We don't have any users, and it is not so trivial to use NOAUTOREL works
correctly. It is better to simplify API.
Delete NOAUTOREL support and rename work_release to work_clear_pending to
avoid a confusion.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cancel_rearming_delayed_workqueue(wq, dwork) doesn't need the first
parameter. We don't hang on un-queued dwork any longer, and work->data
doesn't change its type. This means we can always figure out "wq" from
dwork when it is needed.
Remove this parameter, and rename the function to
cancel_rearming_delayed_work(). Re-create an inline "obsolete"
cancel_rearming_delayed_workqueue(wq) which just calls
cancel_rearming_delayed_work().
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cleanup. A number of per_cpu_ptr(wq->cpu_wq, cpu) users have to check that
cpu is valid for this wq. Make a simple helper.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently typeof(delayed_work->work.data) is
"struct workqueue_struct" when the timer is pending
"struct cpu_workqueue_struct" whe the work is queued
This makes impossible to use flush_fork(delayed_work->work) in addition
to cancel_delayed_work/cancel_rearming_delayed_work, not good.
Change queue_delayed_work/delayed_work_timer_fn to use cwq, not wq. This
complicates (and uglifies) these functions a little bit, but alows us to
use flush_fork(dwork) and imho makes the whole code more consistent.
Also, document the fact that cancel_rearming_delayed_work() doesn't garantee
the completion of work->func() upon return.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CPU_UP_PREPARE binds cwq->thread to the new CPU. So CPU_UP_CANCELED tries to
wake up the task which is bound to the failed CPU.
With this patch we don't bind cwq->thread until CPU becomes online. The first
wake_up() after kthread_create() is a bit special, make a simple helper for
that.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only caller of init_workqueues() is do_basic_setup().
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add explicit workqueue_struct->singlethread flag. This lessens .text a
little, but most importantly this allows us to manipulate wq->list without
changine the meaning of is_single_threaded().
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The code like
if (is_single_threaded(wq))
do_something(singlethread_cpu);
else {
for_each_cpu_mask(cpu, cpu_populated_map)
do_something(cpu);
}
looks very annoying. We can add "static cpumask_t cpu_singlethread_map" and
simplify the code. Lessens .text a bit, and imho makes the code more readable.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cancel_rearming_delayed_workqueue(dwork) will hang forever if dwork was not
scheduled, because in that case cancel_delayed_work()->del_timer_sync() never
returns true.
I don't know if there are any callers which may have problems, but this is not
so convenient, and the fix is very simple.
Q: looks like we don't need "struct workqueue_struct *wq" parameter. If the
timer was aborted successfully, get_wq_data() == wq. Is it worth to add the
new function?
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because it has no callers.
Actually, I think the whole idea of run_scheduled_work() was not right, not
good to mix "unqueue this work and execute its ->func()" in one function.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently CPU_DEAD uses kthread_stop() to stop cwq->thread and then
transfers cwq->worklist to another CPU. However, it is very unlikely that
worker_thread() will notice kthread_should_stop() before flushing
cwq->worklist. It is only possible if worker_thread() was preempted after
run_workqueue(cwq), a new work_struct was added, and CPU_DEAD happened
before cwq->thread has a chance to run.
This means that take_over_work() mostly adds unneeded complications. Note
also that kthread_stop() is not good per se, wake_up_process() may confuse
work->func() if it sleeps waiting for some event.
Remove take_over_work() and migrate_sequence complications. CPU_DEAD sets
the cwq->should_stop flag (introduced by this patch) and waits for
cwq->thread to flush cwq->worklist and exit. Because the dead CPU is not
on cpu_online_map, no more works can be added to that cwq.
cpu_populated_map was introduced to optimize for_each_possible_cpu(), it is
not strictly needed, and it is more a documentation in fact.
Saves 418 bytes.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: "Pallipadi, Venkatesh" <venkatesh.pallipadi@intel.com>
Cc: Gautham shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pointed out by Srivatsa Vaddagiri.
cleanup_workqueue_thread() sets cwq->thread = NULL and does kthread_stop().
This breaks the "if (cwq->thread == current)" logic in flush_cpu_workqueue()
and leads to deadlock.
Kill the thead first, then clear cwq->thread. workqueue_mutex protects us
from create_workqueue_thread() so we don't need cwq->lock.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: "Pallipadi, Venkatesh" <venkatesh.pallipadi@intel.com>
Cc: Gautham shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many thanks to Srivatsa Vaddagiri for the helpful discussion and for spotting
the bug in my previous attempt.
work->func() (and thus flush_workqueue()) must not use workqueue_mutex,
this leads to deadlock when CPU_DEAD does kthread_stop(). However without
this mutex held we can't detect CPU_DEAD in progress, which can move pending
works to another CPU while the dead one is not on cpu_online_map.
Change flush_workqueue() to use for_each_possible_cpu(). This means that
flush_cpu_workqueue() may hit CPU which is already dead. However in that
case
!list_empty(&cwq->worklist) || cwq->current_work != NULL
means that CPU_DEAD in progress, it will do kthread_stop() + take_over_work()
so we can proceed and insert a barrier. We hold cwq->lock, so we are safe.
Also, add migrate_sequence incremented by take_over_work() under cwq->lock.
If take_over_work() happened before we checked this CPU, we should see the
new value after spin_unlock().
Further possible changes:
remove CPU_DEAD handling (along with take_over_work, migrate_sequence)
from workqueue.c. CPU_DEAD just sets cwq->please_exit_after_flush flag.
CPU_UP_PREPARE->create_workqueue_thread() clears this flag, and creates
the new thread if cwq->thread == NULL.
This way the workqueue/cpu-hotplug interaction is almost zero, workqueue_mutex
just protects "workqueues" list, CPU_LOCK_ACQUIRE/CPU_LOCK_RELEASE go away.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: "Pallipadi, Venkatesh" <venkatesh.pallipadi@intel.com>
Cc: Gautham shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently ->freezeable is per-cpu, this is wrong. CPU_UP_PREPARE creates
cwq->thread which is not freezeable. Move ->freezeable to workqueue_struct.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: "Pallipadi, Venkatesh" <venkatesh.pallipadi@intel.com>
Cc: Gautham shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes cpu hotplug symmetrical: if CPU_UP_PREPARE fails we get
CPU_UP_CANCELED, so we can undo what ever happened on PREPARE. The same
should happen for CPU_DOWN_PREPARE.
[akpm@linux-foundation.org: fix for reduce-size-of-task_struct-on-64-bit-machines]
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Gautham Shenoy <ego@in.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Eliminate lock_cpu_hotplug from kernel/sched.c and use sched_hotcpu_mutex
instead to postpone a hotplug event.
In the migration_call hotcpu callback function, take sched_hotcpu_mutex
while handling the event CPU_LOCK_ACQUIRE and release it while handling
CPU_LOCK_RELEASE event.
[akpm@linux-foundation.org: fix deadlock]
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is an attempt to provide an alternate mechanism for postponing
a hotplug event instead of using a global mechanism like lock_cpu_hotplug.
The proposal is to add two new events namely CPU_LOCK_ACQUIRE and
CPU_LOCK_RELEASE. The notification for these two events would be sent
out before and after a cpu_hotplug event respectively.
During the CPU_LOCK_ACQUIRE event, a cpu-hotplug-aware subsystem is
supposed to acquire any per-subsystem hotcpu mutex ( Eg. workqueue_mutex
in kernel/workqueue.c ).
During the CPU_LOCK_RELEASE release event the cpu-hotplug-aware subsystem
is supposed to release the per-subsystem hotcpu mutex.
The reasons for defining new events as opposed to reusing the existing events
like CPU_UP_PREPARE/CPU_UP_FAILED/CPU_ONLINE for locking/unlocking of
per-subsystem hotcpu mutexes are as follow:
- CPU_LOCK_ACQUIRE: All hotcpu mutexes are taken before subsystems
start handling pre-hotplug events like CPU_UP_PREPARE/CPU_DOWN_PREPARE
etc, thus ensuring a clean handling of these events.
- CPU_LOCK_RELEASE: The hotcpu mutexes will be released only after
all subsystems have handled post-hotplug events like CPU_DOWN_FAILED,
CPU_DEAD,CPU_ONLINE etc thereby ensuring that there are no subsequent
clashes amongst the interdependent subsystems after a cpu hotplugs.
This patch also uses __raw_notifier_call chain in _cpu_up to take care
of the dependency between the two consequetive calls to
raw_notifier_call_chain.
[akpm@linux-foundation.org: fix a bug]
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since 2.6.18-something, the community has been bugged by the problem to
provide a clean and a stable mechanism to postpone a cpu-hotplug event as
lock_cpu_hotplug was badly broken.
This is another proposal towards solving that problem. This one is along the
lines of the solution provided in kernel/workqueue.c
Instead of having a global mechanism like lock_cpu_hotplug, we allow the
subsytems to define their own per-subsystem hot cpu mutexes. These would be
taken(released) where ever we are currently calling
lock_cpu_hotplug(unlock_cpu_hotplug).
Also, in the per-subsystem hotcpu callback function,we take this mutex before
we handle any pre-cpu-hotplug events and release it once we finish handling
the post-cpu-hotplug events. A standard means for doing this has been
provided in [PATCH 2/4] and demonstrated in [PATCH 3/4].
The ordering of these per-subsystem mutexes might still prove to be a
problem, but hopefully lockdep should help us get out of that muddle.
The patch set to be applied against linux-2.6.19-rc5 is as follows:
[PATCH 1/4] : Extend notifier_call_chain with an option to specify the
number of notifications to be sent and also count the
number of notifications actually sent.
[PATCH 2/4] : Define events CPU_LOCK_ACQUIRE and CPU_LOCK_RELEASE
and send out notifications for these in _cpu_up and
_cpu_down. This would help us standardise the acquire and
release of the subsystem locks in the hotcpu
callback functions of these subsystems.
[PATCH 3/4] : Eliminate lock_cpu_hotplug from kernel/sched.c.
[PATCH 4/4] : In workqueue_cpu_callback function, acquire(release) the
workqueue_mutex while handling
CPU_LOCK_ACQUIRE(CPU_LOCK_RELEASE).
If the per-subsystem-locking approach survives the test of time, we can expect
a slow phasing out of lock_cpu_hotplug, which has not yet been eliminated in
these patches :)
This patch:
Provide notifier_call_chain with an option to call only a specified number of
notifiers and also record the number of call to notifiers made.
The need for this enhancement was identified in the post entitled
"Slab - Eliminate lock_cpu_hotplug from slab"
(http://lkml.org/lkml/2006/10/28/92) by Ravikiran G Thirumalai and
Andrew Morton.
This patch adds two additional parameters to notifier_call_chain API namely
- int nr_to_calls : Number of notifier_functions to be called.
The don't care value is -1.
- unsigned int *nr_calls : Records the total number of notifier_funtions
called by notifier_call_chain. The don't care
value is NULL.
[michal.k.k.piotrowski@gmail.com: build fix]
Credit: Andrew Morton <akpm@osdl.org>
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Michal Piotrowski <michal.k.k.piotrowski@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
relay doesn't need to use schedule_delayed_work() for waking readers
when a simple timer will do.
Signed-off-by: Tom Zanussi <zanussi@comcast.net>
Cc: Satyam Sharma <satyam.sharma@gmail.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now when we have ->current_work we can avoid adding a barrier and waiting
for its completition when cwq's queue is empty.
Note: this change is also useful if we change flush_workqueue() to also
check the dead CPUs.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Gautham Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A basic problem with flush_scheduled_work() is that it blocks behind _all_
presently-queued works, rather than just the work whcih the caller wants to
flush. If the caller holds some lock, and if one of the queued work happens
to want that lock as well then accidental deadlocks can occur.
One example of this is the phy layer: it wants to flush work while holding
rtnl_lock(). But if a linkwatch event happens to be queued, the phy code will
deadlock because the linkwatch callback function takes rtnl_lock.
So we implement a new function which will flush a *single* work - just the one
which the caller wants to free up. Thus we avoid the accidental deadlocks
which can arise from unrelated subsystems' callbacks taking shared locks.
flush_work() non-blockingly dequeues the work_struct which we want to kill,
then it waits for its handler to complete on all CPUs.
Add ->current_work to the "struct cpu_workqueue_struct", it points to
currently running "struct work_struct". When flush_work(work) detects
->current_work == work, it inserts a barrier at the _head_ of ->worklist
(and thus right _after_ that work) and waits for completition. This means
that the next work fired on that CPU will be this barrier, or another
barrier queued by concurrent flush_work(), so the caller of flush_work()
will be woken before any "regular" work has a chance to run.
When wait_on_work() unlocks workqueue_mutex (or whatever we choose to protect
against CPU hotplug), CPU may go away. But in that case take_over_work() will
move a barrier we queued to another CPU, it will be fired sometime, and
wait_on_work() will be woken.
Actually, we are doing cleanup_workqueue_thread()->kthread_stop() before
take_over_work(), so cwq->thread should complete its ->worklist (and thus
the barrier), because currently we don't check kthread_should_stop() in
run_workqueue(). But even if we did, everything should be ok.
[akpm@osdl.org: cleanup]
[akpm@osdl.org: add flush_work_keventd() wrapper]
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove ->remove_sequence, ->insert_sequence, and ->work_done from struct
cpu_workqueue_struct. To implement flush_workqueue() we can queue a
barrier work on each CPU and wait for its completition.
The barrier is queued under workqueue_mutex to ensure that per cpu
wq->cpu_wq is alive, we drop this mutex before going to sleep. If CPU goes
down while we are waiting for completition, take_over_work() will move the
barrier on another CPU, and the handler will wake up us eventually.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We take workqueue_mutex in there to keep CPU hotplug away. But
preempt_disable() will suffice for that.
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
u64 and s64 are not necessarily 'long long' on some 64-bit
platforms, so explicit the type to kill the compiler warnings.
Also consistently use '%Lu' which is unsigned.
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's more that need fixing, and fix my own subject spelling error too.
Signed-off-by: Daniel Walker <dwalker@mvista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch moves the sig_kernel_* and related macros from kernel/signal.c
to linux/signal.h, and cleans them up slightly. I need the sig_kernel_*
macros for default signal behavior in the utrace code, and want to avoid
duplication or overhead to share the knowledge.
Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cleanup using simple_read_from_buffer() for /dev/cpuset/tasks and
/proc/config.gz.
Cc: Paul Jackson <pj@sgi.com>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A linuxdoc comment had fallen out of date - it refers to an argument which no
longer exists.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ With Johannes Berg <johannes@sipsolutions.net> ]
Separate the hibernation (aka suspend to disk code) from the other suspend
code. In particular:
* Remove the definitions related to hibernation from include/linux/pm.h
* Introduce struct hibernation_ops and a new hibernate() function to hibernate
the system, defined in include/linux/suspend.h
* Separate suspend code in kernel/power/main.c from hibernation-related code
in kernel/power/disk.c and kernel/power/user.c (with the help of
hibernation_ops)
* Switch ACPI (the only user of pm_ops.pm_disk_mode) to hibernation_ops
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Greg KH <greg@kroah.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Nigel Cunningham <nigel@nigel.suspend2.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit bd53f96ca5.
Con says:
This is no good, sorry. The one I saw originally was with the staircase
deadline cpu scheduler in situ and was different.
#define TASK_PREEMPTS_CURR(p, rq) \
((p)->prio < (rq)->curr->prio)
(((p)->prio < (rq)->curr->prio) && ((p)->array == (rq)->active))
This will fail to wake up a runqueue for a task that has been migrated to the
expired array of a runqueue which is otherwise idle which can happen with smp
balancing,
Cc: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Cc: Con Kolivas <kernel@kolivas.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
irqpoll is broken on some architectures that don't use the IRQ 0 for the timer
interrupt like IA64. This patch adds a IRQF_IRQPOLL flag.
Each architecture is handled in a separate pach. As I left the irq == 0 as
condition, this should not break existing architectures that use timer_irq ==
0 and that I did't address with that patch (because I don't know).
This patch:
This patch adds a IRQF_IRQPOLL flag that the interrupt registration code could
use for the interrupt it wants to use for IRQ polling.
Because this must not be the timer interrupt, an additional flag was added
instead of re-using the IRQF_TIMER constant. Until all architectures will
have an IRQF_IRQPOLL interrupt, irq == 0 will stay as alternative as it should
not break anything.
Also, note_interrupt() is called on CPU-specific interrupts to be used as
interrupt source for IRQ polling.
Signed-off-by: Bernhard Walle <bwalle@suse.de>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Matthew Wilcox <willy@debian.org>
Cc: Grant Grundler <grundler@google.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch provides a debugfs knob to turn kprobes on/off
o A new file /debug/kprobes/enabled indicates if kprobes is enabled or
not (default enabled)
o Echoing 0 to this file will disarm all installed probes
o Any new probe registration when disabled will register the probe but
not arm it. A message will be printed out in such a case.
o When a value 1 is echoed to the file, all probes (including ones
registered in the intervening period) will be enabled
o Unregistration will happen irrespective of whether probes are globally
enabled or not.
o Update Documentation/kprobes.txt to reflect these changes. While there
also update the doc to make it current.
We are also looking at providing sysrq key support to tie to the disabling
feature provided by this patch.
[akpm@linux-foundation.org: Use bool like a bool!]
[akpm@linux-foundation.org: add printk facility levels]
[cornelia.huck@de.ibm.com: Add the missing arch_trampoline_kprobe() for s390]
Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Srinivasa DS <srinivasa@in.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- consolidate duplicate code in all arch_prepare_kretprobe instances
into common code
- replace various odd helpers that use hlist_for_each_entry to get
the first elemenet of a list with either a hlist_for_each_entry_save
or an opencoded access to the first element in the caller
- inline add_rp_inst into it's only remaining caller
- use kretprobe_inst_table_head instead of opencoding it
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Acked-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The for loop in rcutorture_init uses the condition
cur_ops = torture_ops[i], cur_ops
but then makes the same assignment to cur_ops inside the loop. Remove the
redundant assignment inside the loop, and remove now-unnecessary braces.
Signed-off-by: Josh Triplett <josh@kernel.org>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use ARRAY_SIZE macro already defined in kernel.h
Signed-off-by: Ahmed S. Darwish <darwish.07@gmail.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Align the per cpu runqueue to the cacheline boundary. This will minimize
the number of cachelines touched during remote wakeup.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Ravikiran G Thirumalai <kiran@scalex86.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Make TASK_PREEMPTS_CURR(task, rq) return "true" only if the task's prio
is higher than the current's one and the task is in the "active" array.
This ensures we don't make redundant resched_task() calls when the task
is in the "expired" array (as may happen now in set_user_prio(),
rt_mutex_setprio() and pull_task() ) ;
- generalise conditions for a call to resched_task() in set_user_nice(),
rt_mutex_setprio() and sched_setscheduler()
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Cc: Con Kolivas <kernel@kolivas.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a logical cpu 'x' already has more than one process running, then most
likely the siblings of that cpu 'x' must be busy. Otherwise the idle
siblings would have likely(in most of the scenarios) picked up the extra
load making the load on 'x' atmost one.
Use this logic to eliminate the siblings status check and minimize the cache
misses encountered on a heavily loaded system.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I noticed expensive divides done in try_to_wakeup() and
find_busiest_group() on a bi dual core Opteron machine (total of 4 cores),
moderatly loaded (15.000 context switch per second)
oprofile numbers :
CPU: AMD64 processors, speed 2600.05 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Cycles outside of halt state) with a unit
mask of 0x00 (No unit mask) count 50000
samples % symbol name
...
613914 1.0498 try_to_wake_up
834 0.0013 :ffffffff80227ae1: div %rcx
77513 0.1191 :ffffffff80227ae4: mov %rax,%r11
608893 1.0413 find_busiest_group
1841 0.0031 :ffffffff802260bf: div %rdi
140109 0.2394 :ffffffff802260c2: test %sil,%sil
Some of these divides can use the reciprocal divides we introduced some
time ago (currently used in slab AFAIK)
We can assume a load will fit in a 32bits number, because with a
SCHED_LOAD_SCALE=128 value, its still a theorical limit of 33554432
When/if we reach this limit one day, probably cpus will have a fast
hardware divide and we can zap the reciprocal divide trick.
Ingo suggested to rename cpu_power to __cpu_power to make clear it should
not be modified without changing its reciprocal value too.
I did not convert the divide in cpu_avg_load_per_task(), because tracking
nr_running changes may be not worth it ? We could use a static table of 32
reciprocal values but it would add a conditional branch and table lookup.
[akpm@linux-foundation.org: !SMP build fix]
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the process idle load balancing in the presence of dynticks. cpus for
which ticks are stopped will sleep till the next event wakes it up.
Potentially these sleeps can be for large durations and during which today,
there is no periodic idle load balancing being done.
This patch nominates an owner among the idle cpus, which does the idle load
balancing on behalf of the other idle cpus. And once all the cpus are
completely idle, then we can stop this idle load balancing too. Checks added
in fast path are minimized. Whenever there are busy cpus in the system, there
will be an owner(idle cpu) doing the system wide idle load balancing.
Open items:
1. Intelligent owner selection (like an idle core in a busy package).
2. Merge with rcu's nohz_cpu_mask?
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Periodic load balancing in recent kernels happen in the softirq. In
certain -rt configurations, these softirqs are handled in softirqd context.
And hence the check for idle processor was always returning busy (as
nr_running > 1).
This patch captures the idle information at the tick and passes this info
to softirq context through an element 'idle_at_tick' in rq.
[kernel@kolivas.org: Fix reverse idle at tick logic]
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Other symbols of the hrtimers API are already exported.
Signed-off-by: Stas Sergeev <stsp@aknet.ru>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>