0/0xc0 elf_core_dump+0x11af/0x1430 do_coredump+0xc65/0xee0 get_signal+0x132/0x7c0 do_signal+0x36/0x640 exit_to_usermode_loop+0x61/0xd0 do_syscall_64+0xd4/0x100 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The problem is caused by an exiting task which is associated with an offline memcg. We're iterating over and over in the do {} while (!css_tryget_online()) loop, but obviously the memcg won't become online and the exiting task won't be migrated to a live memcg. Let's fix it by switching from css_tryget_online() to css_tryget(). As css_tryget_online() cannot guarantee that the memcg won't go offline, the check is usually useless, except some rare cases when for example it determines if something should be presented to a user. A similar problem is described by commit 18fa84a2db0e ("cgroup: Use css_tryget() instead of css_tryget_online() in task_get_css()"). Johannes: : The bug aside, it doesn't matter whether the cgroup is online for the : callers. It used to matter when offlining needed to evacuate all charges : from the memcg, and so needed to prevent new ones from showing up, but we : don't care now. Link: http://lkml.kernel.org/r/20191106225131.3543616-1-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Tejun Heo <tj@kernel.org> Reviewed-by: Shakeel Butt <shakeeb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutn <mkoutny@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Yang Shi
|
653d9e0c55 |
mm: mempolicy: fix the wrong return value and potential pages leak of mbind
commit a85dfc305a21acfc48fa28a0fa0a0cb6ad496120 upstream. Commit d883544515aa ("mm: mempolicy: make the behavior consistent when MPOL_MF_MOVE* and MPOL_MF_STRICT were specified") fixed the return value of mbind() for a couple of corner cases. But, it altered the errno for some other cases, for example, mbind() should return -EFAULT when part or all of the memory range specified by nodemask and maxnode points outside your accessible address space, or there was an unmapped hole in the specified memory range specified by addr and len. Fix this by preserving the errno returned by queue_pages_range(). And, the pagelist may be not empty even though queue_pages_range() returns error, put the pages back to LRU since mbind_range() is not called to really apply the policy so those pages should not be migrated, this is also the old behavior before the problematic commit. Link: http://lkml.kernel.org/r/1572454731-3925-1-git-send-email-yang.shi@linux.alibaba.com Fixes: d883544515aa ("mm: mempolicy: make the behavior consistent when MPOL_MF_MOVE* and MPOL_MF_STRICT were specified") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Reported-by: Li Xinhai <lixinhai.lxh@gmail.com> Reviewed-by: Li Xinhai <lixinhai.lxh@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> [4.19 and 5.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Konstantin Khlebnikov
|
d3b3c0a146 |
mm/filemap.c: don't initiate writeback if mapping has no dirty pages
commit c3aab9a0bd91b696a852169479b7db1ece6cbf8c upstream. Functions like filemap_write_and_wait_range() should do nothing if inode has no dirty pages or pages currently under writeback. But they anyway construct struct writeback_control and this does some atomic operations if CONFIG_CGROUP_WRITEBACK=y - on fast path it locks inode->i_lock and updates state of writeback ownership, on slow path might be more work. Current this path is safely avoided only when inode mapping has no pages. For example generic_file_read_iter() calls filemap_write_and_wait_range() at each O_DIRECT read - pretty hot path. This patch skips starting new writeback if mapping has no dirty tags set. If writeback is already in progress filemap_write_and_wait_range() will wait for it. Link: http://lkml.kernel.org/r/156378816804.1087.8607636317907921438.stgit@buzz Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Michal Hocko
|
6c944fc51f |
mm, vmstat: hide /proc/pagetypeinfo from normal users
commit abaed0112c1db08be15a784a2c5c8a8b3063cdd3 upstream.
/proc/pagetypeinfo is a debugging tool to examine internal page
allocator state wrt to fragmentation. It is not very useful for any
other use so normal users really do not need to read this file.
Waiman Long has noticed that reading this file can have negative side
effects because zone->lock is necessary for gathering data and that a)
interferes with the page allocator and its users and b) can lead to hard
lockups on large machines which have very long free_list.
Reduce both issues by simply not exporting the file to regular users.
Link: http://lkml.kernel.org/r/20191025072610.18526-2-mhocko@kernel.org
Fixes:
|
||
Mel Gorman
|
7dfa51beac |
mm, meminit: recalculate pcpu batch and high limits after init completes
commit 3e8fc0075e24338b1117cdff6a79477427b8dbed upstream. Deferred memory initialisation updates zone->managed_pages during the initialisation phase but before that finishes, the per-cpu page allocator (pcpu) calculates the number of pages allocated/freed in batches as well as the maximum number of pages allowed on a per-cpu list. As zone->managed_pages is not up to date yet, the pcpu initialisation calculates inappropriately low batch and high values. This increases zone lock contention quite severely in some cases with the degree of severity depending on how many CPUs share a local zone and the size of the zone. A private report indicated that kernel build times were excessive with extremely high system CPU usage. A perf profile indicated that a large chunk of time was lost on zone->lock contention. This patch recalculates the pcpu batch and high values after deferred initialisation completes for every populated zone in the system. It was tested on a 2-socket AMD EPYC 2 machine using a kernel compilation workload -- allmodconfig and all available CPUs. mmtests configuration: config-workload-kernbench-max Configuration was modified to build on a fresh XFS partition. kernbench 5.4.0-rc3 5.4.0-rc3 vanilla resetpcpu-v2 Amean user-256 13249.50 ( 0.00%) 16401.31 * -23.79%* Amean syst-256 14760.30 ( 0.00%) 4448.39 * 69.86%* Amean elsp-256 162.42 ( 0.00%) 119.13 * 26.65%* Stddev user-256 42.97 ( 0.00%) 19.15 ( 55.43%) Stddev syst-256 336.87 ( 0.00%) 6.71 ( 98.01%) Stddev elsp-256 2.46 ( 0.00%) 0.39 ( 84.03%) 5.4.0-rc3 5.4.0-rc3 vanilla resetpcpu-v2 Duration User 39766.24 49221.79 Duration System 44298.10 13361.67 Duration Elapsed 519.11 388.87 The patch reduces system CPU usage by 69.86% and total build time by 26.65%. The variance of system CPU usage is also much reduced. Before, this was the breakdown of batch and high values over all zones was: 256 batch: 1 256 batch: 63 512 batch: 7 256 high: 0 256 high: 378 512 high: 42 512 pcpu pagesets had a batch limit of 7 and a high limit of 42. After the patch: 256 batch: 1 768 batch: 63 256 high: 0 768 high: 378 [mgorman@techsingularity.net: fix merge/linkage snafu] Link: http://lkml.kernel.org/r/20191023084705.GD3016@techsingularity.netLink: http://lkml.kernel.org/r/20191021094808.28824-2-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Hildenbrand <david@redhat.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Qian Cai <cai@lca.pw> Cc: <stable@vger.kernel.org> [4.1+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Johannes Weiner
|
8e6bf4bc3a |
mm: memcontrol: fix network errors from failing __GFP_ATOMIC charges
commit 869712fd3de5a90b7ba23ae1272278cddc66b37b upstream. While upgrading from 4.16 to 5.2, we noticed these allocation errors in the log of the new kernel: SLUB: Unable to allocate memory on node -1, gfp=0xa20(GFP_ATOMIC) cache: tw_sock_TCPv6(960:helper-logs), object size: 232, buffer size: 240, default order: 1, min order: 0 node 0: slabs: 5, objs: 170, free: 0 slab_out_of_memory+1 ___slab_alloc+969 __slab_alloc+14 kmem_cache_alloc+346 inet_twsk_alloc+60 tcp_time_wait+46 tcp_fin+206 tcp_data_queue+2034 tcp_rcv_state_process+784 tcp_v6_do_rcv+405 __release_sock+118 tcp_close+385 inet_release+46 __sock_release+55 sock_close+17 __fput+170 task_work_run+127 exit_to_usermode_loop+191 do_syscall_64+212 entry_SYSCALL_64_after_hwframe+68 accompanied by an increase in machines going completely radio silent under memory pressure. One thing that changed since 4.16 is |
||
Jane Chu
|
30cff8ab6e |
mm/memory-failure: poison read receives SIGKILL instead of SIGBUS if mmaped more than once
commit 3d7fed4ad8ccb691d217efbb0f934e6a4df5ef91 upstream. Mmap /dev/dax more than once, then read the poison location using address from one of the mappings. The other mappings due to not having the page mapped in will cause SIGKILLs delivered to the process. SIGKILL succeeds over SIGBUS, so user process loses the opportunity to handle the UE. Although one may add MAP_POPULATE to mmap(2) to work around the issue, MAP_POPULATE makes mapping 128GB of pmem several magnitudes slower, so isn't always an option. Details - ndctl inject-error --block=10 --count=1 namespace6.0 ./read_poison -x dax6.0 -o 5120 -m 2 mmaped address 0x7f5bb6600000 mmaped address 0x7f3cf3600000 doing local read at address 0x7f3cf3601400 Killed Console messages in instrumented kernel - mce: Uncorrected hardware memory error in user-access at edbe201400 Memory failure: tk->addr = 7f5bb6601000 Memory failure: address edbe201: call dev_pagemap_mapping_shift dev_pagemap_mapping_shift: page edbe201: no PUD Memory failure: tk->size_shift == 0 Memory failure: Unable to find user space address edbe201 in read_poison Memory failure: tk->addr = 7f3cf3601000 Memory failure: address edbe201: call dev_pagemap_mapping_shift Memory failure: tk->size_shift = 21 Memory failure: 0xedbe201: forcibly killing read_poison:22434 because of failure to unmap corrupted page => to deliver SIGKILL Memory failure: 0xedbe201: Killing read_poison:22434 due to hardware memory corruption => to deliver SIGBUS Link: http://lkml.kernel.org/r/1565112345-28754-3-git-send-email-jane.chu@oracle.com Signed-off-by: Jane Chu <jane.chu@oracle.com> Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
David Hildenbrand
|
91eec7692b |
hugetlbfs: don't access uninitialized memmaps in pfn_range_valid_gigantic()
commit f231fe4235e22e18d847e05cbe705deaca56580a upstream. Uninitialized memmaps contain garbage and in the worst case trigger kernel BUGs, especially with CONFIG_PAGE_POISONING. They should not get touched. Let's make sure that we only consider online memory (managed by the buddy) that has initialized memmaps. ZONE_DEVICE is not applicable. page_zone() will call page_to_nid(), which will trigger VM_BUG_ON_PGFLAGS(PagePoisoned(page), page) with CONFIG_PAGE_POISONING and CONFIG_DEBUG_VM_PGFLAGS when called on uninitialized memmaps. This can be the case when an offline memory block (e.g., never onlined) is spanned by a zone. Note: As explained by Michal in [1], alloc_contig_range() will verify the range. So it boils down to the wrong access in this function. [1] http://lkml.kernel.org/r/20180423000943.GO17484@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20191015120717.4858-1-david@redhat.com Fixes: |
||
Qian Cai
|
f712e3066f |
mm/page_owner: don't access uninitialized memmaps when reading /proc/pagetypeinfo
commit a26ee565b6cd8dc2bf15ff6aa70bbb28f928b773 upstream. Uninitialized memmaps contain garbage and in the worst case trigger kernel BUGs, especially with CONFIG_PAGE_POISONING. They should not get touched. For example, when not onlining a memory block that is spanned by a zone and reading /proc/pagetypeinfo with CONFIG_DEBUG_VM_PGFLAGS and CONFIG_PAGE_POISONING, we can trigger a kernel BUG: :/# echo 1 > /sys/devices/system/memory/memory40/online :/# echo 1 > /sys/devices/system/memory/memory42/online :/# cat /proc/pagetypeinfo > test.file page:fffff2c585200000 is uninitialized and poisoned raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p)) There is not page extension available. ------------[ cut here ]------------ kernel BUG at include/linux/mm.h:1107! invalid opcode: 0000 [#1] SMP NOPTI Please note that this change does not affect ZONE_DEVICE, because pagetypeinfo_showmixedcount_print() is called from mm/vmstat.c:pagetypeinfo_showmixedcount() only for populated zones, and ZONE_DEVICE is never populated (zone->present_pages always 0). [david@redhat.com: move check to outer loop, add comment, rephrase description] Link: http://lkml.kernel.org/r/20191011140638.8160-1-david@redhat.com Fixes: |
||
Qian Cai
|
bb6932c5a4 |
mm/slub: fix a deadlock in show_slab_objects()
commit e4f8e513c3d353c134ad4eef9fd0bba12406c7c8 upstream. A long time ago we fixed a similar deadlock in show_slab_objects() [1]. However, it is apparently due to the commits like |
||
David Hildenbrand
|
9792afbd63 |
mm/memory-failure.c: don't access uninitialized memmaps in memory_failure()
commit 96c804a6ae8c59a9092b3d5dd581198472063184 upstream. We should check for pfn_to_online_page() to not access uninitialized memmaps. Reshuffle the code so we don't have to duplicate the error message. Link: http://lkml.kernel.org/r/20191009142435.3975-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Fixes: |
||
Matthew Wilcox (Oracle)
|
99b45e7a1b |
memfd: Fix locking when tagging pins
The RCU lock is insufficient to protect the radix tree iteration as a deletion from the tree can occur before we take the spinlock to tag the entry. In 4.19, this has manifested as a bug with the following trace: kernel BUG at lib/radix-tree.c:1429! invalid opcode: 0000 [#1] SMP KASAN PTI CPU: 7 PID: 6935 Comm: syz-executor.2 Not tainted 4.19.36 #25 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 RIP: 0010:radix_tree_tag_set+0x200/0x2f0 lib/radix-tree.c:1429 Code: 00 00 5b 5d 41 5c 41 5d 41 5e 41 5f c3 48 89 44 24 10 e8 a3 29 7e fe 48 8b 44 24 10 48 0f ab 03 e9 d2 fe ff ff e8 90 29 7e fe <0f> 0b 48 c7 c7 e0 5a 87 84 e8 f0 e7 08 ff 4c 89 ef e8 4a ff ac fe RSP: 0018:ffff88837b13fb60 EFLAGS: 00010016 RAX: 0000000000040000 RBX: ffff8883c5515d58 RCX: ffffffff82cb2ef0 RDX: 0000000000000b72 RSI: ffffc90004cf2000 RDI: ffff8883c5515d98 RBP: ffff88837b13fb98 R08: ffffed106f627f7e R09: ffffed106f627f7e R10: 0000000000000001 R11: ffffed106f627f7d R12: 0000000000000004 R13: ffffea000d7fea80 R14: 1ffff1106f627f6f R15: 0000000000000002 FS: 00007fa1b8df2700(0000) GS:ffff8883e2fc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa1b8df1db8 CR3: 000000037d4d2001 CR4: 0000000000160ee0 Call Trace: memfd_tag_pins mm/memfd.c:51 [inline] memfd_wait_for_pins+0x2c5/0x12d0 mm/memfd.c:81 memfd_add_seals mm/memfd.c:215 [inline] memfd_fcntl+0x33d/0x4a0 mm/memfd.c:247 do_fcntl+0x589/0xeb0 fs/fcntl.c:421 __do_sys_fcntl fs/fcntl.c:463 [inline] __se_sys_fcntl fs/fcntl.c:448 [inline] __x64_sys_fcntl+0x12d/0x180 fs/fcntl.c:448 do_syscall_64+0xc8/0x580 arch/x86/entry/common.c:293 The problem does not occur in mainline due to the XArray rewrite which changed the locking to exclude modification of the tree during iteration. At the time, nobody realised this was a bugfix. Backport the locking changes to stable. Cc: stable@vger.kernel.org Reported-by: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Dan Carpenter
|
491a39dcee |
mm/vmpressure.c: fix a signedness bug in vmpressure_register_event()
commit 518a86713078168acd67cf50bc0b45d54b4cce6c upstream.
The "mode" and "level" variables are enums and in this context GCC will
treat them as unsigned ints so the error handling is never triggered.
I also removed the bogus initializer because it isn't required any more
and it's sort of confusing.
[akpm@linux-foundation.org: reduce implicit and explicit typecasting]
[akpm@linux-foundation.org: fix return value, add comment, per Matthew]
Link: http://lkml.kernel.org/r/20190925110449.GO3264@mwanda
Fixes:
|
||
Kees Cook
|
12c6c4a50f |
usercopy: Avoid HIGHMEM pfn warning
commit 314eed30ede02fa925990f535652254b5bad6b65 upstream.
When running on a system with >512MB RAM with a 32-bit kernel built with:
CONFIG_DEBUG_VIRTUAL=y
CONFIG_HIGHMEM=y
CONFIG_HARDENED_USERCOPY=y
all execve()s will fail due to argv copying into kmap()ed pages, and on
usercopy checking the calls ultimately of virt_to_page() will be looking
for "bad" kmap (highmem) pointers due to CONFIG_DEBUG_VIRTUAL=y:
------------[ cut here ]------------
kernel BUG at ../arch/x86/mm/physaddr.c:83!
invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
CPU: 1 PID: 1 Comm: swapper/0 Not tainted 5.3.0-rc8 #6
Hardware name: Dell Inc. Inspiron 1318/0C236D, BIOS A04 01/15/2009
EIP: __phys_addr+0xaf/0x100
...
Call Trace:
__check_object_size+0xaf/0x3c0
? __might_sleep+0x80/0xa0
copy_strings+0x1c2/0x370
copy_strings_kernel+0x2b/0x40
__do_execve_file+0x4ca/0x810
? kmem_cache_alloc+0x1c7/0x370
do_execve+0x1b/0x20
...
The check is from arch/x86/mm/physaddr.c:
VIRTUAL_BUG_ON((phys_addr >> PAGE_SHIFT) > max_low_pfn);
Due to the kmap() in fs/exec.c:
kaddr = kmap(kmapped_page);
...
if (copy_from_user(kaddr+offset, str, bytes_to_copy)) ...
Now we can fetch the correct page to avoid the pfn check. In both cases,
hardened usercopy will need to walk the page-span checker (if enabled)
to do sanity checking.
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Fixes:
|
||
Yafang Shao
|
4d8bdf7f3a |
mm/compaction.c: clear total_{migrate,free}_scanned before scanning a new zone
[ Upstream commit a94b525241c0fff3598809131d7cfcfe1d572d8c ]
total_{migrate,free}_scanned will be added to COMPACTMIGRATE_SCANNED and
COMPACTFREE_SCANNED in compact_zone(). We should clear them before
scanning a new zone. In the proc triggered compaction, we forgot clearing
them.
[laoar.shao@gmail.com: introduce a helper compact_zone_counters_init()]
Link: http://lkml.kernel.org/r/1563869295-25748-1-git-send-email-laoar.shao@gmail.com
[akpm@linux-foundation.org: expand compact_zone_counters_init() into its single callsite, per mhocko]
[vbabka@suse.cz: squash compact_zone() list_head init as well]
Link: http://lkml.kernel.org/r/1fb6f7da-f776-9e42-22f8-bbb79b030b98@suse.cz
[akpm@linux-foundation.org: kcompactd_do_work(): avoid unnecessary initialization of cc.zone]
Link: http://lkml.kernel.org/r/1563789275-9639-1-git-send-email-laoar.shao@gmail.com
Fixes:
|
||
Michal Hocko
|
b4a734a529 |
memcg, kmem: do not fail __GFP_NOFAIL charges
commit e55d9d9bfb69405bd7615c0f8d229d8fafb3e9b8 upstream. Thomas has noticed the following NULL ptr dereference when using cgroup v1 kmem limit: BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 3 PID: 16923 Comm: gtk-update-icon Not tainted 4.19.51 #42 Hardware name: Gigabyte Technology Co., Ltd. Z97X-Gaming G1/Z97X-Gaming G1, BIOS F9 07/31/2015 RIP: 0010:create_empty_buffers+0x24/0x100 Code: cd 0f 1f 44 00 00 0f 1f 44 00 00 41 54 49 89 d4 ba 01 00 00 00 55 53 48 89 fb e8 97 fe ff ff 48 89 c5 48 89 c2 eb 03 48 89 ca <48> 8b 4a 08 4c 09 22 48 85 c9 75 f1 48 89 6a 08 48 8b 43 18 48 8d RSP: 0018:ffff927ac1b37bf8 EFLAGS: 00010286 RAX: 0000000000000000 RBX: fffff2d4429fd740 RCX: 0000000100097149 RDX: 0000000000000000 RSI: 0000000000000082 RDI: ffff9075a99fbe00 RBP: 0000000000000000 R08: fffff2d440949cc8 R09: 00000000000960c0 R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000 R13: ffff907601f18360 R14: 0000000000002000 R15: 0000000000001000 FS: 00007fb55b288bc0(0000) GS:ffff90761f8c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000007aebc002 CR4: 00000000001606e0 Call Trace: create_page_buffers+0x4d/0x60 __block_write_begin_int+0x8e/0x5a0 ? ext4_inode_attach_jinode.part.82+0xb0/0xb0 ? jbd2__journal_start+0xd7/0x1f0 ext4_da_write_begin+0x112/0x3d0 generic_perform_write+0xf1/0x1b0 ? file_update_time+0x70/0x140 __generic_file_write_iter+0x141/0x1a0 ext4_file_write_iter+0xef/0x3b0 __vfs_write+0x17e/0x1e0 vfs_write+0xa5/0x1a0 ksys_write+0x57/0xd0 do_syscall_64+0x55/0x160 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Tetsuo then noticed that this is because the __memcg_kmem_charge_memcg fails __GFP_NOFAIL charge when the kmem limit is reached. This is a wrong behavior because nofail allocations are not allowed to fail. Normal charge path simply forces the charge even if that means to cross the limit. Kmem accounting should be doing the same. Link: http://lkml.kernel.org/r/20190906125608.32129-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Thomas Lindroth <thomas.lindroth@gmail.com> Debugged-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Thomas Lindroth <thomas.lindroth@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Tetsuo Handa
|
d40b3eafb5 |
memcg, oom: don't require __GFP_FS when invoking memcg OOM killer
commit f9c645621a28e37813a1de96d9cbd89cde94a1e4 upstream. Masoud Sharbiani noticed that commit |
||
Ralph Campbell
|
2e7e7c8f94 |
mm/migrate.c: initialize pud_entry in migrate_vma()
[ Upstream commit 7b358c6f12dc82364f6d317f8c8f1d794adbc3f5 ]
When CONFIG_MIGRATE_VMA_HELPER is enabled, migrate_vma() calls
migrate_vma_collect() which initializes a struct mm_walk but didn't
initialize mm_walk.pud_entry. (Found by code inspection) Use a C
structure initialization to make sure it is set to NULL.
Link: http://lkml.kernel.org/r/20190719233225.12243-1-rcampbell@nvidia.com
Fixes:
|
||
Andrew Morton
|
5dd2db1ab0 |
mm/zsmalloc.c: fix build when CONFIG_COMPACTION=n
commit 441e254cd40dc03beec3c650ce6ce6074bc6517f upstream. Fixes: 701d678599d0c1 ("mm/zsmalloc.c: fix race condition in zs_destroy_pool") Link: http://lkml.kernel.org/r/201908251039.5oSbEEUT%25lkp@intel.com Reported-by: kbuild test robot <lkp@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Henry Burns <henrywolfeburns@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Adams <jwadams@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Henry Burns
|
ed11e60033 |
mm/zsmalloc.c: fix race condition in zs_destroy_pool
commit 701d678599d0c1623aaf4139c03eea260a75b027 upstream.
In zs_destroy_pool() we call flush_work(&pool->free_work). However, we
have no guarantee that migration isn't happening in the background at
that time.
Since migration can't directly free pages, it relies on free_work being
scheduled to free the pages. But there's nothing preventing an
in-progress migrate from queuing the work *after*
zs_unregister_migration() has called flush_work(). Which would mean
pages still pointing at the inode when we free it.
Since we know at destroy time all objects should be free, no new
migrations can come in (since zs_page_isolate() fails for fully-free
zspages). This means it is sufficient to track a "# isolated zspages"
count by class, and have the destroy logic ensure all such pages have
drained before proceeding. Keeping that state under the class spinlock
keeps the logic straightforward.
In this case a memory leak could lead to an eventual crash if compaction
hits the leaked page. This crash would only occur if people are
changing their zswap backend at runtime (which eventually starts
destruction).
Link: http://lkml.kernel.org/r/20190809181751.219326-2-henryburns@google.com
Fixes:
|
||
Henry Burns
|
b30a2f608e |
mm/zsmalloc.c: migration can leave pages in ZS_EMPTY indefinitely
commit 1a87aa03597efa9641e92875b883c94c7f872ccb upstream.
In zs_page_migrate() we call putback_zspage() after we have finished
migrating all pages in this zspage. However, the return value is
ignored. If a zs_free() races in between zs_page_isolate() and
zs_page_migrate(), freeing the last object in the zspage,
putback_zspage() will leave the page in ZS_EMPTY for potentially an
unbounded amount of time.
To fix this, we need to do the same thing as zs_page_putback() does:
schedule free_work to occur.
To avoid duplicated code, move the sequence to a new
putback_zspage_deferred() function which both zs_page_migrate() and
zs_page_putback() call.
Link: http://lkml.kernel.org/r/20190809181751.219326-1-henryburns@google.com
Fixes:
|
||
Vlastimil Babka
|
db67ac0316 |
mm, page_owner: handle THP splits correctly
commit f7da677bc6e72033f0981b9d58b5c5d409fa641e upstream.
THP splitting path is missing the split_page_owner() call that
split_page() has.
As a result, split THP pages are wrongly reported in the page_owner file
as order-9 pages. Furthermore when the former head page is freed, the
remaining former tail pages are not listed in the page_owner file at
all. This patch fixes that by adding the split_page_owner() call into
__split_huge_page().
Link: http://lkml.kernel.org/r/20190820131828.22684-2-vbabka@suse.cz
Fixes:
|
||
Yang Shi
|
01d8d08f4c |
Revert "kmemleak: allow to coexist with fault injection"
[ Upstream commit df9576def004d2cd5beedc00cb6e8901427634b9 ] When running ltp's oom test with kmemleak enabled, the below warning was triggerred since kernel detects __GFP_NOFAIL & ~__GFP_DIRECT_RECLAIM is passed in: WARNING: CPU: 105 PID: 2138 at mm/page_alloc.c:4608 __alloc_pages_nodemask+0x1c31/0x1d50 Modules linked in: loop dax_pmem dax_pmem_core ip_tables x_tables xfs virtio_net net_failover virtio_blk failover ata_generic virtio_pci virtio_ring virtio libata CPU: 105 PID: 2138 Comm: oom01 Not tainted 5.2.0-next-20190710+ #7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.10.2-0-g5f4c7b1-prebuilt.qemu-project.org 04/01/2014 RIP: 0010:__alloc_pages_nodemask+0x1c31/0x1d50 ... kmemleak_alloc+0x4e/0xb0 kmem_cache_alloc+0x2a7/0x3e0 mempool_alloc_slab+0x2d/0x40 mempool_alloc+0x118/0x2b0 bio_alloc_bioset+0x19d/0x350 get_swap_bio+0x80/0x230 __swap_writepage+0x5ff/0xb20 The mempool_alloc_slab() clears __GFP_DIRECT_RECLAIM, however kmemleak has __GFP_NOFAIL set all the time due to |
||
Isaac J. Manjarres
|
056368fc3e |
mm/usercopy: use memory range to be accessed for wraparound check
commit 951531691c4bcaa59f56a316e018bc2ff1ddf855 upstream.
Currently, when checking to see if accessing n bytes starting at address
"ptr" will cause a wraparound in the memory addresses, the check in
check_bogus_address() adds an extra byte, which is incorrect, as the
range of addresses that will be accessed is [ptr, ptr + (n - 1)].
This can lead to incorrectly detecting a wraparound in the memory
address, when trying to read 4 KB from memory that is mapped to the the
last possible page in the virtual address space, when in fact, accessing
that range of memory would not cause a wraparound to occur.
Use the memory range that will actually be accessed when considering if
accessing a certain amount of bytes will cause the memory address to
wrap around.
Link: http://lkml.kernel.org/r/1564509253-23287-1-git-send-email-isaacm@codeaurora.org
Fixes:
|
||
Miles Chen
|
c8282f1b56 |
mm/memcontrol.c: fix use after free in mem_cgroup_iter()
commit 54a83d6bcbf8f4700013766b974bf9190d40b689 upstream.
This patch is sent to report an use after free in mem_cgroup_iter()
after merging commit be2657752e9e ("mm: memcg: fix use after free in
mem_cgroup_iter()").
I work with android kernel tree (4.9 & 4.14), and commit be2657752e9e
("mm: memcg: fix use after free in mem_cgroup_iter()") has been merged
to the trees. However, I can still observe use after free issues
addressed in the commit be2657752e9e. (on low-end devices, a few times
this month)
backtrace:
css_tryget <- crash here
mem_cgroup_iter
shrink_node
shrink_zones
do_try_to_free_pages
try_to_free_pages
__perform_reclaim
__alloc_pages_direct_reclaim
__alloc_pages_slowpath
__alloc_pages_nodemask
To debug, I poisoned mem_cgroup before freeing it:
static void __mem_cgroup_free(struct mem_cgroup *memcg)
for_each_node(node)
free_mem_cgroup_per_node_info(memcg, node);
free_percpu(memcg->stat);
+ /* poison memcg before freeing it */
+ memset(memcg, 0x78, sizeof(struct mem_cgroup));
kfree(memcg);
}
The coredump shows the position=0xdbbc2a00 is freed.
(gdb) p/x ((struct mem_cgroup_per_node *)0xe5009e00)->iter[8]
$13 = {position = 0xdbbc2a00, generation = 0x2efd}
0xdbbc2a00: 0xdbbc2e00 0x00000000 0xdbbc2800 0x00000100
0xdbbc2a10: 0x00000200 0x78787878 0x00026218 0x00000000
0xdbbc2a20: 0xdcad6000 0x00000001 0x78787800 0x00000000
0xdbbc2a30: 0x78780000 0x00000000 0x0068fb84 0x78787878
0xdbbc2a40: 0x78787878 0x78787878 0x78787878 0xe3fa5cc0
0xdbbc2a50: 0x78787878 0x78787878 0x00000000 0x00000000
0xdbbc2a60: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2a70: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2a80: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2a90: 0x00000001 0x00000000 0x00000000 0x00100000
0xdbbc2aa0: 0x00000001 0xdbbc2ac8 0x00000000 0x00000000
0xdbbc2ab0: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2ac0: 0x00000000 0x00000000 0xe5b02618 0x00001000
0xdbbc2ad0: 0x00000000 0x78787878 0x78787878 0x78787878
0xdbbc2ae0: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2af0: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b00: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b10: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b20: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b30: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b40: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b50: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b60: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b70: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b80: 0x78787878 0x78787878 0x00000000 0x78787878
0xdbbc2b90: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2ba0: 0x78787878 0x78787878 0x78787878 0x78787878
In the reclaim path, try_to_free_pages() does not setup
sc.target_mem_cgroup and sc is passed to do_try_to_free_pages(), ...,
shrink_node().
In mem_cgroup_iter(), root is set to root_mem_cgroup because
sc->target_mem_cgroup is NULL. It is possible to assign a memcg to
root_mem_cgroup.nodeinfo.iter in mem_cgroup_iter().
try_to_free_pages
struct scan_control sc = {...}, target_mem_cgroup is 0x0;
do_try_to_free_pages
shrink_zones
shrink_node
mem_cgroup *root = sc->target_mem_cgroup;
memcg = mem_cgroup_iter(root, NULL, &reclaim);
mem_cgroup_iter()
if (!root)
root = root_mem_cgroup;
...
css = css_next_descendant_pre(css, &root->css);
memcg = mem_cgroup_from_css(css);
cmpxchg(&iter->position, pos, memcg);
My device uses memcg non-hierarchical mode. When we release a memcg:
invalidate_reclaim_iterators() reaches only dead_memcg and its parents.
If non-hierarchical mode is used, invalidate_reclaim_iterators() never
reaches root_mem_cgroup.
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
struct mem_cgroup *memcg = dead_memcg;
for (; memcg; memcg = parent_mem_cgroup(memcg)
...
}
So the use after free scenario looks like:
CPU1 CPU2
try_to_free_pages
do_try_to_free_pages
shrink_zones
shrink_node
mem_cgroup_iter()
if (!root)
root = root_mem_cgroup;
...
css = css_next_descendant_pre(css, &root->css);
memcg = mem_cgroup_from_css(css);
cmpxchg(&iter->position, pos, memcg);
invalidate_reclaim_iterators(memcg);
...
__mem_cgroup_free()
kfree(memcg);
try_to_free_pages
do_try_to_free_pages
shrink_zones
shrink_node
mem_cgroup_iter()
if (!root)
root = root_mem_cgroup;
...
mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
iter = &mz->iter[reclaim->priority];
pos = READ_ONCE(iter->position);
css_tryget(&pos->css) <- use after free
To avoid this, we should also invalidate root_mem_cgroup.nodeinfo.iter
in invalidate_reclaim_iterators().
[cai@lca.pw: fix -Wparentheses compilation warning]
Link: http://lkml.kernel.org/r/1564580753-17531-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20190730015729.4406-1-miles.chen@mediatek.com
Fixes:
|
||
Yang Shi
|
3c0cb90e92 |
mm: mempolicy: handle vma with unmovable pages mapped correctly in mbind
commit a53190a4aaa36494f4d7209fd1fcc6f2ee08e0e0 upstream.
When running syzkaller internally, we ran into the below bug on 4.9.x
kernel:
kernel BUG at mm/huge_memory.c:2124!
invalid opcode: 0000 [#1] SMP KASAN
CPU: 0 PID: 1518 Comm: syz-executor107 Not tainted 4.9.168+ #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.5.1 01/01/2011
task: ffff880067b34900 task.stack: ffff880068998000
RIP: split_huge_page_to_list+0x8fb/0x1030 mm/huge_memory.c:2124
Call Trace:
split_huge_page include/linux/huge_mm.h:100 [inline]
queue_pages_pte_range+0x7e1/0x1480 mm/mempolicy.c:538
walk_pmd_range mm/pagewalk.c:50 [inline]
walk_pud_range mm/pagewalk.c:90 [inline]
walk_pgd_range mm/pagewalk.c:116 [inline]
__walk_page_range+0x44a/0xdb0 mm/pagewalk.c:208
walk_page_range+0x154/0x370 mm/pagewalk.c:285
queue_pages_range+0x115/0x150 mm/mempolicy.c:694
do_mbind mm/mempolicy.c:1241 [inline]
SYSC_mbind+0x3c3/0x1030 mm/mempolicy.c:1370
SyS_mbind+0x46/0x60 mm/mempolicy.c:1352
do_syscall_64+0x1d2/0x600 arch/x86/entry/common.c:282
entry_SYSCALL_64_after_swapgs+0x5d/0xdb
Code: c7 80 1c 02 00 e8 26 0a 76 01 <0f> 0b 48 c7 c7 40 46 45 84 e8 4c
RIP [<ffffffff81895d6b>] split_huge_page_to_list+0x8fb/0x1030 mm/huge_memory.c:2124
RSP <ffff88006899f980>
with the below test:
uint64_t r[1] = {0xffffffffffffffff};
int main(void)
{
syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
intptr_t res = 0;
res = syscall(__NR_socket, 0x11, 3, 0x300);
if (res != -1)
r[0] = res;
*(uint32_t*)0x20000040 = 0x10000;
*(uint32_t*)0x20000044 = 1;
*(uint32_t*)0x20000048 = 0xc520;
*(uint32_t*)0x2000004c = 1;
syscall(__NR_setsockopt, r[0], 0x107, 0xd, 0x20000040, 0x10);
syscall(__NR_mmap, 0x20fed000, 0x10000, 0, 0x8811, r[0], 0);
*(uint64_t*)0x20000340 = 2;
syscall(__NR_mbind, 0x20ff9000, 0x4000, 0x4002, 0x20000340, 0x45d4, 3);
return 0;
}
Actually the test does:
mmap(0x20000000, 16777216, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000000
socket(AF_PACKET, SOCK_RAW, 768) = 3
setsockopt(3, SOL_PACKET, PACKET_TX_RING, {block_size=65536, block_nr=1, frame_size=50464, frame_nr=1}, 16) = 0
mmap(0x20fed000, 65536, PROT_NONE, MAP_SHARED|MAP_FIXED|MAP_POPULATE|MAP_DENYWRITE, 3, 0) = 0x20fed000
mbind(..., MPOL_MF_STRICT|MPOL_MF_MOVE) = 0
The setsockopt() would allocate compound pages (16 pages in this test)
for packet tx ring, then the mmap() would call packet_mmap() to map the
pages into the user address space specified by the mmap() call.
When calling mbind(), it would scan the vma to queue the pages for
migration to the new node. It would split any huge page since 4.9
doesn't support THP migration, however, the packet tx ring compound
pages are not THP and even not movable. So, the above bug is triggered.
However, the later kernel is not hit by this issue due to commit
|
||
Yang Shi
|
cd825d8714 |
mm: mempolicy: make the behavior consistent when MPOL_MF_MOVE* and MPOL_MF_STRICT were specified
commit d883544515aae54842c21730b880172e7894fde9 upstream. When both MPOL_MF_MOVE* and MPOL_MF_STRICT was specified, mbind() should try best to migrate misplaced pages, if some of the pages could not be migrated, then return -EIO. There are three different sub-cases: 1. vma is not migratable 2. vma is migratable, but there are unmovable pages 3. vma is migratable, pages are movable, but migrate_pages() fails If #1 happens, kernel would just abort immediately, then return -EIO, after a7f40cfe3b7a ("mm: mempolicy: make mbind() return -EIO when MPOL_MF_STRICT is specified"). If #3 happens, kernel would set policy and migrate pages with best-effort, but won't rollback the migrated pages and reset the policy back. Before that commit, they behaves in the same way. It'd better to keep their behavior consistent. But, rolling back the migrated pages and resetting the policy back sounds not feasible, so just make #1 behave as same as #3. Userspace will know that not everything was successfully migrated (via -EIO), and can take whatever steps it deems necessary - attempt rollback, determine which exact page(s) are violating the policy, etc. Make queue_pages_range() return 1 to indicate there are unmovable pages or vma is not migratable. The #2 is not handled correctly in the current kernel, the following patch will fix it. [yang.shi@linux.alibaba.com: fix review comments from Vlastimil] Link: http://lkml.kernel.org/r/1563556862-54056-2-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1561162809-59140-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Ralph Campbell
|
f0fed8283d |
mm/hmm: fix bad subpage pointer in try_to_unmap_one
commit 1de13ee59225dfc98d483f8cce7d83f97c0b31de upstream.
When migrating an anonymous private page to a ZONE_DEVICE private page,
the source page->mapping and page->index fields are copied to the
destination ZONE_DEVICE struct page and the page_mapcount() is
increased. This is so rmap_walk() can be used to unmap and migrate the
page back to system memory.
However, try_to_unmap_one() computes the subpage pointer from a swap pte
which computes an invalid page pointer and a kernel panic results such
as:
BUG: unable to handle page fault for address: ffffea1fffffffc8
Currently, only single pages can be migrated to device private memory so
no subpage computation is needed and it can be set to "page".
[rcampbell@nvidia.com: add comment]
Link: http://lkml.kernel.org/r/20190724232700.23327-4-rcampbell@nvidia.com
Link: http://lkml.kernel.org/r/20190719192955.30462-4-rcampbell@nvidia.com
Fixes:
|
||
Joerg Roedel
|
46b306f3cd |
mm/vmalloc: Sync unmappings in __purge_vmap_area_lazy()
commit 3f8fd02b1bf1d7ba964485a56f2f4b53ae88c167 upstream.
On x86-32 with PTI enabled, parts of the kernel page-tables are not shared
between processes. This can cause mappings in the vmalloc/ioremap area to
persist in some page-tables after the region is unmapped and released.
When the region is re-used the processes with the old mappings do not fault
in the new mappings but still access the old ones.
This causes undefined behavior, in reality often data corruption, kernel
oopses and panics and even spontaneous reboots.
Fix this problem by activly syncing unmaps in the vmalloc/ioremap area to
all page-tables in the system before the regions can be re-used.
References: https://bugzilla.suse.com/show_bug.cgi?id=1118689
Fixes:
|
||
Yang Shi
|
beb0cc781b |
mm: vmscan: check if mem cgroup is disabled or not before calling memcg slab shrinker
commit fa1e512fac717f34e7c12d7a384c46e90a647392 upstream. Shakeel Butt reported premature oom on kernel with "cgroup_disable=memory" since mem_cgroup_is_root() returns false even though memcg is actually NULL. The drop_caches is also broken. It is because commit |
||
Doug Berger
|
439c79ed77 |
mm/cma.c: fail if fixed declaration can't be honored
[ Upstream commit c633324e311243586675e732249339685e5d6faa ]
The description of cma_declare_contiguous() indicates that if the
'fixed' argument is true the reserved contiguous area must be exactly at
the address of the 'base' argument.
However, the function currently allows the 'base', 'size', and 'limit'
arguments to be silently adjusted to meet alignment constraints. This
commit enforces the documented behavior through explicit checks that
return an error if the region does not fit within a specified region.
Link: http://lkml.kernel.org/r/1561422051-16142-1-git-send-email-opendmb@gmail.com
Fixes:
|
||
Konstantin Khlebnikov
|
b07687243d |
mm: use down_read_killable for locking mmap_sem in access_remote_vm
[ Upstream commit 1e426fe28261b03f297992e89da3320b42816f4e ] This function is used by ptrace and proc files like /proc/pid/cmdline and /proc/pid/environ. Access_remote_vm never returns error codes, all errors are ignored and only size of successfully read data is returned. So, if current task was killed we'll simply return 0 (bytes read). Mmap_sem could be locked for a long time or forever if something goes wrong. Using a killable lock permits cleanup of stuck tasks and simplifies investigation. Link: http://lkml.kernel.org/r/156007494202.3335.16782303099589302087.stgit@buzz Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: Michal Koutný <mkoutny@suse.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |