If a raid1 has only one working drive and it has a sector which
gives an error on read, then an attempt to recover onto a spare will
fail, but as the single remaining drive is not removed from the
array, the recovery will be immediately re-attempted, resulting
in an infinite recovery loop.
So detect this situation and don't retry recovery once an error
on the lone remaining drive is detected.
Allow recovery to be retried once every time a spare is added
in case the problem wasn't actually a media error.
Signed-off-by: NeilBrown <neilb@suse.de>
Using sequential numbers to identify md devices is somewhat artificial.
Using names can be a lot more user-friendly.
Also, creating md devices by opening the device special file is a bit
awkward.
So this patch provides a new option for creating and naming devices.
Writing a name such as "md_home" to
/sys/modules/md_mod/parameters/new_array
will cause an array with that name to be created. It will appear in
/sys/block/ /proc/partitions and /proc/mdstat as 'md_home'.
It will have an arbitrary minor number allocated.
md devices that a created by an open are destroyed on the last
close when the device is inactive.
For named md devices, they will not be destroyed until the array
is explicitly stopped, either with the STOP_ARRAY ioctl or by
writing 'clear' to /sys/block/md_XXXX/md/array_state.
The name of the array must start 'md_' to avoid conflict with
other devices.
Signed-off-by: NeilBrown <neilb@suse.de>
Currently md devices, once created, never disappear until the module
is unloaded. This is essentially because the gendisk holds a
reference to the mddev, and the mddev holds a reference to the
gendisk, this a circular reference.
If we drop the reference from mddev to gendisk, then we need to ensure
that the mddev is destroyed when the gendisk is destroyed. However it
is not possible to hook into the gendisk destruction process to enable
this.
So we drop the reference from the gendisk to the mddev and destroy the
gendisk when the mddev gets destroyed. However this has a
complication.
Between the call
__blkdev_get->get_gendisk->kobj_lookup->md_probe
and the call
__blkdev_get->md_open
there is no obvious way to hold a reference on the mddev any more, so
unless something is done, it will disappear and gendisk will be
destroyed prematurely.
Also, once we decide to destroy the mddev, there will be an unlockable
moment before the gendisk is unlinked (blk_unregister_region) during
which a new reference to the gendisk can be created. We need to
ensure that this reference can not be used. i.e. the ->open must
fail.
So:
1/ in md_probe we set a flag in the mddev (hold_active) which
indicates that the array should be treated as active, even
though there are no references, and no appearance of activity.
This is cleared by md_release when the device is closed if it
is no longer needed.
This ensures that the gendisk will survive between md_probe and
md_open.
2/ In md_open we check if the mddev we expect to open matches
the gendisk that we did open.
If there is a mismatch we return -ERESTARTSYS and modify
__blkdev_get to retry from the top in that case.
In the -ERESTARTSYS sys case we make sure to wait until
the old gendisk (that we succeeded in opening) is really gone so
we loop at most once.
Some udev configurations will always open an md device when it first
appears. If we allow an md device that was just created by an open
to disappear on an immediate close, then this can race with such udev
configurations and result in an infinite loop the device being opened
and closed, then re-open due to the 'ADD' even from the first open,
and then close and so on.
So we make sure an md device, once created by an open, remains active
at least until some md 'ioctl' has been made on it. This means that
all normal usage of md devices will allow them to disappear promptly
when not needed, but the worst that an incorrect usage will do it
cause an inactive md device to be left in existence (it can easily be
removed).
As an array can be stopped by writing to a sysfs attribute
echo clear > /sys/block/mdXXX/md/array_state
we need to use scheduled work for deleting the gendisk and other
kobjects. This allows us to wait for any pending gendisk deletion to
complete by simply calling flush_scheduled_work().
Signed-off-by: NeilBrown <neilb@suse.de>
The rdev_for_each macro defined in <linux/raid/md_k.h> is identical to
list_for_each_entry_safe, from <linux/list.h>, it should be defined to
use list_for_each_entry_safe, instead of reinventing the wheel.
But some calls to each_entry_safe don't really need a safe version,
just a direct list_for_each_entry is enough, this could save a temp
variable (tmp) in every function that used rdev_for_each.
In this patch, most rdev_for_each loops are replaced by list_for_each_entry,
totally save many tmp vars; and only in the other situations that will call
list_del to delete an entry, the safe version is used.
Signed-off-by: Cheng Renquan <crquan@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
There is no compelling need for this, but sysfs_notify_dirent is a
nicer interface and the change is good for consistency.
Signed-off-by: NeilBrown <neilb@suse.de>
The 'state' file for a device reports, for example, when the device
has failed. Changes should be reported to userspace ASAP without
the possibility of blocking on low-memory. sysfs_notify does
have that possibility (as it takes a mutex which can be held
across a kmalloc) so use sysfs_notify_dirent instead.
Signed-off-by: NeilBrown <neilb@suse.de>
Now that we have sysfs_notify_dirent, use it to notify changes
to md/array_state.
As sysfs_notify_dirent can be called in atomic context, we can
remove the delayed notify and the MD_NOTIFY_ARRAY_STATE flag.
Signed-off-by: NeilBrown <neilb@suse.de>
All modifications and most access to the mddev->disks list are made
under the reconfig_mutex lock. However there are three places where
the list is walked without any locking. If a reconfig happens at this
time, havoc (and oops) can ensue.
So use RCU to protect these accesses:
- wrap them in rcu_read_{,un}lock()
- use list_for_each_entry_rcu
- add to the list with list_add_rcu
- delete from the list with list_del_rcu
- delay the 'free' with call_rcu rather than schedule_work
Note that export_rdev did a list_del_init on this list. In almost all
cases the entry was not in the list anymore so it was a no-op and so
safe. It is no longer safe as after list_del_rcu we may not touch
the list_head.
An audit shows that export_rdev is called:
- after unbind_rdev_from_array, in which case the delete has
already been done,
- after bind_rdev_to_array fails, in which case the delete isn't needed.
- before the device has been put on a list at all (e.g. in
add_new_disk where reading the superblock fails).
- and in autorun devices after a failure when the device is on a
different list.
So remove the list_del_init call from export_rdev, and add it back
immediately before the called to export_rdev for that last case.
Note also that ->same_set is sometimes used for lists other than
mddev->list (e.g. candidates). In these cases rcu is not needed.
Signed-off-by: NeilBrown <neilb@suse.de>
Open isn't the only thing that increments ->active. e.g. reading
/proc/mdstat will increment it briefly. So to avoid false positives
in testing for concurrent access, introduce a new counter that counts
just the number of times the md device it open.
Signed-off-by: NeilBrown <neilb@suse.de>
This patch renames the array_size field of struct mddev_s to array_sectors
and converts all instances to use units of 512 byte sectors instead of 1k
blocks.
Signed-off-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: NeilBrown <neilb@suse.de>
Rename it to sb_start to make sure all users have been converted.
Signed-off-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: Neil Brown <neilb@suse.de>
The important state change happens during an interrupt
in md_error. So just set a flag there and call sysfs_notify
later in process context.
Signed-off-by: Neil Brown <neilb@suse.de>
When the 'resync' thread starts or stops, when we explicitly
set sync_action, or when we determine that there is definitely nothing
to do, we notify sync_action.
To stop "sync_action" from occasionally showing the wrong value,
we introduce a new flags - MD_RECOVERY_RECOVER - to say that a
recovery is probably needed or happening, and we make sure
that we set MD_RECOVERY_RUNNING before clearing MD_RECOVERY_NEEDED.
Signed-off-by: Neil Brown <neilb@suse.de>
This makes it possible to just resync a small part of an array.
e.g. if a drive reports that it has questionable sectors,
a 'repair' of just the region covering those sectors will
cause them to be read and, if there is an error, re-written
with correct data.
Signed-off-by: Neil Brown <neilb@suse.de>
When we get any IO error during a recovery (rebuilding a spare), we abort
the recovery and restart it.
For RAID6 (and multi-drive RAID1) it may not be best to restart at the
beginning: when multiple failures can be tolerated, the recovery may be
able to continue and re-doing all that has already been done doesn't make
sense.
We already have the infrastructure to record where a recovery is up to
and restart from there, but it is not being used properly.
This is because:
- We sometimes abort with MD_RECOVERY_ERR rather than just MD_RECOVERY_INTR,
which causes the recovery not be be checkpointed.
- We remove spares and then re-added them which loses important state
information.
The distinction between MD_RECOVERY_ERR and MD_RECOVERY_INTR really isn't
needed. If there is an error, the relevant drive will be marked as
Faulty, and that is enough to ensure correct handling of the error. So we
first remove MD_RECOVERY_ERR, changing some of the uses of it to
MD_RECOVERY_INTR.
Then we cause the attempt to remove a non-faulty device from an array to
fail (unless recovery is impossible as the array is too degraded). Then
when remove_and_add_spares attempts to remove the devices on which
recovery can continue, it will fail, they will remain in place, and
recovery will continue on them as desired.
Issue: If we are halfway through rebuilding a spare and another drive
fails, and a new spare is immediately available, do we want to:
1/ complete the current rebuild, then go back and rebuild the new spare or
2/ restart the rebuild from the start and rebuild both devices in
parallel.
Both options can be argued for. The code currently takes option 2 as
a/ this requires least code change
b/ this results in a minimally-degraded array in minimal time.
Cc: "Eivind Sarto" <ivan@kasenna.com>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some configurations, a raid6 resync can be limited by CPU speed
(Calculating P and Q and moving data) rather than by device speed. In
these cases there is nothing to be gained byt serialising resync of arrays
that share a device, and doing the resync in parallel can provide benefit.
So add a sysfs tunable to flag an array as being allowed to resync in
parallel with other arrays that use (a different part of) the same device.
Signed-off-by: Bernd Schubert <bs@q-leap.de>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allows a userspace metadata handler to take action upon detecting a device
failure.
Based on an original patch by Neil Brown.
Changes:
-added blocked_wait waitqueue to rdev
-don't qualify Blocked with Faulty always let userspace block writes
-added md_wait_for_blocked_rdev to wait for the block device to be clear, if
userspace misses the notification another one is sent every 5 seconds
-set MD_RECOVERY_NEEDED after clearing "blocked"
-kill DoBlock flag, just test mddev->external
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a raid1 array is stopped, all components currently get added to the list
for auto-detection. However we should really only add components that were
found by autodetection in the first place. So add a flag to record that
information, and use it.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Finish ITERATE_ to for_each conversion.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As this is more in line with common practice in the kernel. Also swap the
args around to be more like list_for_each.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, a given device is "claimed" by a particular array so that it cannot
be used by other arrays.
This is not ideal for DDF and other metadata schemes which have their own
partitioning concept.
So for externally managed metadata, just claim the device for md in general,
require that "offset" and "size" are set properly for each device, and make
sure that if a device is included in different arrays then the active sections
do not overlap.
This involves adding another flag to the rdev which makes it awkward to set
"->flags = 0" to clear certain flags. So now clear flags explicitly by name
when we want to clear things.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows userspace to control resync/reshape progress and synchronise it
with other activities, such as shared access in a SAN, or backing up critical
sections during a tricky reshape.
Writing a number of sectors (which must be a multiple of the chunk size if
such is meaningful) causes a resync to pause when it gets to that point.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Add a state flag 'external' to indicate that the metadata is managed
externally (by user-space) so important changes need to be
left of user-space to handle.
Alternates are non-persistant ('none') where there is no stable metadata -
after the array is stopped there is no record of it's status - and
internal which can be version 0.90 or version 1.x
These are selected by writing to the 'metadata' attribute.
- move the updating of superblocks (sync_sbs) to after we have checked if
there are any superblocks or not.
- New array state 'write_pending'. This means that the metadata records
the array as 'clean', but a write has been requested, so the metadata has
to be updated to record a 'dirty' array before the write can continue.
This change is reported to md by writing 'active' to the array_state
attribute.
- tidy up marking of sb_dirty:
- don't set sb_dirty when resync finishes as md_check_recovery
calls md_update_sb when the sync thread finishes anyway.
- Don't set sb_dirty in multipath_run as the array might not be dirty.
- don't mark superblock dirty when switching to 'clean' if there
is no internal superblock (if external, userspace can choose to
update the superblock whenever it chooses to).
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some of the code has been gradually transitioned to using the proper
struct request_queue, but there's lots left. So do a full sweet of
the kernel and get rid of this typedef and replace its uses with
the proper type.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Don't use 'unsigned' variable to track sync vs non-sync IO, as the only thing
we want to do with them is a signed comparison, and fix up the comment which
had become quite wrong.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 5b479c91da.
Quoth Neil Brown:
"It causes an oops when auto-detecting raid arrays, and it doesn't
seem easy to fix.
The array may not be 'open' when do_md_run is called, so
bdev->bd_disk might be NULL, so bd_set_size can oops.
This whole approach of opening an md device before it has been
assembled just seems to get more and more painful. I think I'm going
to have to come up with something clever to provide both backward
comparability with usage expectation, and sane integration into the
rest of the kernel."
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
md currently uses ->media_changed to make sure rescan_partitions
is call on md array after they are assembled.
However that doesn't happen until the array is opened, which is later
than some people would like.
So use blkdev_ioctl to do the rescan immediately that the
array has been assembled.
This means we can remove all the ->change infrastructure as it was only used
to trigger a partition rescan.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A device can be removed from an md array via e.g.
echo remove > /sys/block/md3/md/dev-sde/state
This will try to remove the 'dev-sde' subtree which will deadlock
since
commit e7b0d26a86
With this patch we run the kobject_del via schedule_work so as to
avoid the deadlock.
Cc: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Once upon a time we needed to fixed limit to the number of md devices,
probably because we preallocated some array. This need no longer exists, but
we still have an arbitrary limit.
So remove MAX_MD_DEVS and allow as many devices as we can fit into the 'minor'
part of a device number.
Also remove some useless noise at init time (which reports MAX_MD_DEVS) and
remove MD_THREAD_NAME_MAX which hasn't been used for a while.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Instead of magic numbers (0,1,2,3) in sb_dirty, we have
some flags instead:
MD_CHANGE_DEVS
Some device state has changed requiring superblock update
on all devices.
MD_CHANGE_CLEAN
The array has transitions from 'clean' to 'dirty' or back,
requiring a superblock update on active devices, but possibly
not on spares
MD_CHANGE_PENDING
A superblock update is underway.
We wait for an update to complete by waiting for all flags to be clear. A
flag can be set at any time, even during an update, without risk that the
change will be lost.
Stop exporting md_update_sb - isn't needed.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We introduced 'io_sectors' recently so we could count the sectors that causes
io during resync separate from sectors which didn't cause IO - there can be a
difference if a bitmap is being used to accelerate resync.
However when a speed is reported, we find the number of sectors processed
recently by subtracting an oldish io_sectors count from a current
'curr_resync' count. This is wrong because curr_resync counts all sectors,
not just io sectors.
So, add a field to mddev to store the curren io_sectors separately from
curr_resync, and use that in the calculations.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- record the 'event' count on each individual device (they
might sometimes be slightly different now)
- add a new value for 'sb_dirty': '3' means that the super
block only needs to be updated to record a clean<->dirty
transition.
- Prefer odd event numbers for dirty states and even numbers
for clean states
- Using all the above, don't update the superblock on
a spare device if the update is just doing a clean-dirty
transition. To accomodate this, a transition from
dirty back to clean might now decrement the events counter
if nothing else has changed.
The net effect of this is that spare drives will not see any IO requests
during normal running of the array, so they can go to sleep if that is what
they want to do.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
For a while we have had checkpointing of resync. The version-1 superblock
allows recovery to be checkpointed as well, and this patch implements that.
Due to early carelessness we need to add a feature flag to signal that the
recovery_offset field is in use, otherwise older kernels would assume that a
partially recovered array is in fact fully recovered.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The largest chunk size the code can support without substantial surgery is
2^30 bytes, so make that the limit instead of an arbitrary 4Meg. Some day,
the 'chunksize' should change to a sector-shift instead of a byte-count. Then
no limit would be needed.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
... being careful that mutex_trylock is inverted wrt down_trylock
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This allows user-space to access data safely. This is needed for raid5
reshape as user-space needs to take a backup of the first few stripes before
allowing reshape to commence.
It will also be useful in cluster-aware raid1 configurations so that all
cluster members can leave a section of the array untouched while a
resync/recovery happens.
A 'start' and 'end' of the suspended range are written to 2 sysfs attributes.
Note that only one range can be suspended at a time.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
check_reshape checks validity and does things that can be done instantly -
like adding devices to raid1. start_reshape initiates a restriping process to
convert the whole array.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We allow the superblock to record an 'old' and a 'new' geometry, and a
position where any conversion is up to. The geometry allows for changing
chunksize, layout and level as well as number of devices.
When using verion-0.90 superblock, we convert the version to 0.91 while the
conversion is happening so that an old kernel will refuse the assemble the
array. For version-1, we use a feature bit for the same effect.
When starting an array we check for an incomplete reshape and restart the
reshape process if needed. If the reshape stopped at an awkward time (like
when updating the first stripe) we refuse to assemble the array, and let
user-space worry about it.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch provides the core of the resize/expand process.
sync_request notices if a 'reshape' is happening and acts accordingly.
It allocated new stripe_heads for the next chunk-wide-stripe in the target
geometry, marking them STRIPE_EXPANDING.
Then it finds which stripe heads in the old geometry can provide data needed
by these and marks them STRIPE_EXPAND_SOURCE. This causes stripe_handle to
read all blocks on those stripes.
Once all blocks on a STRIPE_EXPAND_SOURCE stripe_head are read, any that are
needed are copied into the corresponding STRIPE_EXPANDING stripe_head. Once a
STRIPE_EXPANDING stripe_head is full, it is marks STRIPE_EXPAND_READY and then
is written out and released.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Also export current (average) speed and status in sysfs.
Signed-off-by: Neil Brown <neilb@suse.de>
Acked-by: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Store this total in superblock (As appropriate), and make it available to
userspace via sysfs.
Signed-off-by: Neil Brown <neilb@suse.de>
Acked-by: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
.. because they aren't used outside md.c
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
md sometimes call put_page on NULL pointers (treating it like kfree). This is
not safe, so define and use a 'safe_put_page' which checks for NULL.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
md supports multiple different RAID level, each being implemented by a
'personality' (which is often in a separate module).
These personalities have fairly artificial 'numbers'. The numbers
are use to:
1- provide an index into an array where the various personalities
are recorded
2- identify the module (via an alias) which implements are particular
personality.
Neither of these uses really justify the existence of personality numbers.
The array can be replaced by a linked list which is searched (array lookup
only happens very rarely). Module identification can be done using an alias
based on level rather than 'personality' number.
The current 'raid5' modules support two level (4 and 5) but only one
personality. This slight awkwardness (which was handled in the mapping from
level to personality) can be better handled by allowing raid5 to register 2
personalities.
With this change in place, the core md module does not need to have an
exhaustive list of all possible personalities, so other personalities can be
added independently.
This patch also moves the check for chunksize being non-zero into the ->run
routines for the personalities that need it, rather than having it in core-md.
This has a side effect of allowing 'faulty' and 'linear' not to have a
chunk-size set.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
See patch to md.txt for more details
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There are a few loose ends following the conversion of md to use kthreads:
- Some fields in mdk_thread_t that aren't needed (kthreads does it's own
completion and manages it's own name).
- thread->run is now never NULL, so no need to check
- Some tests for signal_pending that aren't needed (As we don't use signals
to stop threads any more)
- Some flush_signals are not needed
- Some waits are interruptible and don't need to be.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We can only accept BARRIER requests if all slaves handle
barriers, and that can, of course, change with time....
So we keep track of whether the whole array seems safe for barriers,
and also whether each individual rdev handles barriers.
We initially assumes barriers are OK.
When writing the superblock we try a barrier, and if that fails, we flag
things for no-barriers. This will usually clear the flags fairly quickly.
If writing the superblock finds that BIO_RW_BARRIER is -ENOTSUPP, we need to
resubmit, so introduce function "md_super_wait" which waits for requests to
finish, and retries ENOTSUPP requests without the barrier flag.
When writing the real raid1, write requests which were BIO_RW_BARRIER but
which aresn't supported need to be retried. So raid1d is enhanced to do this,
and when any bio write completes (i.e. no retry needed) we remove it from the
r1bio, so that devices needing retry are easy to find.
We should hardly ever get -ENOTSUPP errors when writing data to the raid.
It should only happen if:
1/ the device used to support BARRIER, but now doesn't. Few devices
change like this, though raid1 can!
or
2/ the array has no persistent superblock, so there was no opportunity to
pre-test for barriers when writing the superblock.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>