Commit graph

1481 commits

Author SHA1 Message Date
Gustavo A. R. Silva
56971d62c7 ALSA: pcm: Fix potential Spectre v1 vulnerability
commit 94ffb030b6d31ec840bb811be455dd2e26a4f43e upstream.

stream is indirectly controlled by user-space, hence leading to
a potential exploitation of the Spectre variant 1 vulnerability.

This issue was detected with the help of Smatch:

sound/core/pcm.c:140 snd_pcm_control_ioctl() warn: potential spectre issue 'pcm->streams' [r] (local cap)

Fix this by sanitizing stream before using it to index pcm->streams

Notice that given that speculation windows are large, the policy is
to kill the speculation on the first load and not worry if it can be
completed with a dependent load/store [1].

[1] https://marc.info/?l=linux-kernel&m=152449131114778&w=2

Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Cc: stable@vger.kernel.org
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-09 17:38:36 +01:00
Takashi Iwai
19054c1884 ALSA: pcm: Call snd_pcm_unlink() conditionally at closing
commit b51abed8355e5556886623b2772fa6b7598d2282 upstream.

Currently the PCM core calls snd_pcm_unlink() always unconditionally
at closing a stream.  However, since snd_pcm_unlink() invokes the
global rwsem down, the lock can be easily contended.  More badly, when
a thread runs in a high priority RT-FIFO, it may stall at spinning.

Basically the call of snd_pcm_unlink() is required only for the linked
streams that are already rare occasion.  For normal use cases, this
code path is fairly superfluous.

As an optimization (and also as a workaround for the RT problem
above in normal situations without linked streams), this patch adds a
check before calling snd_pcm_unlink() and calls it only when needed.

Reported-by: Chanho Min <chanho.min@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-13 09:16:16 +01:00
Chanho Min
026fdecbc3 ALSA: pcm: Fix starvation on down_write_nonblock()
commit b888a5f713e4d17faaaff24316585a4eb07f35b7 upstream.

Commit 67ec1072b0 ("ALSA: pcm: Fix rwsem deadlock for non-atomic PCM
stream") fixes deadlock for non-atomic PCM stream. But, This patch
causes antother stuck.
If writer is RT thread and reader is a normal thread, the reader
thread will be difficult to get scheduled. It may not give chance to
release readlocks and writer gets stuck for a long time if they are
pinned to single cpu.

The deadlock described in the previous commit is because the linux
rwsem queues like a FIFO. So, we might need non-FIFO writelock, not
non-block one.

My suggestion is that the writer gives reader a chance to be scheduled
by using the minimum msleep() instaed of spinning without blocking by
writer. Also, The *_nonblock may be changed to *_nonfifo appropriately
to this concept.
In terms of performance, when trylock is failed, this minimum periodic
msleep will have the same performance as the tick-based
schedule()/wake_up_q().

[ Although this has a fairly high performance penalty, the relevant
  code path became already rare due to the previous commit ("ALSA:
  pcm: Call snd_pcm_unlink() conditionally at closing").  That is, now
  this unconditional msleep appears only when using linked streams,
  and this must be a rare case.  So we accept this as a quick
  workaround until finding a more suitable one -- tiwai ]

Fixes: 67ec1072b0 ("ALSA: pcm: Fix rwsem deadlock for non-atomic PCM stream")
Suggested-by: Wonmin Jung <wonmin.jung@lge.com>
Signed-off-by: Chanho Min <chanho.min@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-13 09:16:16 +01:00
Takashi Iwai
d8a2dca040 ALSA: control: Fix race between adding and removing a user element
commit e1a7bfe3807974e66f971f2589d4e0197ec0fced upstream.

The procedure for adding a user control element has some window opened
for race against the concurrent removal of a user element.  This was
caught by syzkaller, hitting a KASAN use-after-free error.

This patch addresses the bug by wrapping the whole procedure to add a
user control element with the card->controls_rwsem, instead of only
around the increment of card->user_ctl_count.

This required a slight code refactoring, too.  The function
snd_ctl_add() is split to two parts: a core function to add the
control element and a part calling it.  The former is called from the
function for adding a user control element inside the controls_rwsem.

One change to be noted is that snd_ctl_notify() for adding a control
element gets called inside the controls_rwsem as well while it was
called outside the rwsem.  But this should be OK, as snd_ctl_notify()
takes another (finer) rwlock instead of rwsem, and the call of
snd_ctl_notify() inside rwsem is already done in another code path.

Reported-by: syzbot+dc09047bce3820621ba2@syzkaller.appspotmail.com
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-05 19:32:08 +01:00
Takashi Iwai
27d6abfb99 ALSA: oss: Use kvzalloc() for local buffer allocations
commit 65766ee0bf7fe8b3be80e2e1c3ef54ad59b29476 upstream.

PCM OSS layer may allocate a few temporary buffers, one for the core
read/write and another for the conversions via plugins.  Currently
both are allocated via vmalloc().  But as the allocation size is
equivalent with the PCM period size, the required size might be quite
small, depending on the application.

This patch replaces these vmalloc() calls with kvzalloc() for covering
small period sizes better.  Also, we use "z"-alloc variant here for
addressing the possible uninitialized access reported by syzkaller.

Reported-by: syzbot+1cb36954e127c98dd037@syzkaller.appspotmail.com
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-01 09:37:25 +01:00
Takashi Iwai
5a7b44a8df ALSA: rawmidi: Initialize allocated buffers
syzbot reported the uninitialized value exposure in certain situations
using virmidi loop.  It's likely a very small race at writing and
reading, and the influence is almost negligible.  But it's safer to
paper over this just by replacing the existing kvmalloc() with
kvzalloc().

Reported-by: syzbot+194dffdb8b22fc5d207a@syzkaller.appspotmail.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-09-03 15:16:43 +02:00
Takashi Iwai
82fd4b05d7 ALSA: seq: virmidi: Fix discarding the unsubscribed output
The recent change to move the virmidi output processing to a work
slightly modified the code to discard the unsubscribed outputs so that
it works without a temporary buffer.  However, this is actually buggy,
and may spew a kernel warning due to the unexpected call of
snd_rawmidi_transmit_ack(), as triggered by syzbot.

This patch takes back to the original code in that part, use a
temporary buffer and simply repeat snd_rawmidi_transmit(), in order to
address the regression.

Fixes: f7debfe540 ("ALSA: seq: virmidi: Offload the output event processing")
Reported-by: syzbot+ec5f605c91812d200367@syzkaller.appspotmail.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-08-14 22:50:52 +02:00
Gustavo A. R. Silva
eb2caeb88c ALSA: seq_oss: Mark expected switch fall-through
In preparation to enabling -Wimplicit-fallthrough, mark switch cases
where we are expecting to fall through.

Warning level 2 was used: -Wimplicit-fallthrough=2

Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-08-04 08:30:45 +02:00
Gustavo A. R. Silva
2f3b94e539 ALSA: seq: Mark expected switch fall-through
In preparation to enabling -Wimplicit-fallthrough, mark switch cases
where we are expecting to fall through.

Notice that in this particular case, I replaced the code comment with
a proper "fall through" annotation, which is what GCC is expecting
to find.

Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-08-04 08:30:36 +02:00
Takashi Iwai
a640329989 ALSA: compress: Remove empty init and exit
For a sake of code simplification, remove the init and the exit
entries that do nothing.

Notes for readers: actually it's OK to remove *both* init and exit,
but not OK to remove the exit entry.  By removing only the exit while
keeping init, the module becomes permanently loaded; i.e. you cannot
unload it any longer!

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-08-03 16:11:23 +02:00
Takashi Iwai
93ce1b1296 ALSA: seq: Drop unused 64bit division macros
The old ugly macros remained in the code without usage.
Rip them off.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-08-01 22:54:37 +02:00
Takashi Iwai
04702e8d00 ALSA: seq: Use no intrruptible mutex_lock
All usages of mutex in ALSA sequencer core would take too long, hence
we don't have to care about the user interruption that makes things
complicated.  Let's replace them with simpler mutex_lock().

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-08-01 22:54:36 +02:00
Takashi Iwai
00976ad527 ALSA: seq: Fix leftovers at probe error path
The sequencer core module doesn't call some destructors in the error
path of the init code, which may leave some resources.

This patch mainly fix these leaks by calling the destructors
appropriately at alsa_seq_init().  Also the patch brings a few
cleanups along with it, namely:

- Expand the old "if ((err = xxx) < 0)" coding style
- Get rid of empty seq_queue_init() and its caller
- Change snd_seq_info_done() to void

Last but not least, a couple of functions lose __exit annotation since
they are called also in alsa_seq_init().

No functional changes but minor code cleanups.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-08-01 22:54:36 +02:00
Takashi Iwai
fc4bfd9a35 ALSA: seq: Remove dead codes
There are a few functions that have been commented out for ages.
And also there are functions that do nothing but placeholders.
Let's kill them.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-08-01 22:54:35 +02:00
Takashi Iwai
ef965ad5a7 ALSA: seq: Minor cleanup of MIDI event parser helpers
snd_midi_event_encode_byte() can never fail, and it can return rather
true/false.  Change the return type to bool, adjust the argument to
receive a MIDI byte as unsigned char, and adjust the comment
accordingly.  This allows callers to drop error checks, which
simplifies the code.

Meanwhile, snd_midi_event_encode() helper is used only in seq_midi.c,
and it can be better folded into it.  This will reduce the total
amount of lines in the end.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-08-01 22:54:35 +02:00
Gustavo A. R. Silva
5a6cd13d4f ALSA: pcm: Mark expected switch fall-through
In preparation to enabling -Wimplicit-fallthrough, mark switch cases
where we are expecting to fall through.

Addresses-Coverity-ID: 1357375 ("Missing break in switch")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-08-01 18:13:04 +02:00
Takashi Iwai
89b4ab213f ALSA: seq: virmidi: Use READ_ONCE/WRITE_ONCE() macros
The trigger flag in vmidi object can be referred in different contexts
concurrently, hence it's better to be put with READ_ONCE() and
WRITE_ONCE() macros to assure the accesses.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-30 14:52:30 +02:00
Takashi Iwai
f7debfe540 ALSA: seq: virmidi: Offload the output event processing
The virmidi sequencer stuff tries to translate the rawmidi bytes to
sequencer events and deliver the packets at trigger callback.  The
amount of the whole process of these translations and deliveries
depends on the incoming rawmidi bytes, and we have no limit for that;
this was the cause of a CPU soft lockup that had been reported and
fixed recently.

Although we've fixed the soft lockup by putting the temporary unlock
and cond_resched(), it's rather a quick band aid.  In this patch,
meanwhile, the event parsing and delivery process is offloaded to a
dedicated work, and the trigger callback just kicks it off.  It has
three merits, at least:

- The processing is always done in a sleepable context, which can
  assure the event delivery with non-atomic flag without hackish
  is_atomic() usage.

- Other relevant codes can be simplified, reducing the lines

- It makes me happier

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-30 14:51:51 +02:00
Takashi Iwai
16c796e8fa Merge branch 'for-linus' into topic/virmidi
Pull the latest ALSA sequencer fixes for the further development of
virmidi.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-29 22:39:29 +02:00
Takashi Iwai
f8b6c0cfbd ALSA: pcm: Fix sparse warning wrt PCM format type
The PCM format type is with __bitwise, hence it needs the explicit
cast with __force.  It's ugly, but there is a reason for that cost...

This fixes the sparse warning:
  sound/core/oss/pcm_oss.c:1854:55: warning: incorrect type in argument 1 (different base types)

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-27 09:05:27 +02:00
Takashi Iwai
50e9ffb199 ALSA: virmidi: Fix too long output trigger loop
The virmidi output trigger tries to parse the all available bytes and
process sequencer events as much as possible.  In a normal situation,
this is supposed to be relatively short, but a program may give a huge
buffer and it'll take a long time in a single spin lock, which may
eventually lead to a soft lockup.

This patch simply adds a workaround, a cond_resched() call in the loop
if applicable.  A better solution would be to move the event processor
into a work, but let's put a duct-tape quickly at first.

Reported-and-tested-by: Dae R. Jeong <threeearcat@gmail.com>
Reported-by: syzbot+619d9f40141d826b097e@syzkaller.appspotmail.com
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-27 08:59:25 +02:00
Takashi Iwai
191bb51e72 ALSA: pcm: Use standard lower_32_bits() and upper_32_bits()
Instead of open codes, use the standard macros for obtaining the lower
and upper 32bit values.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-26 08:32:31 +02:00
Takashi Iwai
a49a71f6e2 ALSA: seq: Fix poll() error return
The sanity checks in ALSA sequencer and OSS sequencer emulation codes
return falsely -ENXIO from poll callback.  They should be EPOLLERR
instead.

This was caught thanks to the recent change to the return value.

Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-26 08:23:26 +02:00
Takashi Iwai
dfef01e150 ALSA: memalloc: Don't exceed over the requested size
snd_dma_alloc_pages_fallback() tries to allocate pages again when the
allocation fails with reduced size.  But the first try actually
*increases* the size to power-of-two, which may give back a larger
chunk than the requested size.  This confuses the callers, e.g. sgbuf
assumes that the size is equal or less, and it may result in a bad
loop due to the underflow and eventually lead to Oops.

The code of this function seems incorrectly assuming the usage of
get_order().  We need to decrease at first, then align to
power-of-two.

Reported-and-tested-by: he, bo <bo.he@intel.com>
Reported-by: zhang jun <jun.zhang@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-23 09:06:33 +02:00
Srikanth K H
d10ee9c542 ALSA: timer: catch invalid timer object creation
A timer object for the classes SNDRV_TIMER_CLASS_CARD and
SNDRV_TIMER_CLASS_PCM has to be associated with a card object, but we
have no check at creation time.  Such a timer object with NULL card
causes various unexpected problems, e.g. NULL dereference at reading
the sound timer proc file.

So as preventive measure while the creating the sound timer object is
created the card information availability is checked for the mentioned
entries and returned error if its NULL.

Signed-off-by: Srikanth K H <srikanth.h@samsung.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-22 10:42:41 +02:00
Takashi Iwai
ef4db239cd ALSA: rawmidi: Use kvmalloc() for buffers
The size of in-kernel rawmidi buffers may be big up to 1MB, and it can
be specified freely by user-space; which implies that user-space may
trigger kmalloc() errors frequently.

This patch replaces the buffer allocation via kvmalloc() for dealing
with bigger buffers gracefully.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-18 07:47:57 +02:00
Takashi Iwai
f5beb598b0 ALSA: rawmidi: Minor code refactoring
Unify a few open codes with helper functions to improve the
readability.  Minor behavior changes (rather fixes) are:
- runtime->drain clearance is done within lock
- active_sensing is updated before resizing buffer in
  SNDRV_RAWMIDI_IOCTL_PARAMS ioctl.
Other than that, simply code cleanups.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-17 23:07:29 +02:00
Takashi Iwai
7fdc9b0807 ALSA: rawmidi: Simplify error paths
Apply the standard idiom: rewrite the multiple unlocks in error paths
in the goto-error-and-single-unlock way.

Just a code refactoring, and no functional changes.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-17 22:48:38 +02:00
Takashi Iwai
5bed913972 ALSA: rawmidi: Tidy up coding styles
Just minor coding style fixes like removal of superfluous white space,
adding missing blank lines, etc.  No actual code changes at all.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-17 22:37:07 +02:00
Takashi Iwai
ed6b83d2d1 Merge branch 'for-linus' into for-next
Back-merge for further cleanup / improvements on rawmidi and HD-audio
stuff.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-17 22:27:03 +02:00
Takashi Iwai
39675f7a7c ALSA: rawmidi: Change resized buffers atomically
The SNDRV_RAWMIDI_IOCTL_PARAMS ioctl may resize the buffers and the
current code is racy.  For example, the sequencer client may write to
buffer while it being resized.

As a simple workaround, let's switch to the resized buffer inside the
stream runtime lock.

Reported-by: syzbot+52f83f0ea8df16932f7f@syzkaller.appspotmail.com
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-17 17:33:17 +02:00
Timo Wischer
ff2d6acdf6 ALSA: pcm: Fix snd_interval_refine first/last with open min/max
Without this commit the following intervals [x y), (x y) were be
replaced to (y-1 y) by snd_interval_refine_last(). This was also done
if y-1 is part of the previous interval.
With this changes it will be replaced with [y-1 y) in case of y-1 is
part of the previous interval. A similar behavior will be used for
snd_interval_refine_first().

This commit adapts the changes for alsa-lib of commit
9bb985c ("pcm: snd_interval_refine_first/last: exclude value only if
also excluded before")

Signed-off-by: Timo Wischer <twischer@de.adit-jv.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-11 08:49:59 +02:00
Liam Girdwood
d64c5cf8e8 ALSA: pcm: Allow drivers to set R/W wait time.
Currently ALSA core blocks userspace for about 10 seconds for PCM R/W IO.
This needs to be configurable for modern hardware like DSPs where no
pointer update in milliseconds can indicate terminal DSP errors.

Add a substream variable to set the wait time in ms. This allows userspace
and drivers to recover more quickly from terminal DSP errors.

Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-06 15:00:25 +02:00
Takashi Iwai
e647f5a5c5 ALSA: pcm: Use snd_pcm_stop_xrun() for xrun injection
Basically the xrun injection routine can simply call the standard
helper snd_pcm_stop_xrun(), but with one exception: it may be called
even when the stream is closed.

Make snd_pcm_stop_xrun() more robust and check the NULL runtime state,
and simplify xrun injection code by calling it.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-04 15:34:59 +02:00
Takashi Iwai
9cd641ed31 ALSA: pcm: trace XRUN event at injection, too
The PCM xrun injection triggers directly snd_pcm_stop() without the
standard xrun handler, hence it's not recorded on the event buffer.
Ditto for snd_pcm_stop_xrun() call and SNDRV_PCM_IOCTL_XRUN ioctl.
They are inconvenient from the debugging POV.

Let's make them to trigger XRUN via the standard helper more
consistently.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-07-04 15:34:57 +02:00
Takashi Iwai
c9a4c63888 ALSA: seq: Fix UBSAN warning at SNDRV_SEQ_IOCTL_QUERY_NEXT_CLIENT ioctl
The kernel may spew a WARNING with UBSAN undefined behavior at
handling ALSA sequencer ioctl SNDRV_SEQ_IOCTL_QUERY_NEXT_CLIENT:

UBSAN: Undefined behaviour in sound/core/seq/seq_clientmgr.c:2007:14
signed integer overflow:
2147483647 + 1 cannot be represented in type 'int'
Call Trace:
 __dump_stack lib/dump_stack.c:77 [inline]
 dump_stack+0x122/0x1c8 lib/dump_stack.c:113
 ubsan_epilogue+0x12/0x86 lib/ubsan.c:159
 handle_overflow+0x1c2/0x21f lib/ubsan.c:190
  __ubsan_handle_add_overflow+0x2a/0x31 lib/ubsan.c:198
 snd_seq_ioctl_query_next_client+0x1ac/0x1d0 sound/core/seq/seq_clientmgr.c:2007
 snd_seq_ioctl+0x264/0x3d0 sound/core/seq/seq_clientmgr.c:2144
 ....

It happens only when INT_MAX is passed there, as we're incrementing it
unconditionally.  So the fix is trivial, check the value with
INT_MAX.  Although the bug itself is fairly harmless, it's better to
fix it so that fuzzers won't hit this again later.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=200211
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-06-25 11:18:04 +02:00
Takashi Iwai
b41f794f28 ALSA: timer: Fix UBSAN warning at SNDRV_TIMER_IOCTL_NEXT_DEVICE ioctl
The kernel may spew a WARNING about UBSAN undefined behavior at
handling ALSA timer ioctl SNDRV_TIMER_IOCTL_NEXT_DEVICE:

UBSAN: Undefined behaviour in sound/core/timer.c:1524:19
signed integer overflow:
2147483647 + 1 cannot be represented in type 'int'
Call Trace:
 __dump_stack lib/dump_stack.c:77 [inline]
 dump_stack+0x122/0x1c8 lib/dump_stack.c:113
 ubsan_epilogue+0x12/0x86 lib/ubsan.c:159
 handle_overflow+0x1c2/0x21f lib/ubsan.c:190
 __ubsan_handle_add_overflow+0x2a/0x31 lib/ubsan.c:198
 snd_timer_user_next_device sound/core/timer.c:1524 [inline]
 __snd_timer_user_ioctl+0x204d/0x2520 sound/core/timer.c:1939
 snd_timer_user_ioctl+0x67/0x95 sound/core/timer.c:1994
 ....

It happens only when a value with INT_MAX is passed, as we're
incrementing it unconditionally.  So the fix is trivial, check the
value with INT_MAX.  Although the bug itself is fairly harmless, it's
better to fix it so that fuzzers won't hit this again later.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=200213
Reported-and-tested-by: Team OWL337 <icytxw@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-06-25 11:17:01 +02:00
Mauro Carvalho Chehab
5fb94e9ca3 docs: Fix some broken references
As we move stuff around, some doc references are broken. Fix some of
them via this script:
	./scripts/documentation-file-ref-check --fix

Manually checked if the produced result is valid, removing a few
false-positives.

Acked-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Stephen Boyd <sboyd@kernel.org>
Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com>
Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Jonathan Corbet <corbet@lwn.net>
2018-06-15 18:10:01 -03:00
Kees Cook
42bc47b353 treewide: Use array_size() in vmalloc()
The vmalloc() function has no 2-factor argument form, so multiplication
factors need to be wrapped in array_size(). This patch replaces cases of:

        vmalloc(a * b)

with:
        vmalloc(array_size(a, b))

as well as handling cases of:

        vmalloc(a * b * c)

with:

        vmalloc(array3_size(a, b, c))

This does, however, attempt to ignore constant size factors like:

        vmalloc(4 * 1024)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  vmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  vmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  vmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_ID
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_ID
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

  vmalloc(
-	SIZE * COUNT
+	array_size(COUNT, SIZE)
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  vmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  vmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  vmalloc(C1 * C2 * C3, ...)
|
  vmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants.
@@
expression E1, E2;
constant C1, C2;
@@

(
  vmalloc(C1 * C2, ...)
|
  vmalloc(
-	E1 * E2
+	array_size(E1, E2)
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Kees Cook
6da2ec5605 treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

        kmalloc(a * b, gfp)

with:
        kmalloc_array(a * b, gfp)

as well as handling cases of:

        kmalloc(a * b * c, gfp)

with:

        kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Linus Torvalds
2857676045 - Introduce arithmetic overflow test helper functions (Rasmus)
- Use overflow helpers in 2-factor allocators (Kees, Rasmus)
 - Introduce overflow test module (Rasmus, Kees)
 - Introduce saturating size helper functions (Matthew, Kees)
 - Treewide use of struct_size() for allocators (Kees)
 -----BEGIN PGP SIGNATURE-----
 Comment: Kees Cook <kees@outflux.net>
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlsYJ1gWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJlCTEACwdEeriAd2VwxknnsstojGD/3g
 8TTFA19vSu4Gxa6WiDkjGoSmIlfhXTlZo1Nlmencv16ytSvIVDNLUIB3uDxUIv1J
 2+dyHML9JpXYHHR7zLXXnGFJL0wazqjbsD3NYQgXqmun7EVVYnOsAlBZ7h/Lwiej
 jzEJd8DaHT3TA586uD3uggiFvQU0yVyvkDCDONIytmQx+BdtGdg9TYCzkBJaXuDZ
 YIthyKDvxIw5nh/UaG3L+SKo73tUr371uAWgAfqoaGQQCWe+mxnWL4HkCKsjFzZL
 u9ouxxF/n6pij3E8n6rb0i2fCzlsTDdDF+aqV1rQ4I4hVXCFPpHUZgjDPvBWbj7A
 m6AfRHVNnOgI8HGKqBGOfViV+2kCHlYeQh3pPW33dWzy/4d/uq9NIHKxE63LH+S4
 bY3oO2ela8oxRyvEgXLjqmRYGW1LB/ZU7FS6Rkx2gRzo4k8Rv+8K/KzUHfFVRX61
 jEbiPLzko0xL9D53kcEn0c+BhofK5jgeSWxItdmfuKjLTW4jWhLRlU+bcUXb6kSS
 S3G6aF+L+foSUwoq63AS8QxCuabuhreJSB+BmcGUyjthCbK/0WjXYC6W/IJiRfBa
 3ZTxBC/2vP3uq/AGRNh5YZoxHL8mSxDfn62F+2cqlJTTKR/O+KyDb1cusyvk3H04
 KCDVLYPxwQQqK1Mqig==
 =/3L8
 -----END PGP SIGNATURE-----

Merge tag 'overflow-v4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull overflow updates from Kees Cook:
 "This adds the new overflow checking helpers and adds them to the
  2-factor argument allocators. And this adds the saturating size
  helpers and does a treewide replacement for the struct_size() usage.
  Additionally this adds the overflow testing modules to make sure
  everything works.

  I'm still working on the treewide replacements for allocators with
  "simple" multiplied arguments:

     *alloc(a * b, ...) -> *alloc_array(a, b, ...)

  and

     *zalloc(a * b, ...) -> *calloc(a, b, ...)

  as well as the more complex cases, but that's separable from this
  portion of the series. I expect to have the rest sent before -rc1
  closes; there are a lot of messy cases to clean up.

  Summary:

   - Introduce arithmetic overflow test helper functions (Rasmus)

   - Use overflow helpers in 2-factor allocators (Kees, Rasmus)

   - Introduce overflow test module (Rasmus, Kees)

   - Introduce saturating size helper functions (Matthew, Kees)

   - Treewide use of struct_size() for allocators (Kees)"

* tag 'overflow-v4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  treewide: Use struct_size() for devm_kmalloc() and friends
  treewide: Use struct_size() for vmalloc()-family
  treewide: Use struct_size() for kmalloc()-family
  device: Use overflow helpers for devm_kmalloc()
  mm: Use overflow helpers in kvmalloc()
  mm: Use overflow helpers in kmalloc_array*()
  test_overflow: Add memory allocation overflow tests
  overflow.h: Add allocation size calculation helpers
  test_overflow: Report test failures
  test_overflow: macrofy some more, do more tests for free
  lib: add runtime test of check_*_overflow functions
  compiler.h: enable builtin overflow checkers and add fallback code
2018-06-06 17:27:14 -07:00
Kees Cook
acafe7e302 treewide: Use struct_size() for kmalloc()-family
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:

struct foo {
    int stuff;
    void *entry[];
};

instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL);

Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:

instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL);

This patch makes the changes for kmalloc()-family (and kvmalloc()-family)
uses. It was done via automatic conversion with manual review for the
"CHECKME" non-standard cases noted below, using the following Coccinelle
script:

// pkey_cache = kmalloc(sizeof *pkey_cache + tprops->pkey_tbl_len *
//                      sizeof *pkey_cache->table, GFP_KERNEL);
@@
identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc";
expression GFP;
identifier VAR, ELEMENT;
expression COUNT;
@@

- alloc(sizeof(*VAR) + COUNT * sizeof(*VAR->ELEMENT), GFP)
+ alloc(struct_size(VAR, ELEMENT, COUNT), GFP)

// mr = kzalloc(sizeof(*mr) + m * sizeof(mr->map[0]), GFP_KERNEL);
@@
identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc";
expression GFP;
identifier VAR, ELEMENT;
expression COUNT;
@@

- alloc(sizeof(*VAR) + COUNT * sizeof(VAR->ELEMENT[0]), GFP)
+ alloc(struct_size(VAR, ELEMENT, COUNT), GFP)

// Same pattern, but can't trivially locate the trailing element name,
// or variable name.
@@
identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc";
expression GFP;
expression SOMETHING, COUNT, ELEMENT;
@@

- alloc(sizeof(SOMETHING) + COUNT * sizeof(ELEMENT), GFP)
+ alloc(CHECKME_struct_size(&SOMETHING, ELEMENT, COUNT), GFP)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-06 11:15:43 -07:00
Joe Perches
6a73cf46ce sound: Use octal not symbolic permissions
Convert the S_<FOO> symbolic permissions to their octal equivalents as
using octal and not symbolic permissions is preferred by many as more
readable.

see: https://lkml.org/lkml/2016/8/2/1945

Done with automated conversion via:
$ ./scripts/checkpatch.pl -f --types=SYMBOLIC_PERMS --fix-inplace <files...>

Miscellanea:

o Wrapped one multi-line call to a single line

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Vinod Koul <vkoul@kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-05-28 11:27:20 +02:00
Colin Ian King
6231a895f5 ALSA: seq: fix spelling mistake "Unamed" -> "Unnamed"
Trivial fix to spelling mistake in string

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-05-26 23:59:32 +02:00
Takashi Iwai
ed14d9ae53 Merge branch 'topic/timer-fixes' into for-next
Pull the fixes for possible races in the resolution callback.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-05-18 08:55:36 +02:00
Takashi Iwai
9d4d207d13 ALSA: timer: Assure timer resolution access always locked
There are still many places calling the timer's hw.c_resolution
callback without lock, and this may lead to some races, as we faced in
the commit a820ccbe21 ("ALSA: pcm: Fix UAF at PCM release via PCM
timer access").

This patch changes snd_timer_resolution() to take the timer->lock for
avoiding the races.  A place calling this function already inside the
lock (from the notifier) is replaced with the
snd_timer_hw_resolution() accordingly, as well as wrapping with the
lock around another place calling snd_timer_hw_resolution(), too.

Reported-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-05-18 08:49:13 +02:00
Takashi Iwai
21244e3d6a ALSA: seq: Avoid open-code for getting timer resolution
Instead of open-coding for getting the timer resolution, use the
standard snd_timer_resolution() helper.

The original code falls back to the callback function when the
resolution is zero, but it must be always so when the callback
function is defined.  So this should be no functional change.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-05-18 08:49:13 +02:00
Takashi Iwai
fdcb5761c1 ALSA: timer: Simplify timer hw resolution calls
There multiple open-codes to get the hardware timer resolution.
Make a local helper function snd_timer_hw_resolution() and call it
from all relevant places.

There is no functional change by this, just a preliminary work for the
following timer resolution hardening patch.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-05-18 08:49:12 +02:00
Ben Hutchings
3ae1809725 ALSA: timer: Fix pause event notification
Commit f65e0d2998 ("ALSA: timer: Call notifier in the same spinlock")
combined the start/continue and stop/pause functions, and in doing so
changed the event code for the pause case to SNDRV_TIMER_EVENT_CONTINUE.
Change it back to SNDRV_TIMER_EVENT_PAUSE.

Fixes: f65e0d2998 ("ALSA: timer: Call notifier in the same spinlock")
Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Cc: stable@vger.kernel.org
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-05-18 08:43:59 +02:00
Takashi Iwai
dc82e52492 ALSA: core: Assure control device to be registered at last
The commit 289ca025ee ("ALSA: Use priority list for managing device
list") changed the way to register/disconnect/free devices via a
single priority list.  This helped to make behavior consistent, but it
also changed a slight behavior change: namely, the control device is
registered earlier than others, while it was supposed to be the very
last one.

I've put SNDRV_DEV_CONTROL in the current position as the release of
ctl elements often conflict with the private ctl elements some PCM or
other components may create, which often leads to a double-free.
But, the order of register and disconnect should be indeed fixed as
expected in the early days: the control device gets registered at
last, and disconnected at first.

This patch changes the priority list order to move SNDRV_DEV_CONTROL
as the last guy to assure the register / disconnect order.  Meanwhile,
for keeping the messy resource release order, manually treat the
control and lowlevel devices as last freed one.

Additional note:
The lowlevel device is the device where a card driver creates at
probe.  And, we still keep the release order control -> lowlevel, as
there might  be link from a control element back to a lowlevel object.

Fixes: 289ca025ee ("ALSA: Use priority list for managing device list")
Reported-by: Tzung-Bi Shih <tzungbi@google.com>
Tested-by: Tzung-Bi Shih <tzungbi@google.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2018-05-17 08:21:23 +02:00