Commit graph

18 commits

Author SHA1 Message Date
Artem Bityutskiy
c8566350a3 UBI: fix and re-work debugging stuff
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2008-07-24 13:34:45 +03:00
Artem Bityutskiy
a5bf619041 UBI: add ubi_sync() interface
To flush MTD device caches.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2008-07-24 13:32:56 +03:00
Kyungmin Park
cadb40ccc1 UBI: avoid unnecessary division operations
UBI already checks that @min io size is the power of 2 at io_init.
It is save to use bit operations then.

Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2008-07-24 13:32:54 +03:00
Artem Bityutskiy
ae616e1be1 UBI: fix warnings
drivers/mtd/ubi/cdev.c: In function ‘vol_cdev_read’:
drivers/mtd/ubi/cdev.c:187: warning: unused variable ‘vol_id’
CC [M]  drivers/mtd/ubi/kapi.o
drivers/mtd/ubi/kapi.c: In function ‘ubi_leb_erase’:
drivers/mtd/ubi/kapi.c:483: warning: unused variable ‘vol_id’
drivers/mtd/ubi/kapi.c: In function ‘ubi_leb_unmap’:
drivers/mtd/ubi/kapi.c:544: warning: unused variable ‘vol_id’
drivers/mtd/ubi/kapi.c: In function ‘ubi_leb_map’:
drivers/mtd/ubi/kapi.c:582: warning: unused variable ‘vol_id’

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2008-01-25 16:41:24 +02:00
Artem Bityutskiy
783b273afa UBI: use separate mutex for volumes checking
Introduce a separate mutex which serializes volumes checking,
because we cammot really use volumes_mutex - it cases reverse
locking problems with mtd_tbl_mutex when gluebi is used -
thanks to lockdep.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-12-26 19:15:17 +02:00
Artem Bityutskiy
e73f4459d9 UBI: add UBI devices reference counting
This is one more step on the way to "removable" UBI devices. It
adds reference counting for UBI devices. Every time a volume on
this device is opened - the device's refcount is increased. It
is also increased if someone is reading any sysfs file of this
UBI device or of one of its volumes.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-12-26 19:15:17 +02:00
Artem Bityutskiy
d05c77a816 UBI: introduce volume refcounting
Add ref_count field to UBI volumes and remove weired "vol->removed"
field. This way things are better understandable and we do not have
to do whold show_attr operation under spinlock.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-12-26 19:15:16 +02:00
Artem Bityutskiy
35ad5fb76c UBI: fix and cleanup volume opening functions
This patch fixes error codes of the functions - if the device number
is out of range, -EINVAL should be returned. It also removes unneeded
try_module_get call from the open by name function.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-12-26 19:15:15 +02:00
Artem Bityutskiy
450f872a8e UBI: get device when opening volume
When a volume is opened, get its kref via get_device() call.
And put the reference when closing the volume. With this, we
may have a bit saner volume delete.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-12-26 19:15:15 +02:00
Artem Bityutskiy
cae0a77125 UBI: tweak volumes locking
Transform vtbl_mutex to volumes_mutex - this just makes code
easier to understand.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-12-26 19:15:15 +02:00
Artem Bityutskiy
89b96b6929 UBI: improve internal interfaces
Pass volume description object to the EBA function which makes
more sense, and EBA function do not have to find the volume
description object by volume ID.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-12-26 19:15:15 +02:00
Artem Bityutskiy
49dfc29928 UBI: remove redundant field
Remove redundant ubi->major field - we have it in ubi->cdev.dev
already.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-12-26 19:15:14 +02:00
Artem Bityutskiy
393852ecfe UBI: add ubi_leb_map interface
The idea of this interface belongs to Adrian Hunter. The
interface is extremely useful when one has to have a guarantee
that an LEB will contain all 0xFFs even in case of an unclean
reboot. UBI does have an 'ubi_leb_erase()' call which may do
this, but it is stupid and ineffecient, because it flushes whole
queue. I should be re-worked to just be a pair of unmap,
map calls.

The user of the interfaci is UBIFS at the moment.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-12-26 19:15:14 +02:00
Jesper Juhl
0169b49d52 UBI: don't use array index before testing if it is negative
I can't find anything guaranteeing that 'ubi_num' cannot be <0 in
drivers/mtd/ubi/kapi.c::ubi_open_volume(), and in fact the code
even tests for that and errors out if so. Unfortunately the test
for "ubi_num < 0" happens after we've already used 'ubi_num' as
an array index - bad thing to do if it is negative.
This patch moves the test earlier in the function and then moves
the indexing using that variable after the check. A bit safer :-)

Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-10-14 13:10:20 +03:00
Artem Bityutskiy
503990ebb2 UBI: remove unneeded error checks
Pointed to by viro.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-07-18 16:58:53 +03:00
Fernando Luis Vázquez Cao
2db61c95c0 UBI: cleanup usage of try_module_get
The use of try_module_get(THIS_MODULE) in ubi_get_device_info does not
offer real protection against unexpected driver unloads, since we could
be preempted before try_modules_get gets executed. It is the caller who
should manipulate the refcounts. Besides, ubi_get_device_info is an
exported symbol which guarantees protection when accessed through
symbol_get.

Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-07-18 16:58:45 +03:00
Artem Bityutskiy
4ab60a0d7c UBI: do not let to read too much
In case of static volumes it is prohibited to read more data
then available.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-07-18 16:52:42 +03:00
Artem B. Bityutskiy
801c135ce7 UBI: Unsorted Block Images
UBI (Latin: "where?") manages multiple logical volumes on a single
flash device, specifically supporting NAND flash devices. UBI provides
a flexible partitioning concept which still allows for wear-levelling
across the whole flash device.

In a sense, UBI may be compared to the Logical Volume Manager
(LVM). Whereas LVM maps logical sector numbers to physical HDD sector
numbers, UBI maps logical eraseblocks to physical eraseblocks.

More information may be found at
http://www.linux-mtd.infradead.org/doc/ubi.html

Partitioning/Re-partitioning

  An UBI volume occupies a certain number of erase blocks. This is
  limited by a configured maximum volume size, which could also be
  viewed as the partition size. Each individual UBI volume's size can
  be changed independently of the other UBI volumes, provided that the
  sum of all volume sizes doesn't exceed a certain limit.

  UBI supports dynamic volumes and static volumes. Static volumes are
  read-only and their contents are protected by CRC check sums.

Bad eraseblocks handling

  UBI transparently handles bad eraseblocks. When a physical
  eraseblock becomes bad, it is substituted by a good physical
  eraseblock, and the user does not even notice this.

Scrubbing

  On a NAND flash bit flips can occur on any write operation,
  sometimes also on read. If bit flips persist on the device, at first
  they can still be corrected by ECC, but once they accumulate,
  correction will become impossible. Thus it is best to actively scrub
  the affected eraseblock, by first copying it to a free eraseblock
  and then erasing the original. The UBI layer performs this type of
  scrubbing under the covers, transparently to the UBI volume users.

Erase Counts

  UBI maintains an erase count header per eraseblock. This frees
  higher-level layers (like file systems) from doing this and allows
  for centralized erase count management instead. The erase counts are
  used by the wear-levelling algorithm in the UBI layer. The algorithm
  itself is exchangeable.

Booting from NAND

  For booting directly from NAND flash the hardware must at least be
  capable of fetching and executing a small portion of the NAND
  flash. Some NAND flash controllers have this kind of support. They
  usually limit the window to a few kilobytes in erase block 0. This
  "initial program loader" (IPL) must then contain sufficient logic to
  load and execute the next boot phase.

  Due to bad eraseblocks, which may be randomly scattered over the
  flash device, it is problematic to store the "secondary program
  loader" (SPL) statically. Also, due to bit-flips it may become
  corrupted over time. UBI allows to solve this problem gracefully by
  storing the SPL in a small static UBI volume.

UBI volumes vs. static partitions

  UBI volumes are still very similar to static MTD partitions:

    * both consist of eraseblocks (logical eraseblocks in case of UBI
      volumes, and physical eraseblocks in case of static partitions;
    * both support three basic operations - read, write, erase.

  But UBI volumes have the following advantages over traditional
  static MTD partitions:

    * there are no eraseblock wear-leveling constraints in case of UBI
      volumes, so the user should not care about this;
    * there are no bit-flips and bad eraseblocks in case of UBI volumes.

  So, UBI volumes may be considered as flash devices with relaxed
  restrictions.

Where can it be found?

  Documentation, kernel code and applications can be found in the MTD
  gits.

What are the applications for?

  The applications help to create binary flash images for two purposes: pfi
  files (partial flash images) for in-system update of UBI volumes, and plain
  binary images, with or without OOB data in case of NAND, for a manufacturing
  step. Furthermore some tools are/and will be created that allow flash content
  analysis after a system has crashed..

Who did UBI?

  The original ideas, where UBI is based on, were developed by Andreas
  Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others
  were involved too. The implementation of the kernel layer was done by Artem
  B. Bityutskiy. The user-space applications and tools were written by Oliver
  Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem.
  Joern Engel contributed a patch which modifies JFFS2 so that it can be run on
  a UBI volume. Thomas Gleixner did modifications to the NAND layer. Alexander
  Schmidt made some testing work as well as core functionality improvements.

Signed-off-by: Artem B. Bityutskiy <dedekind@linutronix.de>
Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>
2007-04-27 14:23:33 +03:00