As reported by Andy Whitcroft, at least the SLES9 initrd build process
depends on getting the kernel version from the kernel binary. It does
that by simply trawling the binary and looking for the signature of the
"linux_banner" string (the string "Linux version " to be exact. Which
is really broken in itself, but whatever..)
That got broken when the string was changed to allow /proc/version to
change the UTS release information dynamically, and "get_kernel_version"
thus returned "%s" (see commit a2ee8649ba:
"[PATCH] Fix linux banner utsname information").
This just restores "linux_banner" as a static string, which should fix
the version finding. And /proc/version simply uses a different string.
To avoid wasting even that miniscule amount of memory, the early boot
string should really be marked __initdata, but that just causes the same
bug in SLES9 to re-appear, since it will then find other occurrences of
"Linux version " first.
Cc: Andy Whitcroft <apw@shadowen.org>
Acked-by: Herbert Poetzl <herbert@13thfloor.at>
Cc: Andi Kleen <ak@suse.de>
Cc: Andrew Morton <akpm@osdl.org>
Cc: Steve Fox <drfickle@us.ibm.com>
Acked-by: Olaf Hering <olaf@aepfle.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a per pid_namespace child-reaper. This is needed so processes are reaped
within the same pid space and do not spill over to the parent pid space. Its
also needed so containers preserve existing semantic that pid == 1 would reap
orphaned children.
This is based on Eric Biederman's patch: http://lkml.org/lkml/2006/2/6/285
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
utsname information is shown in the linux banner, which also is used for
/proc/version (which can have different utsname values inside a uts
namespaces). this patch makes the varying data arguments and changes the
string to a format string, using those arguments.
Signed-off-by: Herbert Poetzl <herbert@13thfloor.at>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Keith says
Compiling 2.6.19-rc6 with gcc version 4.1.0 (SUSE Linux), wait_hpet_tick is
optimized away to a never ending loop and the kernel hangs on boot in timer
setup.
0000001a <wait_hpet_tick>:
1a: 55 push %ebp
1b: 89 e5 mov %esp,%ebp
1d: eb fe jmp 1d <wait_hpet_tick+0x3>
This is not a problem with gcc 3.3.5. Adding barrier() calls to
wait_hpet_tick does not help, making the variables volatile does.
And the consensus is that gcc-4.1.0 is busted. Suse went and shipped
gcc-4.1.0 so we cannot ban it. Add a warning.
Cc: Keith Owens <kaos@ocs.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Both lhype and Xen want to call the core of the x86 cpu detect code before
calling start_kernel.
(extracted from larger patch)
AK: folded in start_kernel header patch
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
This changes the dwarf2 unwinder to do a binary search for CIEs
instead of a linear work. The linker is unfortunately not
able to build a proper lookup table at link time, instead it creates
one at runtime as soon as the bootmem allocator is usable (so you'll continue
using the linear lookup for the first [hopefully] few calls).
The code should be ready to utilize a build-time created table once
a fixed linker becomes available.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
There are a few places in the kernel where the init task is signaled. The
ctrl+alt+del sequence is one them. It kills a task, usually init, using a
cached pid (cad_pid).
This patch replaces the pid_t by a struct pid to avoid pid wrap around
problem. The struct pid is initialized at boot time in init() and can be
modified through systctl with
/proc/sys/kernel/cad_pid
[ I haven't found any distro using it ? ]
It also introduces a small helper routine kill_cad_pid() which is used
where it seemed ok to use cad_pid instead of pid 1.
[akpm@osdl.org: cleanups, build fix]
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The use of execve() in the kernel is dubious, since it relies on the
__KERNEL_SYSCALLS__ mechanism that stores the result in a global errno
variable. As a first step of getting rid of this, change all users to a
global kernel_execve function that returns a proper error code.
This function is a terrible hack, and a later patch removes it again after the
kernel syscalls are gone.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andi Kleen <ak@muc.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ian Molton <spyro@f2s.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Hirokazu Takata <takata.hirokazu@renesas.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Richard Curnow <rc@rc0.org.uk>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp>
Cc: Chris Zankel <chris@zankel.net>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Resetting the devices during driver initialization can be a costly
operation in terms of time (especially scsi devices). This option can be
used by drivers to know that user forcibly wants the devices to be reset
during initialization.
This option can be useful while kernel is booting in unreliable
environment. For ex. during kdump boot where devices are in unknown
random state and BIOS execution has been skipped.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We currently assume that boot parameters which are handled by
early_param() will not overlap boot parameters handled by __setup: if
they do, behaviour is dependent on link order, usually meaning __setup
will not get called.
ACPI wants to use early_param("pci"), and pci uses __setup("pci="), so
we modify the core to let them coexist: "pci=noacpi" will now get
passed to both.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Create a "taskstats" interface based on generic netlink (NETLINK_GENERIC
family), for getting statistics of tasks and thread groups during their
lifetime and when they exit. The interface is intended for use by multiple
accounting packages though it is being created in the context of delay
accounting.
This patch creates the interface without populating the fields of the data
that is sent to the user in response to a command or upon the exit of a task.
Each accounting package interested in using taskstats has to provide an
additional patch to add its stats to the common structure.
[akpm@osdl.org: cleanups, Kconfig fix]
Signed-off-by: Shailabh Nagar <nagar@us.ibm.com>
Signed-off-by: Balbir Singh <balbir@in.ibm.com>
Cc: Jes Sorensen <jes@sgi.com>
Cc: Peter Chubb <peterc@gelato.unsw.edu.au>
Cc: Erich Focht <efocht@ess.nec.de>
Cc: Levent Serinol <lserinol@gmail.com>
Cc: Jay Lan <jlan@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initialization code related to collection of per-task "delay" statistics which
measure how long it had to wait for cpu, sync block io, swapping etc. The
collection of statistics and the interface are in other patches. This patch
sets up the data structures and allows the statistics collection to be
disabled through a kernel boot parameter.
Signed-off-by: Shailabh Nagar <nagar@watson.ibm.com>
Signed-off-by: Balbir Singh <balbir@in.ibm.com>
Cc: Jes Sorensen <jes@sgi.com>
Cc: Peter Chubb <peterc@gelato.unsw.edu.au>
Cc: Erich Focht <efocht@ess.nec.de>
Cc: Levent Serinol <lserinol@gmail.com>
Cc: Jay Lan <jlan@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Teach special (recursive) locking code to the lock validator. Has no effect
on non-lockdep kernels.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Do 'make oldconfig' and accept all the defaults for new config options -
reboot into the kernel and if everything goes well it should boot up fine and
you should have /proc/lockdep and /proc/lockdep_stats files.
Typically if the lock validator finds some problem it will print out
voluminous debug output that begins with "BUG: ..." and which syslog output
can be used by kernel developers to figure out the precise locking scenario.
What does the lock validator do? It "observes" and maps all locking rules as
they occur dynamically (as triggered by the kernel's natural use of spinlocks,
rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a
new locking scenario, it validates this new rule against the existing set of
rules. If this new rule is consistent with the existing set of rules then the
new rule is added transparently and the kernel continues as normal. If the
new rule could create a deadlock scenario then this condition is printed out.
When determining validity of locking, all possible "deadlock scenarios" are
considered: assuming arbitrary number of CPUs, arbitrary irq context and task
context constellations, running arbitrary combinations of all the existing
locking scenarios. In a typical system this means millions of separate
scenarios. This is why we call it a "locking correctness" validator - for all
rules that are observed the lock validator proves it with mathematical
certainty that a deadlock could not occur (assuming that the lock validator
implementation itself is correct and its internal data structures are not
corrupted by some other kernel subsystem). [see more details and conditionals
of this statement in include/linux/lockdep.h and
Documentation/lockdep-design.txt]
Furthermore, this "all possible scenarios" property of the validator also
enables the finding of complex, highly unlikely multi-CPU multi-context races
via single single-context rules, increasing the likelyhood of finding bugs
drastically. In practical terms: the lock validator already found a bug in
the upstream kernel that could only occur on systems with 3 or more CPUs, and
which needed 3 very unlikely code sequences to occur at once on the 3 CPUs.
That bug was found and reported on a single-CPU system (!). So in essence a
race will be found "piecemail-wise", triggering all the necessary components
for the race, without having to reproduce the race scenario itself! In its
short existence the lock validator found and reported many bugs before they
actually caused a real deadlock.
To further increase the efficiency of the validator, the mapping is not per
"lock instance", but per "lock-class". For example, all struct inode objects
in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached,
then there are 10,000 lock objects. But ->inotify_mutex is a single "lock
type", and all locking activities that occur against ->inotify_mutex are
"unified" into this single lock-class. The advantage of the lock-class
approach is that all historical ->inotify_mutex uses are mapped into a single
(and as narrow as possible) set of locking rules - regardless of how many
different tasks or inode structures it took to build this set of rules. The
set of rules persist during the lifetime of the kernel.
To see the rough magnitude of checking that the lock validator does, here's a
portion of /proc/lockdep_stats, fresh after bootup:
lock-classes: 694 [max: 2048]
direct dependencies: 1598 [max: 8192]
indirect dependencies: 17896
all direct dependencies: 16206
dependency chains: 1910 [max: 8192]
in-hardirq chains: 17
in-softirq chains: 105
in-process chains: 1065
stack-trace entries: 38761 [max: 131072]
combined max dependencies: 2033928
hardirq-safe locks: 24
hardirq-unsafe locks: 176
softirq-safe locks: 53
softirq-unsafe locks: 137
irq-safe locks: 59
irq-unsafe locks: 176
The lock validator has observed 1598 actual single-thread locking patterns,
and has validated all possible 2033928 distinct locking scenarios.
More details about the design of the lock validator can be found in
Documentation/lockdep-design.txt, which can also found at:
http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt
[bunk@stusta.de: cleanups]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Generic lock debugging:
- generalized lock debugging framework. For example, a bug in one lock
subsystem turns off debugging in all lock subsystems.
- got rid of the caller address passing (__IP__/__IP_DECL__/etc.) from
the mutex/rtmutex debugging code: it caused way too much prototype
hackery, and lockdep will give the same information anyway.
- ability to do silent tests
- check lock freeing in vfree too.
- more finegrained debugging options, to allow distributions to
turn off more expensive debugging features.
There's no separate 'held mutexes' list anymore - but there's a 'held locks'
stack within lockdep, which unifies deadlock detection across all lock
classes. (this is independent of the lockdep validation stuff - lockdep first
checks whether we are holding a lock already)
Here are the current debugging options:
CONFIG_DEBUG_MUTEXES=y
CONFIG_DEBUG_LOCK_ALLOC=y
which do:
config DEBUG_MUTEXES
bool "Mutex debugging, basic checks"
config DEBUG_LOCK_ALLOC
bool "Detect incorrect freeing of live mutexes"
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
s390's console_init must enable interrupts, but early_boot_irqs_on() gets
called later. To avoid problems move console_init() after local_irq_enable().
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We're not reay to take a timer interrupt until timekeeping_init() has run.
But time_init() will start the time interrupt and if it is called with
local interrupts enabled we'll immediately take an interrupt and die.
Fix that by running timekeeping_init() prior to time_init().
We don't know _why_ local interrupts got enabled on Jesse Brandeburg's
machine. That's a separate as-yet-unsolved problem. THe patch adds a little
bit of debugging to detect that.
This whole requirement that local interrupts be held off during early boot
keeps on biting us.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Jesse Brandeburg <jesse.brandeburg@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Presently, smp_processor_id() isn't necessarily set up until setup_arch().
But it's used in boot_cpu_init() and printk() and perhaps in other places,
prior to setup_arch() being called.
So provide a new smp_setup_processor_id() which is called before anything
else, wire it up for Voyager (which boots on a CPU other than #0, and broke).
Cc: James Bottomley <James.Bottomley@steeleye.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/devfs-2.6: (22 commits)
[PATCH] devfs: Remove it from the feature_removal.txt file
[PATCH] devfs: Last little devfs cleanups throughout the kernel tree.
[PATCH] devfs: Rename TTY_DRIVER_NO_DEVFS to TTY_DRIVER_DYNAMIC_DEV
[PATCH] devfs: Remove the tty_driver devfs_name field as it's no longer needed
[PATCH] devfs: Remove the line_driver devfs_name field as it's no longer needed
[PATCH] devfs: Remove the videodevice devfs_name field as it's no longer needed
[PATCH] devfs: Remove the gendisk devfs_name field as it's no longer needed
[PATCH] devfs: Remove the miscdevice devfs_name field as it's no longer needed
[PATCH] devfs: Remove the devfs_fs_kernel.h file from the tree
[PATCH] devfs: Remove devfs_remove() function from the kernel tree
[PATCH] devfs: Remove devfs_mk_cdev() function from the kernel tree
[PATCH] devfs: Remove devfs_mk_bdev() function from the kernel tree
[PATCH] devfs: Remove devfs_mk_symlink() function from the kernel tree
[PATCH] devfs: Remove devfs_mk_dir() function from the kernel tree
[PATCH] devfs: Remove devfs_*_tape() functions from the kernel tree
[PATCH] devfs: Remove devfs support from the sound subsystem
[PATCH] devfs: Remove devfs support from the ide subsystem.
[PATCH] devfs: Remove devfs support from the serial subsystem
[PATCH] devfs: Remove devfs from the init code
[PATCH] devfs: Remove devfs from the partition code
...
- add a proper prototype for the following global function:
- buffer_init()
- make the following needlessly global function static:
- end_buffer_async_write()
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
These are the generic bits needed to enable reliable stack traces based
on Dwarf2-like (.eh_frame) unwind information. Subsequent patches will
enable x86-64 and i386 to make use of this.
Thanks to Andi Kleen and Ingo Molnar, who pointed out several possibilities
for improvement.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Modify the update_wall_time function so it increments time using the
clocksource abstraction instead of jiffies. Since the only clocksource driver
currently provided is the jiffies clocksource, this should result in no
functional change. Additionally, a timekeeping_init and timekeeping_resume
function has been added to initialize and maintain some of the new timekeping
state.
[hirofumi@mail.parknet.co.jp: fixlet]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Suppress the initcall-return-value warnings unless initcall_debug was
specified.
They do find bugs, but they're extremely small ones and as Andi points out,
people get distressed.
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Since the addition of boot_cpu_init(), fixup_cpu_present_map() has been a
no-op. That's because fixup_cpu_present_map() won't touch cpu_present_map if
it has any bits set, and boot_cpu_init() sets a bit.
So remove fixup_cpu_present_map().
A consequence of this (actually of the boot_cpu_init() change) is that the
architecture _must_ populate cpu_present_map itself (probably in
smp_prepare_cpus()). fixup_cpu_present_map() won't do it any more.
If the architecture doesn't do this, it'll only bring up a single CPU.
The other side effect (though less serious) is that smp_prepare_boot_cpu() no
longer needs to mark the boot cpu in the online and present maps -
boot_cpu_init() does that for everyone (to make early printks work).
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch adds a proper prototype for setup_arch() in init.h.
This patch is based on a patch by Ben Dooks <ben-linux@fluff.org>.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We presently ignore the return values from initcalls. But that can carry
useful debugging information. So print it out if it's non-zero.
It turns out the -ENODEV happens quite a lot, due to built-in drivers which
have no hardware to drive. So suppress that unless initcall_debug was
specified.
Also make the warning message more friendly by printing the name of the
initcall function.
Also drop the KERN_DEBUG from the initcall_debug message. If we specified
inticall_debug then we obviously want to see the messages.
Acked-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Now CONFIG_DEBUG_INITDATA is in, initial percpu data
[__per_cpu_start,__per_cpu_end] can be declared as a redzone, and invalid
accesses after boot can be detected, at least for i386.
We can let non possible cpus percpu data point to this 'redzone' instead of
NULL .
NULL was not a good choice because part of [0..32768] memory may be
readable and invalid accesses may happen unnoticed.
If CONFIG_DEBUG_INITDATA is not defined, each non possible cpu points to
the initial percpu data (__per_cpu_offset[cpu] == 0), thus invalid accesses
wont be detected/crash.
This patch also moves __per_cpu_offset[] to read_mostly area to avoid false
sharing.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
percpu_data blindly allocates bootmem memory to store NR_CPUS instances of
cpudata, instead of allocating memory only for possible cpus.
This patch saves ram, allocating num_possible_cpus() (instead of NR_CPUS)
instances.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Cc: Jens Axboe <axboe@suse.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Jens Axboe <axboe@suse.de>
Cc: Anton Blanchard <anton@samba.org>
Acked-by: William Irwin <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Register the boot-cpu in the cpu maps earlier to allow the early printk to
work, and to fix an obscure deadlock at boot.
Signed-off-by: Stas Sergeev <stsp@aknet.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove bogus comment from init function which could lead to the assumption
that cpu_possible_map is setup in smp_prepare_cpus().
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
After abandon-gcc-295x.patch, this relocates the error-out-early comment.
Signed-off-by: Coywolf Qi Hunt <qiyong@fc-cn.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
hrtimer subsystem core. It is initialized at bootup and expired by the timer
interrupt, but is otherwise not utilized by any other subsystem yet.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There's one scsi driver which doesn't compile due to weird __VA_ARGS__ tricks
and the rather useful scsi/sd.c is currently getting an ICE. None of the new
SAS code compiles, due to extensive use of anonymous unions. The V4L guys are
very good at exploiting the gcc-2.95.x macro expansion bug (_why_ does each
driver need to implement its own debug macros?) and various people keep on
sneaking in anonymous unions, which are rather nice.
Plus anonymous unions are rather useful.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove a couple of more lines of code from the cpuset hooks in the page
allocation code path.
There was a check for a NULL cpuset pointer in the routine
cpuset_update_task_memory_state() that was only needed during system boot,
after the memory subsystem was initialized, before the cpuset subsystem was
initialized, to catch a NULL task->cpuset pointer.
Add a cpuset_init_early() routine, just before the mem_init() call in
init/main.c, that sets up just enough of the init tasks cpuset structure to
render cpuset_update_task_memory_state() calls harmless.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Generic prep-work for marking the .rodata section readonly:
* Align the rodata section at 4Kb boundary
* call the mark_rodata_ro() function when available
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
sock_init can be done as a core_initcall instead of calling
it directly in init/main.c
Also I removed an out of date #ifdef.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Run idle threads with preempt disabled.
Also corrected a bugs in arm26's cpu_idle (make it actually call schedule()).
How did it ever work before?
Might fix the CPU hotplugging hang which Nigel Cunningham noted.
We think the bug hits if the idle thread is preempted after checking
need_resched() and before going to sleep, then the CPU offlined.
After calling stop_machine_run, the CPU eventually returns from preemption and
into the idle thread and goes to sleep. The CPU will continue executing
previous idle and have no chance to call play_dead.
By disabling preemption until we are ready to explicitly schedule, this bug is
fixed and the idle threads generally become more robust.
From: alexs <ashepard@u.washington.edu>
PPC build fix
From: Yoichi Yuasa <yuasa@hh.iij4u.or.jp>
MIPS build fix
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Yoichi Yuasa <yuasa@hh.iij4u.or.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Since early userspace was added, there's no way to override which init to
run from it. Some people tack on an extra cpio archive with a link from
/init depending on what they want to run, but that's sometimes impractical.
Changing the "init=" to also override the early userspace isn't feasible,
since it is still used to indicate what init to run from disk when early
userspace has completed doing whatever it's doing (i.e. load filesystem
modules and drivers).
Instead, introduce "rdinit=" and make it override the default "/init" if
specified.
Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
I passed init=/mylinuxrc to the kernel on the command line. The kernel
silently dropped down to exec /sbin/init. It turned out that /mylinuxrc
had improper permissions. Without any warning message from the kernel that
something was wrong it took awhile to find the issue. The patch below adds
a warning.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch adds a new kernel debug feature: CONFIG_DETECT_SOFTLOCKUP.
When enabled then per-CPU watchdog threads are started, which try to run
once per second. If they get delayed for more than 10 seconds then a
callback from the timer interrupt detects this condition and prints out a
warning message and a stack dump (once per lockup incident). The feature
is otherwise non-intrusive, it doesnt try to unlock the box in any way, it
only gets the debug info out, automatically, and on all CPUs affected by
the lockup.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-Off-By: Matthias Urlichs <smurf@smurf.noris.de>
Signed-off-by: Richard Purdie <rpurdie@rpsys.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Of this type, mostly:
CHECK net/ipv6/netfilter.c
net/ipv6/netfilter.c:96:12: warning: symbol 'ipv6_netfilter_init' was not declared. Should it be static?
net/ipv6/netfilter.c:101:6: warning: symbol 'ipv6_netfilter_fini' was not declared. Should it be static?
Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Minor cleanup.
Move things into their include files, remove obsolete includes, fix
indentation, remove obsolete special cases etc.
I also added the per cpu section to asm-generic/sections.h and fixed
init/main.c to use it.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch tweaks idle thread setup semantics a bit: instead of setting
NEED_RESCHED in init_idle(), we do an explicit schedule() before calling
into cpu_idle().
This patch, while having no negative side-effects, enables wider use of
cond_resched()s. (which might happen in the stock kernel too, but it's
particulary important for voluntary-preempt)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch modifies the way pagesets in struct zone are managed.
Each zone has a per-cpu array of pagesets. So any particular CPU has some
memory in each zone structure which belongs to itself. Even if that CPU is
not local to that zone.
So the patch relocates the pagesets for each cpu to the node that is nearest
to the cpu instead of allocating the pagesets in the (possibly remote) target
zone. This means that the operations to manage pages on remote zone can be
done with information available locally.
We play a macro trick so that non-NUMA pmachines avoid the additional
pointer chase on the page allocator fastpath.
AIM7 benchmark on a 32 CPU SGI Altix
w/o patches:
Tasks jobs/min jti jobs/min/task real cpu
1 484.68 100 484.6769 12.01 1.97 Fri Mar 25 11:01:42 2005
100 27140.46 89 271.4046 21.44 148.71 Fri Mar 25 11:02:04 2005
200 30792.02 82 153.9601 37.80 296.72 Fri Mar 25 11:02:42 2005
300 32209.27 81 107.3642 54.21 451.34 Fri Mar 25 11:03:37 2005
400 34962.83 78 87.4071 66.59 588.97 Fri Mar 25 11:04:44 2005
500 31676.92 75 63.3538 91.87 742.71 Fri Mar 25 11:06:16 2005
600 36032.69 73 60.0545 96.91 885.44 Fri Mar 25 11:07:54 2005
700 35540.43 77 50.7720 114.63 1024.28 Fri Mar 25 11:09:49 2005
800 33906.70 74 42.3834 137.32 1181.65 Fri Mar 25 11:12:06 2005
900 34120.67 73 37.9119 153.51 1325.26 Fri Mar 25 11:14:41 2005
1000 34802.37 74 34.8024 167.23 1465.26 Fri Mar 25 11:17:28 2005
with slab API changes and pageset patch:
Tasks jobs/min jti jobs/min/task real cpu
1 485.00 100 485.0000 12.00 1.96 Fri Mar 25 11:46:18 2005
100 28000.96 89 280.0096 20.79 150.45 Fri Mar 25 11:46:39 2005
200 32285.80 79 161.4290 36.05 293.37 Fri Mar 25 11:47:16 2005
300 40424.15 84 134.7472 43.19 438.42 Fri Mar 25 11:47:59 2005
400 39155.01 79 97.8875 59.46 590.05 Fri Mar 25 11:48:59 2005
500 37881.25 82 75.7625 76.82 730.19 Fri Mar 25 11:50:16 2005
600 39083.14 78 65.1386 89.35 872.79 Fri Mar 25 11:51:46 2005
700 38627.83 77 55.1826 105.47 1022.46 Fri Mar 25 11:53:32 2005
800 39631.94 78 49.5399 117.48 1169.94 Fri Mar 25 11:55:30 2005
900 36903.70 79 41.0041 141.94 1310.78 Fri Mar 25 11:57:53 2005
1000 36201.23 77 36.2012 160.77 1458.31 Fri Mar 25 12:00:34 2005
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com>
Signed-off-by: Shai Fultheim <Shai@Scalex86.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!