Commit graph

171 commits

Author SHA1 Message Date
Yang Yingliang
38de4308c5 cgroup: add missing skcd->no_refcnt check in cgroup_sk_clone()
Add skcd->no_refcnt check which is missed when backporting
ad0f75e5f57c ("cgroup: fix cgroup_sk_alloc() for sk_clone_lock()").

This patch is needed in stable-4.9, stable-4.14 and stable-4.19.

Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-08-19 08:14:47 +02:00
Cong Wang
0505cc4c90 cgroup: fix cgroup_sk_alloc() for sk_clone_lock()
[ Upstream commit ad0f75e5f57ccbceec13274e1e242f2b5a6397ed ]

When we clone a socket in sk_clone_lock(), its sk_cgrp_data is
copied, so the cgroup refcnt must be taken too. And, unlike the
sk_alloc() path, sock_update_netprioidx() is not called here.
Therefore, it is safe and necessary to grab the cgroup refcnt
even when cgroup_sk_alloc is disabled.

sk_clone_lock() is in BH context anyway, the in_interrupt()
would terminate this function if called there. And for sk_alloc()
skcd->val is always zero. So it's safe to factor out the code
to make it more readable.

The global variable 'cgroup_sk_alloc_disabled' is used to determine
whether to take these reference counts. It is impossible to make
the reference counting correct unless we save this bit of information
in skcd->val. So, add a new bit there to record whether the socket
has already taken the reference counts. This obviously relies on
kmalloc() to align cgroup pointers to at least 4 bytes,
ARCH_KMALLOC_MINALIGN is certainly larger than that.

This bug seems to be introduced since the beginning, commit
d979a39d72 ("cgroup: duplicate cgroup reference when cloning sockets")
tried to fix it but not compeletely. It seems not easy to trigger until
the recent commit 090e28b229af
("netprio_cgroup: Fix unlimited memory leak of v2 cgroups") was merged.

Fixes: bd1060a1d6 ("sock, cgroup: add sock->sk_cgroup")
Reported-by: Cameron Berkenpas <cam@neo-zeon.de>
Reported-by: Peter Geis <pgwipeout@gmail.com>
Reported-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reported-by: Daniël Sonck <dsonck92@gmail.com>
Reported-by: Zhang Qiang <qiang.zhang@windriver.com>
Tested-by: Cameron Berkenpas <cam@neo-zeon.de>
Tested-by: Peter Geis <pgwipeout@gmail.com>
Tested-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Zefan Li <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-07-22 09:32:00 +02:00
Tejun Heo
7cbf0e5cea Revert "cgroup: Add memory barriers to plug cgroup_rstat_updated() race window"
[ Upstream commit d8ef4b38cb69d907f9b0e889c44d05fc0f890977 ]

This reverts commit 9a9e97b2f1 ("cgroup: Add memory barriers to plug
cgroup_rstat_updated() race window").

The commit was added in anticipation of memcg rstat conversion which needed
synchronous accounting for the event counters (e.g. oom kill count). However,
the conversion didn't get merged due to percpu memory overhead concern which
couldn't be addressed at the time.

Unfortunately, the patch's addition of smp_mb() to cgroup_rstat_updated()
meant that every scheduling event now had to go through an additional full
barrier and Mel Gorman noticed it as 1% regression in netperf UDP_STREAM test.

There's no need to have this barrier in tree now and even if we need
synchronous accounting in the future, the right thing to do is separating that
out to a separate function so that hot paths which don't care about
synchronous behavior don't have to pay the overhead of the full barrier. Let's
revert.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/20200409154413.GK3818@techsingularity.net
Cc: v4.18+
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-06-07 13:17:53 +02:00
Tycho Andersen
5a8a69435d cgroup1: don't call release_agent when it is ""
[ Upstream commit 2e5383d7904e60529136727e49629a82058a5607 ]

Older (and maybe current) versions of systemd set release_agent to "" when
shutting down, but do not set notify_on_release to 0.

Since 64e90a8acb ("Introduce STATIC_USERMODEHELPER to mediate
call_usermodehelper()"), we filter out such calls when the user mode helper
path is "". However, when used in conjunction with an actual (i.e. non "")
STATIC_USERMODEHELPER, the path is never "", so the real usermode helper
will be called with argv[0] == "".

Let's avoid this by not invoking the release_agent when it is "".

Signed-off-by: Tycho Andersen <tycho@tycho.ws>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-02 15:28:14 +02:00
Vasily Averin
967e97461e cgroup-v1: cgroup_pidlist_next should update position index
[ Upstream commit db8dd9697238be70a6b4f9d0284cd89f59c0e070 ]

if seq_file .next fuction does not change position index,
read after some lseek can generate unexpected output.

 # mount | grep cgroup
 # dd if=/mnt/cgroup.procs bs=1  # normal output
...
1294
1295
1296
1304
1382
584+0 records in
584+0 records out
584 bytes copied

dd: /mnt/cgroup.procs: cannot skip to specified offset
83  <<< generates end of last line
1383  <<< ... and whole last line once again
0+1 records in
0+1 records out
8 bytes copied

dd: /mnt/cgroup.procs: cannot skip to specified offset
1386  <<< generates last line anyway
0+1 records in
0+1 records out
5 bytes copied

https://bugzilla.kernel.org/show_bug.cgi?id=206283
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-02 15:28:14 +02:00
Michal Koutný
ab3e3b23d8 cgroup: Iterate tasks that did not finish do_exit()
commit 9c974c77246460fa6a92c18554c3311c8c83c160 upstream.

PF_EXITING is set earlier than actual removal from css_set when a task
is exitting. This can confuse cgroup.procs readers who see no PF_EXITING
tasks, however, rmdir is checking against css_set membership so it can
transitionally fail with EBUSY.

Fix this by listing tasks that weren't unlinked from css_set active
lists.
It may happen that other users of the task iterator (without
CSS_TASK_ITER_PROCS) spot a PF_EXITING task before cgroup_exit(). This
is equal to the state before commit c03cd7738a83 ("cgroup: Include dying
leaders with live threads in PROCS iterations") but it may be reviewed
later.

Reported-by: Suren Baghdasaryan <surenb@google.com>
Fixes: c03cd7738a83 ("cgroup: Include dying leaders with live threads in PROCS iterations")
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-18 07:14:19 +01:00
Vasily Averin
ff79a4a75c cgroup: cgroup_procs_next should increase position index
commit 2d4ecb030dcc90fb725ecbfc82ce5d6c37906e0e upstream.

If seq_file .next fuction does not change position index,
read after some lseek can generate unexpected output:

1) dd bs=1 skip output of each 2nd elements
$ dd if=/sys/fs/cgroup/cgroup.procs bs=8 count=1
2
3
4
5
1+0 records in
1+0 records out
8 bytes copied, 0,000267297 s, 29,9 kB/s
[test@localhost ~]$ dd if=/sys/fs/cgroup/cgroup.procs bs=1 count=8
2
4 <<< NB! 3 was skipped
6 <<<    ... and 5 too
8 <<<    ... and 7
8+0 records in
8+0 records out
8 bytes copied, 5,2123e-05 s, 153 kB/s

 This happen because __cgroup_procs_start() makes an extra
 extra cgroup_procs_next() call

2) read after lseek beyond end of file generates whole last line.
3) read after lseek into middle of last line generates
expected rest of last line and unexpected whole line once again.

Additionally patch removes an extra position index changes in
__cgroup_procs_start()

Cc: stable@vger.kernel.org
https://bugzilla.kernel.org/show_bug.cgi?id=206283
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-18 07:14:19 +01:00
Shakeel Butt
941464dcbc cgroup: memcg: net: do not associate sock with unrelated cgroup
[ Upstream commit e876ecc67db80dfdb8e237f71e5b43bb88ae549c ]

We are testing network memory accounting in our setup and noticed
inconsistent network memory usage and often unrelated cgroups network
usage correlates with testing workload. On further inspection, it
seems like mem_cgroup_sk_alloc() and cgroup_sk_alloc() are broken in
irq context specially for cgroup v1.

mem_cgroup_sk_alloc() and cgroup_sk_alloc() can be called in irq context
and kind of assumes that this can only happen from sk_clone_lock()
and the source sock object has already associated cgroup. However in
cgroup v1, where network memory accounting is opt-in, the source sock
can be unassociated with any cgroup and the new cloned sock can get
associated with unrelated interrupted cgroup.

Cgroup v2 can also suffer if the source sock object was created by
process in the root cgroup or if sk_alloc() is called in irq context.
The fix is to just do nothing in interrupt.

WARNING: Please note that about half of the TCP sockets are allocated
from the IRQ context, so, memory used by such sockets will not be
accouted by the memcg.

The stack trace of mem_cgroup_sk_alloc() from IRQ-context:

CPU: 70 PID: 12720 Comm: ssh Tainted:  5.6.0-smp-DEV #1
Hardware name: ...
Call Trace:
 <IRQ>
 dump_stack+0x57/0x75
 mem_cgroup_sk_alloc+0xe9/0xf0
 sk_clone_lock+0x2a7/0x420
 inet_csk_clone_lock+0x1b/0x110
 tcp_create_openreq_child+0x23/0x3b0
 tcp_v6_syn_recv_sock+0x88/0x730
 tcp_check_req+0x429/0x560
 tcp_v6_rcv+0x72d/0xa40
 ip6_protocol_deliver_rcu+0xc9/0x400
 ip6_input+0x44/0xd0
 ? ip6_protocol_deliver_rcu+0x400/0x400
 ip6_rcv_finish+0x71/0x80
 ipv6_rcv+0x5b/0xe0
 ? ip6_sublist_rcv+0x2e0/0x2e0
 process_backlog+0x108/0x1e0
 net_rx_action+0x26b/0x460
 __do_softirq+0x104/0x2a6
 do_softirq_own_stack+0x2a/0x40
 </IRQ>
 do_softirq.part.19+0x40/0x50
 __local_bh_enable_ip+0x51/0x60
 ip6_finish_output2+0x23d/0x520
 ? ip6table_mangle_hook+0x55/0x160
 __ip6_finish_output+0xa1/0x100
 ip6_finish_output+0x30/0xd0
 ip6_output+0x73/0x120
 ? __ip6_finish_output+0x100/0x100
 ip6_xmit+0x2e3/0x600
 ? ipv6_anycast_cleanup+0x50/0x50
 ? inet6_csk_route_socket+0x136/0x1e0
 ? skb_free_head+0x1e/0x30
 inet6_csk_xmit+0x95/0xf0
 __tcp_transmit_skb+0x5b4/0xb20
 __tcp_send_ack.part.60+0xa3/0x110
 tcp_send_ack+0x1d/0x20
 tcp_rcv_state_process+0xe64/0xe80
 ? tcp_v6_connect+0x5d1/0x5f0
 tcp_v6_do_rcv+0x1b1/0x3f0
 ? tcp_v6_do_rcv+0x1b1/0x3f0
 __release_sock+0x7f/0xd0
 release_sock+0x30/0xa0
 __inet_stream_connect+0x1c3/0x3b0
 ? prepare_to_wait+0xb0/0xb0
 inet_stream_connect+0x3b/0x60
 __sys_connect+0x101/0x120
 ? __sys_getsockopt+0x11b/0x140
 __x64_sys_connect+0x1a/0x20
 do_syscall_64+0x51/0x200
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

The stack trace of mem_cgroup_sk_alloc() from IRQ-context:
Fixes: 2d75807383 ("mm: memcontrol: consolidate cgroup socket tracking")
Fixes: d979a39d72 ("cgroup: duplicate cgroup reference when cloning sockets")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-18 07:14:14 +01:00
Michal Koutný
6d26630912 cgroup: Prevent double killing of css when enabling threaded cgroup
commit 3bc0bb36fa30e95ca829e9cf480e1ef7f7638333 upstream.

The test_cgcore_no_internal_process_constraint_on_threads selftest when
running with subsystem controlling noise triggers two warnings:

> [  597.443115] WARNING: CPU: 1 PID: 28167 at kernel/cgroup/cgroup.c:3131 cgroup_apply_control_enable+0xe0/0x3f0
> [  597.443413] WARNING: CPU: 1 PID: 28167 at kernel/cgroup/cgroup.c:3177 cgroup_apply_control_disable+0xa6/0x160

Both stem from a call to cgroup_type_write. The first warning was also
triggered by syzkaller.

When we're switching cgroup to threaded mode shortly after a subsystem
was disabled on it, we can see the respective subsystem css dying there.

The warning in cgroup_apply_control_enable is harmless in this case
since we're not adding new subsys anyway.
The warning in cgroup_apply_control_disable indicates an attempt to kill
css of recently disabled subsystem repeatedly.

The commit prevents these situations by making cgroup_type_write wait
for all dying csses to go away before re-applying subtree controls.
When at it, the locations of WARN_ON_ONCE calls are moved so that
warning is triggered only when we are about to misuse the dying css.

Reported-by: syzbot+5493b2a54d31d6aea629@syzkaller.appspotmail.com
Reported-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-05 14:43:39 +00:00
Aleksa Sarai
a1de70aa86 cgroup: pids: use atomic64_t for pids->limit
commit a713af394cf382a30dd28a1015cbe572f1b9ca75 upstream.

Because pids->limit can be changed concurrently (but we don't want to
take a lock because it would be needlessly expensive), use atomic64_ts
instead.

Fixes: commit 49b786ea14 ("cgroup: implement the PIDs subsystem")
Cc: stable@vger.kernel.org # v4.3+
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-17 20:34:56 +01:00
Tejun Heo
ebda41dd17 cgroup: Fix css_task_iter_advance_css_set() cset skip condition
commit c596687a008b579c503afb7a64fcacc7270fae9e upstream.

While adding handling for dying task group leaders c03cd7738a83
("cgroup: Include dying leaders with live threads in PROCS
iterations") added an inverted cset skip condition to
css_task_iter_advance_css_set().  It should skip cset if it's
completely empty but was incorrectly testing for the inverse condition
for the dying_tasks list.  Fix it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: c03cd7738a83 ("cgroup: Include dying leaders with live threads in PROCS iterations")
Reported-by: syzbot+d4bba5ccd4f9a2a68681@syzkaller.appspotmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-09 17:52:35 +02:00
Tejun Heo
0a9abd2778 cgroup: css_task_iter_skip()'d iterators must be advanced before accessed
commit cee0c33c546a93957a52ae9ab6bebadbee765ec5 upstream.

b636fd38dc40 ("cgroup: Implement css_task_iter_skip()") introduced
css_task_iter_skip() which is used to fix task iterations skipping
dying threadgroup leaders with live threads.  Skipping is implemented
as a subportion of full advancing but css_task_iter_next() forgot to
fully advance a skipped iterator before determining the next task to
visit causing it to return invalid task pointers.

Fix it by making css_task_iter_next() fully advance the iterator if it
has been skipped since the previous iteration.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: syzbot
Link: http://lkml.kernel.org/r/00000000000097025d058a7fd785@google.com
Fixes: b636fd38dc40 ("cgroup: Implement css_task_iter_skip()")
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-09 17:52:34 +02:00
Tejun Heo
4340d175b8 cgroup: Include dying leaders with live threads in PROCS iterations
commit c03cd7738a83b13739f00546166969342c8ff014 upstream.

CSS_TASK_ITER_PROCS currently iterates live group leaders; however,
this means that a process with dying leader and live threads will be
skipped.  IOW, cgroup.procs might be empty while cgroup.threads isn't,
which is confusing to say the least.

Fix it by making cset track dying tasks and include dying leaders with
live threads in PROCS iteration.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Topi Miettinen <toiwoton@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-09 17:52:34 +02:00
Tejun Heo
370b9e6399 cgroup: Implement css_task_iter_skip()
commit b636fd38dc40113f853337a7d2a6885ad23b8811 upstream.

When a task is moved out of a cset, task iterators pointing to the
task are advanced using the normal css_task_iter_advance() call.  This
is fine but we'll be tracking dying tasks on csets and thus moving
tasks from cset->tasks to (to be added) cset->dying_tasks.  When we
remove a task from cset->tasks, if we advance the iterators, they may
move over to the next cset before we had the chance to add the task
back on the dying list, which can allow the task to escape iteration.

This patch separates out skipping from advancing.  Skipping only moves
the affected iterators to the next pointer rather than fully advancing
it and the following advancing will recognize that the cursor has
already been moved forward and do the rest of advancing.  This ensures
that when a task moves from one list to another in its cset, as long
as it moves in the right direction, it's always visible to iteration.

This doesn't cause any visible behavior changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-09 17:52:34 +02:00
Joel Savitz
b7747ecb82 cpuset: restore sanity to cpuset_cpus_allowed_fallback()
[ Upstream commit d477f8c202d1f0d4791ab1263ca7657bbe5cf79e ]

In the case that a process is constrained by taskset(1) (i.e.
sched_setaffinity(2)) to a subset of available cpus, and all of those are
subsequently offlined, the scheduler will set tsk->cpus_allowed to
the current value of task_cs(tsk)->effective_cpus.

This is done via a call to do_set_cpus_allowed() in the context of
cpuset_cpus_allowed_fallback() made by the scheduler when this case is
detected. This is the only call made to cpuset_cpus_allowed_fallback()
in the latest mainline kernel.

However, this is not sane behavior.

I will demonstrate this on a system running the latest upstream kernel
with the following initial configuration:

	# grep -i cpu /proc/$$/status
	Cpus_allowed:	ffffffff,fffffff
	Cpus_allowed_list:	0-63

(Where cpus 32-63 are provided via smt.)

If we limit our current shell process to cpu2 only and then offline it
and reonline it:

	# taskset -p 4 $$
	pid 2272's current affinity mask: ffffffffffffffff
	pid 2272's new affinity mask: 4

	# echo off > /sys/devices/system/cpu/cpu2/online
	# dmesg | tail -3
	[ 2195.866089] process 2272 (bash) no longer affine to cpu2
	[ 2195.872700] IRQ 114: no longer affine to CPU2
	[ 2195.879128] smpboot: CPU 2 is now offline

	# echo on > /sys/devices/system/cpu/cpu2/online
	# dmesg | tail -1
	[ 2617.043572] smpboot: Booting Node 0 Processor 2 APIC 0x4

We see that our current process now has an affinity mask containing
every cpu available on the system _except_ the one we originally
constrained it to:

	# grep -i cpu /proc/$$/status
	Cpus_allowed:   ffffffff,fffffffb
	Cpus_allowed_list:      0-1,3-63

This is not sane behavior, as the scheduler can now not only place the
process on previously forbidden cpus, it can't even schedule it on
the cpu it was originally constrained to!

Other cases result in even more exotic affinity masks. Take for instance
a process with an affinity mask containing only cpus provided by smt at
the moment that smt is toggled, in a configuration such as the following:

	# taskset -p f000000000 $$
	# grep -i cpu /proc/$$/status
	Cpus_allowed:	000000f0,00000000
	Cpus_allowed_list:	36-39

A double toggle of smt results in the following behavior:

	# echo off > /sys/devices/system/cpu/smt/control
	# echo on > /sys/devices/system/cpu/smt/control
	# grep -i cpus /proc/$$/status
	Cpus_allowed:	ffffff00,ffffffff
	Cpus_allowed_list:	0-31,40-63

This is even less sane than the previous case, as the new affinity mask
excludes all smt-provided cpus with ids less than those that were
previously in the affinity mask, as well as those that were actually in
the mask.

With this patch applied, both of these cases end in the following state:

	# grep -i cpu /proc/$$/status
	Cpus_allowed:	ffffffff,ffffffff
	Cpus_allowed_list:	0-63

The original policy is discarded. Though not ideal, it is the simplest way
to restore sanity to this fallback case without reinventing the cpuset
wheel that rolls down the kernel just fine in cgroup v2. A user who wishes
for the previous affinity mask to be restored in this fallback case can use
that mechanism instead.

This patch modifies scheduler behavior by instead resetting the mask to
task_cs(tsk)->cpus_allowed by default, and cpu_possible mask in legacy
mode. I tested the cases above on both modes.

Note that the scheduler uses this fallback mechanism if and only if
_every_ other valid avenue has been traveled, and it is the last resort
before calling BUG().

Suggested-by: Waiman Long <longman@redhat.com>
Suggested-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Joel Savitz <jsavitz@redhat.com>
Acked-by: Phil Auld <pauld@redhat.com>
Acked-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-10 09:53:39 +02:00
Roman Gushchin
4e4d5cea79 cgroup: protect cgroup->nr_(dying_)descendants by css_set_lock
[ Upstream commit 4dcabece4c3a9f9522127be12cc12cc120399b2f ]

The number of descendant cgroups and the number of dying
descendant cgroups are currently synchronized using the cgroup_mutex.

The number of descendant cgroups will be required by the cgroup v2
freezer, which will use it to determine if a cgroup is frozen
(depending on total number of descendants and number of frozen
descendants). It's not always acceptable to grab the cgroup_mutex,
especially from quite hot paths (e.g. exit()).

To avoid this, let's additionally synchronize these counters using
the css_set_lock.

So, it's safe to read these counters with either cgroup_mutex or
css_set_lock locked, and for changing both locks should be acquired.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kernel-team@fb.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-31 06:46:19 -07:00
Oleg Nesterov
d0bc74c563 cgroup/pids: turn cgroup_subsys->free() into cgroup_subsys->release() to fix the accounting
[ Upstream commit 51bee5abeab2058ea5813c5615d6197a23dbf041 ]

The only user of cgroup_subsys->free() callback is pids_cgrp_subsys which
needs pids_free() to uncharge the pid.

However, ->free() is called from __put_task_struct()->cgroup_free() and this
is too late. Even the trivial program which does

	for (;;) {
		int pid = fork();
		assert(pid >= 0);
		if (pid)
			wait(NULL);
		else
			exit(0);
	}

can run out of limits because release_task()->call_rcu(delayed_put_task_struct)
implies an RCU gp after the task/pid goes away and before the final put().

Test-case:

	mkdir -p /tmp/CG
	mount -t cgroup2 none /tmp/CG
	echo '+pids' > /tmp/CG/cgroup.subtree_control

	mkdir /tmp/CG/PID
	echo 2 > /tmp/CG/PID/pids.max

	perl -e 'while ($p = fork) { wait; } $p // die "fork failed: $!\n"' &
	echo $! > /tmp/CG/PID/cgroup.procs

Without this patch the forking process fails soon after migration.

Rename cgroup_subsys->free() to cgroup_subsys->release() and move the callsite
into the new helper, cgroup_release(), called by release_task() which actually
frees the pid(s).

Reported-by: Herton R. Krzesinski <hkrzesin@redhat.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-05 22:33:13 +02:00
Tejun Heo
a74ebf047e cgroup, rstat: Don't flush subtree root unless necessary
[ Upstream commit b4ff1b44bcd384d22fcbac6ebaf9cc0d33debe50 ]

cgroup_rstat_cpu_pop_updated() is used to traverse the updated cgroups
on flush.  While it was only visiting updated ones in the subtree, it
was visiting @root unconditionally.  We can easily check whether @root
is updated or not by looking at its ->updated_next just as with the
cgroups in the subtree.

* Remove the unnecessary cgroup_parent() test.  The system root cgroup
  is never updated and thus its ->updated_next is always NULL.  No
  need to test whether cgroup_parent() exists in addition to
  ->updated_next.

* Terminate traverse if ->updated_next is NULL.  This can only happen
  for subtree @root and there's no reason to visit it if it's not
  marked updated.

This reduces cpu consumption when reading a lot of rstat backed files.
In a micro benchmark reading stat from ~1600 cgroups, the sys time was
lowered by >40%.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-05 22:33:06 +02:00
Al Viro
7a8b048430 fix cgroup_do_mount() handling of failure exits
commit 399504e21a10be16dd1408ba0147367d9d82a10c upstream.

same story as with last May fixes in sysfs (7b745a4e40
"unfuck sysfs_mount()"); new_sb is left uninitialized
in case of early errors in kernfs_mount_ns() and papering
over it by treating any error from kernfs_mount_ns() as
equivalent to !new_ns ends up conflating the cases when
objects had never been transferred to a superblock with
ones when that has happened and resulting new superblock
had been dropped.  Easily fixed (same way as in sysfs
case).  Additionally, there's a superblock leak on
kernfs_node_dentry() failure *and* a dentry leak inside
kernfs_node_dentry() itself - the latter on probably
impossible errors, but the former not impossible to trigger
(as the matter of fact, injecting allocation failures
at that point *does* trigger it).

Cc: stable@kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23 20:09:53 +01:00
Ondrej Mosnacek
4b5abffd63 cgroup: fix parsing empty mount option string
[ Upstream commit e250d91d65750a0c0c62483ac4f9f357e7317617 ]

This fixes the case where all mount options specified are consumed by an
LSM and all that's left is an empty string. In this case cgroupfs should
accept the string and not fail.

How to reproduce (with SELinux enabled):

    # umount /sys/fs/cgroup/unified
    # mount -o context=system_u:object_r:cgroup_t:s0 -t cgroup2 cgroup2 /sys/fs/cgroup/unified
    mount: /sys/fs/cgroup/unified: wrong fs type, bad option, bad superblock on cgroup2, missing codepage or helper program, or other error.
    # dmesg | tail -n 1
    [   31.575952] cgroup: cgroup2: unknown option ""

Fixes: 67e9c74b8a ("cgroup: replace __DEVEL__sane_behavior with cgroup2 fs type")
[NOTE: should apply on top of commit 5136f6365c ("cgroup: implement "nsdelegate" mount option"), older versions need manual rebase]
Suggested-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12 19:47:17 +01:00
Tejun Heo
8a2fbdd5b0 cgroup: fix CSS_TASK_ITER_PROCS
commit e9d81a1bc2c48ea9782e3e8b53875f419766ef47 upstream.

CSS_TASK_ITER_PROCS implements process-only iteration by making
css_task_iter_advance() skip tasks which aren't threadgroup leaders;
however, when an iteration is started css_task_iter_start() calls the
inner helper function css_task_iter_advance_css_set() instead of
css_task_iter_advance().  As the helper doesn't have the skip logic,
when the first task to visit is a non-leader thread, it doesn't get
skipped correctly as shown in the following example.

  # ps -L 2030
    PID   LWP TTY      STAT   TIME COMMAND
   2030  2030 pts/0    Sl+    0:00 ./test-thread
   2030  2031 pts/0    Sl+    0:00 ./test-thread
  # mkdir -p /sys/fs/cgroup/x/a/b
  # echo threaded > /sys/fs/cgroup/x/a/cgroup.type
  # echo threaded > /sys/fs/cgroup/x/a/b/cgroup.type
  # echo 2030 > /sys/fs/cgroup/x/a/cgroup.procs
  # cat /sys/fs/cgroup/x/a/cgroup.threads
  2030
  2031
  # cat /sys/fs/cgroup/x/cgroup.procs
  2030
  # echo 2030 > /sys/fs/cgroup/x/a/b/cgroup.threads
  # cat /sys/fs/cgroup/x/cgroup.procs
  2031
  2030

The last read of cgroup.procs is incorrectly showing non-leader 2031
in cgroup.procs output.

This can be fixed by updating css_task_iter_advance() to handle the
first advance and css_task_iters_tart() to call
css_task_iter_advance() instead of the inner helper.  After the fix,
the same commands result in the following (correct) result:

  # ps -L 2062
    PID   LWP TTY      STAT   TIME COMMAND
   2062  2062 pts/0    Sl+    0:00 ./test-thread
   2062  2063 pts/0    Sl+    0:00 ./test-thread
  # mkdir -p /sys/fs/cgroup/x/a/b
  # echo threaded > /sys/fs/cgroup/x/a/cgroup.type
  # echo threaded > /sys/fs/cgroup/x/a/b/cgroup.type
  # echo 2062 > /sys/fs/cgroup/x/a/cgroup.procs
  # cat /sys/fs/cgroup/x/a/cgroup.threads
  2062
  2063
  # cat /sys/fs/cgroup/x/cgroup.procs
  2062
  # echo 2062 > /sys/fs/cgroup/x/a/b/cgroup.threads
  # cat /sys/fs/cgroup/x/cgroup.procs
  2062

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com>
Fixes: 8cfd8147df ("cgroup: implement cgroup v2 thread support")
Cc: stable@vger.kernel.org # v4.14+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-09 17:38:45 +01:00
Tejun Heo
479adb89a9 cgroup: Fix dom_cgrp propagation when enabling threaded mode
A cgroup which is already a threaded domain may be converted into a
threaded cgroup if the prerequisite conditions are met.  When this
happens, all threaded descendant should also have their ->dom_cgrp
updated to the new threaded domain cgroup.  Unfortunately, this
propagation was missing leading to the following failure.

  # cd /sys/fs/cgroup/unified
  # cat cgroup.subtree_control    # show that no controllers are enabled

  # mkdir -p mycgrp/a/b/c
  # echo threaded > mycgrp/a/b/cgroup.type

  At this point, the hierarchy looks as follows:

      mycgrp [d]
	  a [dt]
	      b [t]
		  c [inv]

  Now let's make node "a" threaded (and thus "mycgrp" s made "domain threaded"):

  # echo threaded > mycgrp/a/cgroup.type

  By this point, we now have a hierarchy that looks as follows:

      mycgrp [dt]
	  a [t]
	      b [t]
		  c [inv]

  But, when we try to convert the node "c" from "domain invalid" to
  "threaded", we get ENOTSUP on the write():

  # echo threaded > mycgrp/a/b/c/cgroup.type
  sh: echo: write error: Operation not supported

This patch fixes the problem by

* Moving the opencoded ->dom_cgrp save and restoration in
  cgroup_enable_threaded() into cgroup_{save|restore}_control() so
  that mulitple cgroups can be handled.

* Updating all threaded descendants' ->dom_cgrp to point to the new
  dom_cgrp when enabling threaded mode.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com>
Reported-by: Amin Jamali <ajamali@pivotal.io>
Reported-by: Joao De Almeida Pereira <jpereira@pivotal.io>
Link: https://lore.kernel.org/r/CAKgNAkhHYCMn74TCNiMJ=ccLd7DcmXSbvw3CbZ1YREeG7iJM5g@mail.gmail.com
Fixes: 454000adaa ("cgroup: introduce cgroup->dom_cgrp and threaded css_set handling")
Cc: stable@vger.kernel.org # v4.14+
2018-10-04 13:28:08 -07:00
Linus Torvalds
596766102a Merge branch 'for-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "Just one commit from Steven to take out spin lock from trace event
  handlers"

* 'for-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  cgroup/tracing: Move taking of spin lock out of trace event handlers
2018-08-24 13:19:27 -07:00
Dmitry Torokhov
488dee96bb kernfs: allow creating kernfs objects with arbitrary uid/gid
This change allows creating kernfs files and directories with arbitrary
uid/gid instead of always using GLOBAL_ROOT_UID/GID by extending
kernfs_create_dir_ns() and kernfs_create_file_ns() with uid/gid arguments.
The "simple" kernfs_create_file() and kernfs_create_dir() are left alone
and always create objects belonging to the global root.

When creating symlinks ownership (uid/gid) is taken from the target kernfs
object.

Co-Developed-by: Tyler Hicks <tyhicks@canonical.com>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-20 23:44:35 -07:00
Steven Rostedt (VMware)
e4f8d81c73 cgroup/tracing: Move taking of spin lock out of trace event handlers
It is unwise to take spin locks from the handlers of trace events.
Mainly, because they can introduce lockups, because it introduces locks
in places that are normally not tested. Worse yet, because trace events
are tucked away in the include/trace/events/ directory, locks that are
taken there are forgotten about.

As a general rule, I tell people never to take any locks in a trace
event handler.

Several cgroup trace event handlers call cgroup_path() which eventually
takes the kernfs_rename_lock spinlock. This injects the spinlock in the
code without people realizing it. It also can cause issues for the
PREEMPT_RT patch, as the spinlock becomes a mutex, and the trace event
handlers are called with preemption disabled.

By moving the calculation of the cgroup_path() out of the trace event
handlers and into a macro (surrounded by a
trace_cgroup_##type##_enabled()), then we could place the cgroup_path
into a string, and pass that to the trace event. Not only does this
remove the taking of the spinlock out of the trace event handler, but
it also means that the cgroup_path() only needs to be called once (it
is currently called twice, once to get the length to reserver the
buffer for, and once again to get the path itself. Now it only needs to
be done once.

Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
2018-07-11 10:48:47 -07:00
Mauro Carvalho Chehab
5fb94e9ca3 docs: Fix some broken references
As we move stuff around, some doc references are broken. Fix some of
them via this script:
	./scripts/documentation-file-ref-check --fix

Manually checked if the produced result is valid, removing a few
false-positives.

Acked-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Stephen Boyd <sboyd@kernel.org>
Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com>
Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Jonathan Corbet <corbet@lwn.net>
2018-06-15 18:10:01 -03:00
Kees Cook
42bc47b353 treewide: Use array_size() in vmalloc()
The vmalloc() function has no 2-factor argument form, so multiplication
factors need to be wrapped in array_size(). This patch replaces cases of:

        vmalloc(a * b)

with:
        vmalloc(array_size(a, b))

as well as handling cases of:

        vmalloc(a * b * c)

with:

        vmalloc(array3_size(a, b, c))

This does, however, attempt to ignore constant size factors like:

        vmalloc(4 * 1024)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  vmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  vmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  vmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_ID
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_ID
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

  vmalloc(
-	SIZE * COUNT
+	array_size(COUNT, SIZE)
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  vmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  vmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  vmalloc(C1 * C2 * C3, ...)
|
  vmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants.
@@
expression E1, E2;
constant C1, C2;
@@

(
  vmalloc(C1 * C2, ...)
|
  vmalloc(
-	E1 * E2
+	array_size(E1, E2)
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Kees Cook
6da2ec5605 treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

        kmalloc(a * b, gfp)

with:
        kmalloc_array(a * b, gfp)

as well as handling cases of:

        kmalloc(a * b * c, gfp)

with:

        kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Linus Torvalds
2857676045 - Introduce arithmetic overflow test helper functions (Rasmus)
- Use overflow helpers in 2-factor allocators (Kees, Rasmus)
 - Introduce overflow test module (Rasmus, Kees)
 - Introduce saturating size helper functions (Matthew, Kees)
 - Treewide use of struct_size() for allocators (Kees)
 -----BEGIN PGP SIGNATURE-----
 Comment: Kees Cook <kees@outflux.net>
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlsYJ1gWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJlCTEACwdEeriAd2VwxknnsstojGD/3g
 8TTFA19vSu4Gxa6WiDkjGoSmIlfhXTlZo1Nlmencv16ytSvIVDNLUIB3uDxUIv1J
 2+dyHML9JpXYHHR7zLXXnGFJL0wazqjbsD3NYQgXqmun7EVVYnOsAlBZ7h/Lwiej
 jzEJd8DaHT3TA586uD3uggiFvQU0yVyvkDCDONIytmQx+BdtGdg9TYCzkBJaXuDZ
 YIthyKDvxIw5nh/UaG3L+SKo73tUr371uAWgAfqoaGQQCWe+mxnWL4HkCKsjFzZL
 u9ouxxF/n6pij3E8n6rb0i2fCzlsTDdDF+aqV1rQ4I4hVXCFPpHUZgjDPvBWbj7A
 m6AfRHVNnOgI8HGKqBGOfViV+2kCHlYeQh3pPW33dWzy/4d/uq9NIHKxE63LH+S4
 bY3oO2ela8oxRyvEgXLjqmRYGW1LB/ZU7FS6Rkx2gRzo4k8Rv+8K/KzUHfFVRX61
 jEbiPLzko0xL9D53kcEn0c+BhofK5jgeSWxItdmfuKjLTW4jWhLRlU+bcUXb6kSS
 S3G6aF+L+foSUwoq63AS8QxCuabuhreJSB+BmcGUyjthCbK/0WjXYC6W/IJiRfBa
 3ZTxBC/2vP3uq/AGRNh5YZoxHL8mSxDfn62F+2cqlJTTKR/O+KyDb1cusyvk3H04
 KCDVLYPxwQQqK1Mqig==
 =/3L8
 -----END PGP SIGNATURE-----

Merge tag 'overflow-v4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull overflow updates from Kees Cook:
 "This adds the new overflow checking helpers and adds them to the
  2-factor argument allocators. And this adds the saturating size
  helpers and does a treewide replacement for the struct_size() usage.
  Additionally this adds the overflow testing modules to make sure
  everything works.

  I'm still working on the treewide replacements for allocators with
  "simple" multiplied arguments:

     *alloc(a * b, ...) -> *alloc_array(a, b, ...)

  and

     *zalloc(a * b, ...) -> *calloc(a, b, ...)

  as well as the more complex cases, but that's separable from this
  portion of the series. I expect to have the rest sent before -rc1
  closes; there are a lot of messy cases to clean up.

  Summary:

   - Introduce arithmetic overflow test helper functions (Rasmus)

   - Use overflow helpers in 2-factor allocators (Kees, Rasmus)

   - Introduce overflow test module (Rasmus, Kees)

   - Introduce saturating size helper functions (Matthew, Kees)

   - Treewide use of struct_size() for allocators (Kees)"

* tag 'overflow-v4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  treewide: Use struct_size() for devm_kmalloc() and friends
  treewide: Use struct_size() for vmalloc()-family
  treewide: Use struct_size() for kmalloc()-family
  device: Use overflow helpers for devm_kmalloc()
  mm: Use overflow helpers in kvmalloc()
  mm: Use overflow helpers in kmalloc_array*()
  test_overflow: Add memory allocation overflow tests
  overflow.h: Add allocation size calculation helpers
  test_overflow: Report test failures
  test_overflow: macrofy some more, do more tests for free
  lib: add runtime test of check_*_overflow functions
  compiler.h: enable builtin overflow checkers and add fallback code
2018-06-06 17:27:14 -07:00
Kees Cook
acafe7e302 treewide: Use struct_size() for kmalloc()-family
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:

struct foo {
    int stuff;
    void *entry[];
};

instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL);

Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:

instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL);

This patch makes the changes for kmalloc()-family (and kvmalloc()-family)
uses. It was done via automatic conversion with manual review for the
"CHECKME" non-standard cases noted below, using the following Coccinelle
script:

// pkey_cache = kmalloc(sizeof *pkey_cache + tprops->pkey_tbl_len *
//                      sizeof *pkey_cache->table, GFP_KERNEL);
@@
identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc";
expression GFP;
identifier VAR, ELEMENT;
expression COUNT;
@@

- alloc(sizeof(*VAR) + COUNT * sizeof(*VAR->ELEMENT), GFP)
+ alloc(struct_size(VAR, ELEMENT, COUNT), GFP)

// mr = kzalloc(sizeof(*mr) + m * sizeof(mr->map[0]), GFP_KERNEL);
@@
identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc";
expression GFP;
identifier VAR, ELEMENT;
expression COUNT;
@@

- alloc(sizeof(*VAR) + COUNT * sizeof(VAR->ELEMENT[0]), GFP)
+ alloc(struct_size(VAR, ELEMENT, COUNT), GFP)

// Same pattern, but can't trivially locate the trailing element name,
// or variable name.
@@
identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc";
expression GFP;
expression SOMETHING, COUNT, ELEMENT;
@@

- alloc(sizeof(SOMETHING) + COUNT * sizeof(ELEMENT), GFP)
+ alloc(CHECKME_struct_size(&SOMETHING, ELEMENT, COUNT), GFP)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-06 11:15:43 -07:00
Linus Torvalds
9f25a8da42 Merge branch 'for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:

 - For cpustat, cgroup has a percpu hierarchical stat mechanism which
   propagates up the hierarchy lazily.

   This contains commits to factor out and generalize the mechanism so
   that it can be used for other cgroup stats too.

   The original intention was to update memcg stats to use it but memcg
   went for a different approach, so still the only user is cpustat. The
   factoring out and generalization still make sense and it's likely
   that this can be used for other purposes in the future.

 - cgroup uses kernfs_notify() (which uses fsnotify()) to inform user
   space of certain events. A rate limiting mechanism is added.

 - Other misc changes.

* 'for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  cgroup: css_set_lock should nest inside tasklist_lock
  rdmacg: Convert to use match_string() helper
  cgroup: Make cgroup_rstat_updated() ready for root cgroup usage
  cgroup: Add memory barriers to plug cgroup_rstat_updated() race window
  cgroup: Add cgroup_subsys->css_rstat_flush()
  cgroup: Replace cgroup_rstat_mutex with a spinlock
  cgroup: Factor out and expose cgroup_rstat_*() interface functions
  cgroup: Reorganize kernel/cgroup/rstat.c
  cgroup: Distinguish base resource stat implementation from rstat
  cgroup: Rename stat to rstat
  cgroup: Rename kernel/cgroup/stat.c to kernel/cgroup/rstat.c
  cgroup: Limit event generation frequency
  cgroup: Explicitly remove core interface files
2018-06-05 17:08:45 -07:00
Tejun Heo
d8742e2290 cgroup: css_set_lock should nest inside tasklist_lock
cgroup_enable_task_cg_lists() incorrectly nests non-irq-safe
tasklist_lock inside irq-safe css_set_lock triggering the following
lockdep warning.

  WARNING: possible irq lock inversion dependency detected
  4.17.0-rc1-00027-gb37d049 #6 Not tainted
  --------------------------------------------------------
  systemd/1 just changed the state of lock:
  00000000fe57773b (css_set_lock){..-.}, at: cgroup_free+0xf2/0x12a
  but this lock took another, SOFTIRQ-unsafe lock in the past:
   (tasklist_lock){.+.+}

  and interrupts could create inverse lock ordering between them.

  other info that might help us debug this:
   Possible interrupt unsafe locking scenario:

	 CPU0                    CPU1
	 ----                    ----
    lock(tasklist_lock);
				 local_irq_disable();
				 lock(css_set_lock);
				 lock(tasklist_lock);
    <Interrupt>
      lock(css_set_lock);

   *** DEADLOCK ***

The condition is highly unlikely to actually happen especially given
that the path is executed only once per boot.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Boqun Feng <boqun.feng@gmail.com>
2018-05-23 11:04:54 -07:00
Christoph Hellwig
3f3942aca6 proc: introduce proc_create_single{,_data}
Variants of proc_create{,_data} that directly take a seq_file show
callback and drastically reduces the boilerplate code in the callers.

All trivial callers converted over.

Signed-off-by: Christoph Hellwig <hch@lst.de>
2018-05-16 07:23:35 +02:00
Andy Shevchenko
cc659e76f3 rdmacg: Convert to use match_string() helper
The new helper returns index of the matching string in an array.
We are going to use it here.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2018-05-07 09:27:26 -07:00
Tejun Heo
c43c5ea75f cgroup: Make cgroup_rstat_updated() ready for root cgroup usage
cgroup_rstat_updated() ensures that the cgroup's rstat is linked to
the parent.  If there's no parent, it never gets linked and the
function ends up grabbing and releasing the cgroup_rstat_lock each
time for no reason which can be expensive.

This hasn't been a problem till now because nobody was calling the
function for the root cgroup but rstat is gonna be exposed to
controllers and use cases, so let's get ready.  Make
cgroup_rstat_updated() an no-op for the root cgroup.

Signed-off-by: Tejun Heo <tj@kernel.org>
2018-04-26 14:29:06 -07:00
Tejun Heo
9a9e97b2f1 cgroup: Add memory barriers to plug cgroup_rstat_updated() race window
cgroup_rstat_updated() has a small race window where an updated
signaling can race with flush and could be lost till the next update.
This wasn't a problem for the existing usages, but we plan to use
rstat to track counters which need to be accurate.

This patch plugs the race window by synchronizing
cgroup_rstat_updated() and flush path with memory barriers around
cgroup_rstat_cpu->updated_next pointer.

Signed-off-by: Tejun Heo <tj@kernel.org>
2018-04-26 14:29:05 -07:00
Tejun Heo
8f53470bab cgroup: Add cgroup_subsys->css_rstat_flush()
This patch adds cgroup_subsys->css_rstat_flush().  If a subsystem has
this callback, its csses are linked on cgrp->css_rstat_list and rstat
will call the function whenever the associated cgroup is flushed.
Flush is also performed when such csses are released so that residual
counts aren't lost.

Combined with the rstat API previous patches factored out, this allows
controllers to plug into rstat to manage their statistics in a
scalable way.

Signed-off-by: Tejun Heo <tj@kernel.org>
2018-04-26 14:29:05 -07:00
Tejun Heo
0fa294fb19 cgroup: Replace cgroup_rstat_mutex with a spinlock
Currently, rstat flush path is protected with a mutex which is fine as
all the existing users are from interface file show path.  However,
rstat is being generalized for use by controllers and flushing from
atomic contexts will be necessary.

This patch replaces cgroup_rstat_mutex with a spinlock and adds a
irq-safe flush function - cgroup_rstat_flush_irqsafe().  Explicit
yield handling is added to the flush path so that other flush
functions can yield to other threads and flushers.

Signed-off-by: Tejun Heo <tj@kernel.org>
2018-04-26 14:29:05 -07:00
Tejun Heo
6162cef0f7 cgroup: Factor out and expose cgroup_rstat_*() interface functions
cgroup_rstat is being generalized so that controllers can use it too.
This patch factors out and exposes the following interface functions.

* cgroup_rstat_updated(): Renamed from cgroup_rstat_cpu_updated() for
  consistency.

* cgroup_rstat_flush_hold/release(): Factored out from base stat
  implementation.

* cgroup_rstat_flush(): Verbatim expose.

While at it, drop assert on cgroup_rstat_mutex in
cgroup_base_stat_flush() as it crosses layers and make a minor comment
update.

v2: Added EXPORT_SYMBOL_GPL(cgroup_rstat_updated) to fix a build bug.

Signed-off-by: Tejun Heo <tj@kernel.org>
2018-04-26 14:29:05 -07:00
Tejun Heo
a17556f8d9 cgroup: Reorganize kernel/cgroup/rstat.c
Currently, rstat.c has rstat and base stat implementations intermixed.
Collect base stat implementation at the end of the file.  Also,
reorder the prototypes.

This patch doesn't make any functional changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
2018-04-26 14:29:05 -07:00
Tejun Heo
d4ff749b5e cgroup: Distinguish base resource stat implementation from rstat
Base resource stat accounts universial (not specific to any
controller) resource consumptions on top of rstat.  Currently, its
implementation is intermixed with rstat implementation making the code
confusing to follow.

This patch clarifies the distintion by doing the followings.

* Encapsulate base resource stat counters, currently only cputime, in
  struct cgroup_base_stat.

* Move prev_cputime into struct cgroup and initialize it with cgroup.

* Rename the related functions so that they start with cgroup_base_stat.

* Prefix the related variables and field names with b.

This patch doesn't make any functional changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
2018-04-26 14:29:04 -07:00
Tejun Heo
c58632b363 cgroup: Rename stat to rstat
stat is too generic a name and ends up causing subtle confusions.
It'll be made generic so that controllers can plug into it, which will
make the problem worse.  Let's rename it to something more specific -
cgroup_rstat for cgroup recursive stat.

This patch does the following renames.  No other changes.

* cpu_stat	-> rstat_cpu
* stat		-> rstat
* ?cstat	-> ?rstatc

Note that the renames are selective.  The unrenamed are the ones which
implement basic resource statistics on top of rstat.  This will be
further cleaned up in the following patches.

Signed-off-by: Tejun Heo <tj@kernel.org>
2018-04-26 14:29:04 -07:00
Tejun Heo
a5c2b93f79 cgroup: Rename kernel/cgroup/stat.c to kernel/cgroup/rstat.c
stat is too generic a name and ends up causing subtle confusions.
It'll be made generic so that controllers can plug into it, which will
make the problem worse.  Let's rename it to something more specific -
cgroup_rstat for cgroup recursive stat.

First, rename kernel/cgroup/stat.c to kernel/cgroup/rstat.c.  No
content changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
2018-04-26 14:29:04 -07:00
Tejun Heo
b12e358328 cgroup: Limit event generation frequency
".events" files generate file modified event to notify userland of
possible new events.  Some of the events can be quite bursty
(e.g. memory high event) and generating notification each time is
costly and pointless.

This patch implements a event rate limit mechanism.  If a new
notification is requested before 10ms has passed since the previous
notification, the new notification is delayed till then.

As this only delays from the second notification on in a given close
cluster of notifications, userland reactions to notifications
shouldn't be delayed at all in most cases while avoiding notification
storms.

Signed-off-by: Tejun Heo <tj@kernel.org>
2018-04-26 14:29:04 -07:00
Tejun Heo
5faaf05f29 cgroup: Explicitly remove core interface files
The "cgroup." core interface files bypass the usual interface removal
path and get removed recursively along with the cgroup itself.  While
this works now, the subtle discrepancy gets in the way of implementing
common mechanisms.

This patch updates cgroup core interface file handling so that it's
consistent with controller interface files.  When added, the css is
marked CSS_VISIBLE and they're explicitly removed before the cgroup is
destroyed.

This doesn't cause user-visible behavior changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
2018-04-26 14:29:04 -07:00
Linus Torvalds
d92cd810e6 Merge branch 'for-4.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue updates from Tejun Heo:
 "rcu_work addition and a couple trivial changes"

* 'for-4.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
  workqueue: remove the comment about the old manager_arb mutex
  workqueue: fix the comments of nr_idle
  fs/aio: Use rcu_work instead of explicit rcu and work item
  cgroup: Use rcu_work instead of explicit rcu and work item
  RCU, workqueue: Implement rcu_work
2018-04-03 18:00:13 -07:00
Tejun Heo
8f36aaec9c cgroup: Use rcu_work instead of explicit rcu and work item
Workqueue now has rcu_work.  Use it instead of open-coding rcu -> work
item bouncing.

Signed-off-by: Tejun Heo <tj@kernel.org>
2018-03-19 10:12:03 -07:00
Tejun Heo
d1897c9538 cgroup: fix rule checking for threaded mode switching
A domain cgroup isn't allowed to be turned threaded if its subtree is
populated or domain controllers are enabled.  cgroup_enable_threaded()
depended on cgroup_can_be_thread_root() test to enforce this rule.  A
parent which has populated domain descendants or have domain
controllers enabled can't become a thread root, so the above rules are
enforced automatically.

However, for the root cgroup which can host mixed domain and threaded
children, cgroup_can_be_thread_root() doesn't check any of those
conditions and thus first level cgroups ends up escaping those rules.

This patch fixes the bug by adding explicit checks for those rules in
cgroup_enable_threaded().

Reported-by: Michael Kerrisk (man-pages) <mtk.manpages@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 8cfd8147df ("cgroup: implement cgroup v2 thread support")
Cc: stable@vger.kernel.org # v4.14+
2018-02-21 11:39:22 -08:00
Yaowei Bai
77ef80c65a kernel/cpuset: current_cpuset_is_being_rebound can be boolean
Make current_cpuset_is_being_rebound return bool due to this particular
function only using either one or zero as its return value.

No functional change.

Link: http://lkml.kernel.org/r/1513266622-15860-4-git-send-email-baiyaowei@cmss.chinamobile.com
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:47 -08:00
Tejun Heo
08a77676f9 string: drop __must_check from strscpy() and restore strscpy() usages in cgroup
e7fd37ba12 ("cgroup: avoid copying strings longer than the buffers")
converted possibly unsafe strncpy() usages in cgroup to strscpy().
However, although the callsites are completely fine with truncated
copied, because strscpy() is marked __must_check, it led to the
following warnings.

  kernel/cgroup/cgroup.c: In function ‘cgroup_file_name’:
  kernel/cgroup/cgroup.c:1400:10: warning: ignoring return value of ‘strscpy’, declared with attribute warn_unused_result [-Wunused-result]
     strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
	       ^

To avoid the warnings, 50034ed496 ("cgroup: use strlcpy() instead of
strscpy() to avoid spurious warning") switched them to strlcpy().

strlcpy() is worse than strlcpy() because it unconditionally runs
strlen() on the source string, and the only reason we switched to
strlcpy() here was because it was lacking __must_check, which doesn't
reflect any material differences between the two function.  It's just
that someone added __must_check to strscpy() and not to strlcpy().

These basic string copy operations are used in variety of ways, and
one of not-so-uncommon use cases is safely handling truncated copies,
where the caller naturally doesn't care about the return value.  The
__must_check doesn't match the actual use cases and forces users to
opt for inferior variants which lack __must_check by happenstance or
spread ugly (void) casts.

Remove __must_check from strscpy() and restore strscpy() usages in
cgroup.

Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ma Shimiao <mashimiao.fnst@cn.fujitsu.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
2018-01-19 08:51:36 -08:00