Commit graph

97 commits

Author SHA1 Message Date
Daniel Borkmann
a1b14d27ed bpf: fix branch offset adjustment on backjumps after patching ctx expansion
When ctx access is used, the kernel often needs to expand/rewrite
instructions, so after that patching, branch offsets have to be
adjusted for both forward and backward jumps in the new eBPF program,
but for backward jumps it fails to account the delta. Meaning, for
example, if the expansion happens exactly on the insn that sits at
the jump target, it doesn't fix up the back jump offset.

Analysis on what the check in adjust_branches() is currently doing:

  /* adjust offset of jmps if necessary */
  if (i < pos && i + insn->off + 1 > pos)
    insn->off += delta;
  else if (i > pos && i + insn->off + 1 < pos)
    insn->off -= delta;

First condition (forward jumps):

  Before:                         After:

  insns[0]                        insns[0]
  insns[1] <--- i/insn            insns[1] <--- i/insn
  insns[2] <--- pos               insns[P] <--- pos
  insns[3]                        insns[P]  `------| delta
  insns[4] <--- target_X          insns[P]   `-----|
  insns[5]                        insns[3]
                                  insns[4] <--- target_X
                                  insns[5]

First case is if we cross pos-boundary and the jump instruction was
before pos. This is handeled correctly. I.e. if i == pos, then this
would mean our jump that we currently check was the patchlet itself
that we just injected. Since such patchlets are self-contained and
have no awareness of any insns before or after the patched one, the
delta is correctly not adjusted. Also, for the second condition in
case of i + insn->off + 1 == pos, means we jump to that newly patched
instruction, so no offset adjustment are needed. That part is correct.

Second condition (backward jumps):

  Before:                         After:

  insns[0]                        insns[0]
  insns[1] <--- target_X          insns[1] <--- target_X
  insns[2] <--- pos <-- target_Y  insns[P] <--- pos <-- target_Y
  insns[3]                        insns[P]  `------| delta
  insns[4] <--- i/insn            insns[P]   `-----|
  insns[5]                        insns[3]
                                  insns[4] <--- i/insn
                                  insns[5]

Second interesting case is where we cross pos-boundary and the jump
instruction was after pos. Backward jump with i == pos would be
impossible and pose a bug somewhere in the patchlet, so the first
condition checking i > pos is okay only by itself. However, i +
insn->off + 1 < pos does not always work as intended to trigger the
adjustment. It works when jump targets would be far off where the
delta wouldn't matter. But, for example, where the fixed insn->off
before pointed to pos (target_Y), it now points to pos + delta, so
that additional room needs to be taken into account for the check.
This means that i) both tests here need to be adjusted into pos + delta,
and ii) for the second condition, the test needs to be <= as pos
itself can be a target in the backjump, too.

Fixes: 9bac3d6d54 ("bpf: allow extended BPF programs access skb fields")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-10 16:56:47 -05:00
Alexei Starovoitov
e03e7ee34f perf/bpf: Convert perf_event_array to use struct file
Robustify refcounting.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Wang Nan <wangnan0@huawei.com>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160126045947.GA40151@ast-mbp.thefacebook.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-29 08:35:25 +01:00
Rabin Vincent
229394e8e6 net: bpf: reject invalid shifts
On ARM64, a BUG() is triggered in the eBPF JIT if a filter with a
constant shift that can't be encoded in the immediate field of the
UBFM/SBFM instructions is passed to the JIT.  Since these shifts
amounts, which are negative or >= regsize, are invalid, reject them in
the eBPF verifier and the classic BPF filter checker, for all
architectures.

Signed-off-by: Rabin Vincent <rabin@rab.in>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-12 17:06:53 -05:00
tom.leiming@gmail.com
688ecfe602 bpf: hash: use per-bucket spinlock
Both htab_map_update_elem() and htab_map_delete_elem() can be
called from eBPF program, and they may be in kernel hot path,
so it isn't efficient to use a per-hashtable lock in this two
helpers.

The per-hashtable spinlock is used for protecting bucket's
hlist, and per-bucket lock is just enough. This patch converts
the per-hashtable lock into per-bucket spinlock, so that
contention can be decreased a lot.

Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-29 15:13:44 -05:00
tom.leiming@gmail.com
45d8390c56 bpf: hash: move select_bucket() out of htab's spinlock
The spinlock is just used for protecting the per-bucket
hlist, so it isn't needed for selecting bucket.

Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-29 15:13:44 -05:00
tom.leiming@gmail.com
6591f1e666 bpf: hash: use atomic count
Preparing for removing global per-hashtable lock, so
the counter need to be defined as aotmic_t first.

Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-29 15:13:43 -05:00
Daniel Borkmann
8b614aebec bpf: move clearing of A/X into classic to eBPF migration prologue
Back in the days where eBPF (or back then "internal BPF" ;->) was not
exposed to user space, and only the classic BPF programs internally
translated into eBPF programs, we missed the fact that for classic BPF
A and X needed to be cleared. It was fixed back then via 83d5b7ef99
("net: filter: initialize A and X registers"), and thus classic BPF
specifics were added to the eBPF interpreter core to work around it.

This added some confusion for JIT developers later on that take the
eBPF interpreter code as an example for deriving their JIT. F.e. in
f75298f5c3 ("s390/bpf: clear correct BPF accumulator register"), at
least X could leak stack memory. Furthermore, since this is only needed
for classic BPF translations and not for eBPF (verifier takes care
that read access to regs cannot be done uninitialized), more complexity
is added to JITs as they need to determine whether they deal with
migrations or native eBPF where they can just omit clearing A/X in
their prologue and thus reduce image size a bit, see f.e. cde66c2d88
("s390/bpf: Only clear A and X for converted BPF programs"). In other
cases (x86, arm64), A and X is being cleared in the prologue also for
eBPF case, which is unnecessary.

Lets move this into the BPF migration in bpf_convert_filter() where it
actually belongs as long as the number of eBPF JITs are still few. It
can thus be done generically; allowing us to remove the quirk from
__bpf_prog_run() and to slightly reduce JIT image size in case of eBPF,
while reducing code duplication on this matter in current(/future) eBPF
JITs.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Tested-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Cc: Zi Shen Lim <zlim.lnx@gmail.com>
Cc: Yang Shi <yang.shi@linaro.org>
Acked-by: Yang Shi <yang.shi@linaro.org>
Acked-by: Zi Shen Lim <zlim.lnx@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-18 16:04:51 -05:00
Daniel Borkmann
bb35a6ef7d bpf, inode: allow for rename and link ops
Add support for renaming and hard links to the fs. Most of this can be
implemented by using simple library operations under the same constraints
that we don't use a reserved name like elsewhere. Linking can be useful
to share/manage things like maps across subsystem users. It works within
the file system boundary, but is not allowed for directories.

Symbolic links are explicitly not implemented here, as it can be better
done already by doing bind mounts inside bpf fs to set up shared directories
f.e. useful when using volumes in docker containers that map a private
working directory into /sys/fs/bpf/ which contains itself a bind mounted
path from the host's /sys/fs/bpf/ mount that is shared among multiple
containers. For single maps instead of whole directory, hard links can
be easily used to do the same.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-12 18:44:23 -05:00
David S. Miller
f188b951f3 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Conflicts:
	drivers/net/ethernet/renesas/ravb_main.c
	kernel/bpf/syscall.c
	net/ipv4/ipmr.c

All three conflicts were cases of overlapping changes.

Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-03 21:09:12 -05:00
Alexei Starovoitov
01b3f52157 bpf: fix allocation warnings in bpf maps and integer overflow
For large map->value_size the user space can trigger memory allocation warnings like:
WARNING: CPU: 2 PID: 11122 at mm/page_alloc.c:2989
__alloc_pages_nodemask+0x695/0x14e0()
Call Trace:
 [<     inline     >] __dump_stack lib/dump_stack.c:15
 [<ffffffff82743b56>] dump_stack+0x68/0x92 lib/dump_stack.c:50
 [<ffffffff81244ec9>] warn_slowpath_common+0xd9/0x140 kernel/panic.c:460
 [<ffffffff812450f9>] warn_slowpath_null+0x29/0x30 kernel/panic.c:493
 [<     inline     >] __alloc_pages_slowpath mm/page_alloc.c:2989
 [<ffffffff81554e95>] __alloc_pages_nodemask+0x695/0x14e0 mm/page_alloc.c:3235
 [<ffffffff816188fe>] alloc_pages_current+0xee/0x340 mm/mempolicy.c:2055
 [<     inline     >] alloc_pages include/linux/gfp.h:451
 [<ffffffff81550706>] alloc_kmem_pages+0x16/0xf0 mm/page_alloc.c:3414
 [<ffffffff815a1c89>] kmalloc_order+0x19/0x60 mm/slab_common.c:1007
 [<ffffffff815a1cef>] kmalloc_order_trace+0x1f/0xa0 mm/slab_common.c:1018
 [<     inline     >] kmalloc_large include/linux/slab.h:390
 [<ffffffff81627784>] __kmalloc+0x234/0x250 mm/slub.c:3525
 [<     inline     >] kmalloc include/linux/slab.h:463
 [<     inline     >] map_update_elem kernel/bpf/syscall.c:288
 [<     inline     >] SYSC_bpf kernel/bpf/syscall.c:744

To avoid never succeeding kmalloc with order >= MAX_ORDER check that
elem->value_size and computed elem_size are within limits for both hash and
array type maps.
Also add __GFP_NOWARN to kmalloc(value_size | elem_size) to avoid OOM warnings.
Note kmalloc(key_size) is highly unlikely to trigger OOM, since key_size <= 512,
so keep those kmalloc-s as-is.

Large value_size can cause integer overflows in elem_size and map.pages
formulas, so check for that as well.

Fixes: aaac3ba95e ("bpf: charge user for creation of BPF maps and programs")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-02 23:36:00 -05:00
Daniel Borkmann
fbca9d2d35 bpf, array: fix heap out-of-bounds access when updating elements
During own review but also reported by Dmitry's syzkaller [1] it has been
noticed that we trigger a heap out-of-bounds access on eBPF array maps
when updating elements. This happens with each map whose map->value_size
(specified during map creation time) is not multiple of 8 bytes.

In array_map_alloc(), elem_size is round_up(attr->value_size, 8) and
used to align array map slots for faster access. However, in function
array_map_update_elem(), we update the element as ...

memcpy(array->value + array->elem_size * index, value, array->elem_size);

... where we access 'value' out-of-bounds, since it was allocated from
map_update_elem() from syscall side as kmalloc(map->value_size, GFP_USER)
and later on copied through copy_from_user(value, uvalue, map->value_size).
Thus, up to 7 bytes, we can access out-of-bounds.

Same could happen from within an eBPF program, where in worst case we
access beyond an eBPF program's designated stack.

Since 1be7f75d16 ("bpf: enable non-root eBPF programs") didn't hit an
official release yet, it only affects priviledged users.

In case of array_map_lookup_elem(), the verifier prevents eBPF programs
from accessing beyond map->value_size through check_map_access(). Also
from syscall side map_lookup_elem() only copies map->value_size back to
user, so nothing could leak.

  [1] http://github.com/google/syzkaller

Fixes: 28fbcfa08d ("bpf: add array type of eBPF maps")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-01 21:56:17 -05:00
Daniel Borkmann
c9da161c65 bpf: fix clearing on persistent program array maps
Currently, when having map file descriptors pointing to program arrays,
there's still the issue that we unconditionally flush program array
contents via bpf_fd_array_map_clear() in bpf_map_release(). This happens
when such a file descriptor is released and is independent of the map's
refcount.

Having this flush independent of the refcount is for a reason: there
can be arbitrary complex dependency chains among tail calls, also circular
ones (direct or indirect, nesting limit determined during runtime), and
we need to make sure that the map drops all references to eBPF programs
it holds, so that the map's refcount can eventually drop to zero and
initiate its freeing. Btw, a walk of the whole dependency graph would
not be possible for various reasons, one being complexity and another
one inconsistency, i.e. new programs can be added to parts of the graph
at any time, so there's no guaranteed consistent state for the time of
such a walk.

Now, the program array pinning itself works, but the issue is that each
derived file descriptor on close would nevertheless call unconditionally
into bpf_fd_array_map_clear(). Instead, keep track of users and postpone
this flush until the last reference to a user is dropped. As this only
concerns a subset of references (f.e. a prog array could hold a program
that itself has reference on the prog array holding it, etc), we need to
track them separately.

Short analysis on the refcounting: on map creation time usercnt will be
one, so there's no change in behaviour for bpf_map_release(), if unpinned.
If we already fail in map_create(), we are immediately freed, and no
file descriptor has been made public yet. In bpf_obj_pin_user(), we need
to probe for a possible map in bpf_fd_probe_obj() already with a usercnt
reference, so before we drop the reference on the fd with fdput().
Therefore, if actual pinning fails, we need to drop that reference again
in bpf_any_put(), otherwise we keep holding it. When last reference
drops on the inode, the bpf_any_put() in bpf_evict_inode() will take
care of dropping the usercnt again. In the bpf_obj_get_user() case, the
bpf_any_get() will grab a reference on the usercnt, still at a time when
we have the reference on the path. Should we later on fail to grab a new
file descriptor, bpf_any_put() will drop it, otherwise we hold it until
bpf_map_release() time.

Joint work with Alexei.

Fixes: b2197755b2 ("bpf: add support for persistent maps/progs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-25 12:14:09 -05:00
Daniel Borkmann
f99bf205da bpf: add show_fdinfo handler for maps
Add a handler for show_fdinfo() to be used by the anon-inodes
backend for eBPF maps, and dump the map specification there. Not
only useful for admins, but also it provides a minimal way to
compare specs from ELF vs pinned object.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-20 11:04:15 -05:00
Daniel Borkmann
1d056d9c95 bpf, verifier: annotate verbose printer with __printf
The verbose() printer dumps the verifier state to user space, so let gcc
take care to check calls to verbose() for (future) errors. make with W=1
correctly suggests: function might be possible candidate for 'gnu_printf'
format attribute [-Wsuggest-attribute=format].

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-03 11:29:56 -05:00
Daniel Borkmann
b2197755b2 bpf: add support for persistent maps/progs
This work adds support for "persistent" eBPF maps/programs. The term
"persistent" is to be understood that maps/programs have a facility
that lets them survive process termination. This is desired by various
eBPF subsystem users.

Just to name one example: tc classifier/action. Whenever tc parses
the ELF object, extracts and loads maps/progs into the kernel, these
file descriptors will be out of reach after the tc instance exits.
So a subsequent tc invocation won't be able to access/relocate on this
resource, and therefore maps cannot easily be shared, f.e. between the
ingress and egress networking data path.

The current workaround is that Unix domain sockets (UDS) need to be
instrumented in order to pass the created eBPF map/program file
descriptors to a third party management daemon through UDS' socket
passing facility. This makes it a bit complicated to deploy shared
eBPF maps or programs (programs f.e. for tail calls) among various
processes.

We've been brainstorming on how we could tackle this issue and various
approches have been tried out so far, which can be read up further in
the below reference.

The architecture we eventually ended up with is a minimal file system
that can hold map/prog objects. The file system is a per mount namespace
singleton, and the default mount point is /sys/fs/bpf/. Any subsequent
mounts within a given namespace will point to the same instance. The
file system allows for creating a user-defined directory structure.
The objects for maps/progs are created/fetched through bpf(2) with
two new commands (BPF_OBJ_PIN/BPF_OBJ_GET). I.e. a bpf file descriptor
along with a pathname is being passed to bpf(2) that in turn creates
(we call it eBPF object pinning) the file system nodes. Only the pathname
is being passed to bpf(2) for getting a new BPF file descriptor to an
existing node. The user can use that to access maps and progs later on,
through bpf(2). Removal of file system nodes is being managed through
normal VFS functions such as unlink(2), etc. The file system code is
kept to a very minimum and can be further extended later on.

The next step I'm working on is to add dump eBPF map/prog commands
to bpf(2), so that a specification from a given file descriptor can
be retrieved. This can be used by things like CRIU but also applications
can inspect the meta data after calling BPF_OBJ_GET.

Big thanks also to Alexei and Hannes who significantly contributed
in the design discussion that eventually let us end up with this
architecture here.

Reference: https://lkml.org/lkml/2015/10/15/925
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-02 22:48:39 -05:00
Daniel Borkmann
e9d8afa90b bpf: consolidate bpf_prog_put{, _rcu} dismantle paths
We currently have duplicated cleanup code in bpf_prog_put() and
bpf_prog_put_rcu() cleanup paths. Back then we decided that it was
not worth it to make it a common helper called by both, but with
the recent addition of resource charging, we could have avoided
the fix in commit ac00737f4e ("bpf: Need to call bpf_prog_uncharge_memlock
from bpf_prog_put") if we would have had only a single, common path.
We can simplify it further by assigning aux->prog only once during
allocation time.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-02 22:48:39 -05:00
Daniel Borkmann
c210129760 bpf: align and clean bpf_{map,prog}_get helpers
Add a bpf_map_get() function that we're going to use later on and
align/clean the remaining helpers a bit so that we have them a bit
more consistent:

  - __bpf_map_get() and __bpf_prog_get() that both work on the fd
    struct, check whether the descriptor is eBPF and return the
    pointer to the map/prog stored in the private data.

    Also, we can return f.file->private_data directly, the function
    signature is enough of a documentation already.

  - bpf_map_get() and bpf_prog_get() that both work on u32 user fd,
    call their respective __bpf_map_get()/__bpf_prog_get() variants,
    and take a reference.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-02 22:48:39 -05:00
Daniel Borkmann
aa79781b65 bpf: abstract anon_inode_getfd invocations
Since we're going to use anon_inode_getfd() invocations in more than just
the current places, make a helper function for both, so that we only need
to pass a map/prog pointer to the helper itself in order to get a fd. The
new helpers are called bpf_map_new_fd() and bpf_prog_new_fd().

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-02 22:48:39 -05:00
Yang Shi
ac00881f92 bpf: convert hashtab lock to raw lock
When running bpf samples on rt kernel, it reports the below warning:

BUG: sleeping function called from invalid context at kernel/locking/rtmutex.c:917
in_atomic(): 1, irqs_disabled(): 128, pid: 477, name: ping
Preemption disabled at:[<ffff80000017db58>] kprobe_perf_func+0x30/0x228

CPU: 3 PID: 477 Comm: ping Not tainted 4.1.10-rt8 #4
Hardware name: Freescale Layerscape 2085a RDB Board (DT)
Call trace:
[<ffff80000008a5b0>] dump_backtrace+0x0/0x128
[<ffff80000008a6f8>] show_stack+0x20/0x30
[<ffff8000007da90c>] dump_stack+0x7c/0xa0
[<ffff8000000e4830>] ___might_sleep+0x188/0x1a0
[<ffff8000007e2200>] rt_spin_lock+0x28/0x40
[<ffff80000018bf9c>] htab_map_update_elem+0x124/0x320
[<ffff80000018c718>] bpf_map_update_elem+0x40/0x58
[<ffff800000187658>] __bpf_prog_run+0xd48/0x1640
[<ffff80000017ca6c>] trace_call_bpf+0x8c/0x100
[<ffff80000017db58>] kprobe_perf_func+0x30/0x228
[<ffff80000017dd84>] kprobe_dispatcher+0x34/0x58
[<ffff8000007e399c>] kprobe_handler+0x114/0x250
[<ffff8000007e3bf4>] kprobe_breakpoint_handler+0x1c/0x30
[<ffff800000085b80>] brk_handler+0x88/0x98
[<ffff8000000822f0>] do_debug_exception+0x50/0xb8
Exception stack(0xffff808349687460 to 0xffff808349687580)
7460: 4ca2b600 ffff8083 4a3a7000 ffff8083 49687620 ffff8083 0069c5f8 ffff8000
7480: 00000001 00000000 007e0628 ffff8000 496874b0 ffff8083 007e1de8 ffff8000
74a0: 496874d0 ffff8083 0008e04c ffff8000 00000001 00000000 4ca2b600 ffff8083
74c0: 00ba2e80 ffff8000 49687528 ffff8083 49687510 ffff8083 000e5c70 ffff8000
74e0: 00c22348 ffff8000 00000000 ffff8083 49687510 ffff8083 000e5c74 ffff8000
7500: 4ca2b600 ffff8083 49401800 ffff8083 00000001 00000000 00000000 00000000
7520: 496874d0 ffff8083 00000000 00000000 00000000 00000000 00000000 00000000
7540: 2f2e2d2c 33323130 00000000 00000000 4c944500 ffff8083 00000000 00000000
7560: 00000000 00000000 008751e0 ffff8000 00000001 00000000 124e2d1d 00107b77

Convert hashtab lock to raw lock to avoid such warning.

Signed-off-by: Yang Shi <yang.shi@linaro.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-02 15:45:43 -05:00
Alexei Starovoitov
62544ce8e0 bpf: fix bpf_perf_event_read() helper
Fix safety checks for bpf_perf_event_read():
- only non-inherited events can be added to perf_event_array map
  (do this check statically at map insertion time)
- dynamically check that event is local and !pmu->count
Otherwise buggy bpf program can cause kernel splat.

Also fix error path after perf_event_attrs()
and remove redundant 'extern'.

Fixes: 35578d7984 ("bpf: Implement function bpf_perf_event_read() that get the selected hardware PMU conuter")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-26 21:49:26 -07:00
Alexei Starovoitov
a43eec3042 bpf: introduce bpf_perf_event_output() helper
This helper is used to send raw data from eBPF program into
special PERF_TYPE_SOFTWARE/PERF_COUNT_SW_BPF_OUTPUT perf_event.
User space needs to perf_event_open() it (either for one or all cpus) and
store FD into perf_event_array (similar to bpf_perf_event_read() helper)
before eBPF program can send data into it.

Today the programs triggered by kprobe collect the data and either store
it into the maps or print it via bpf_trace_printk() where latter is the debug
facility and not suitable to stream the data. This new helper replaces
such bpf_trace_printk() usage and allows programs to have dedicated
channel into user space for post-processing of the raw data collected.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-22 06:42:15 -07:00
Tom Herbert
ac00737f4e bpf: Need to call bpf_prog_uncharge_memlock from bpf_prog_put
Currently, is only called from __prog_put_rcu in the bpf_prog_release
path. Need this to call this from bpf_prog_put also to get correct
accounting.

Fixes: aaac3ba95e ("bpf: charge user for creation of BPF maps and programs")
Signed-off-by: Tom Herbert <tom@herbertland.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-16 00:55:02 -07:00
Alexei Starovoitov
aaac3ba95e bpf: charge user for creation of BPF maps and programs
since eBPF programs and maps use kernel memory consider it 'locked' memory
from user accounting point of view and charge it against RLIMIT_MEMLOCK limit.
This limit is typically set to 64Kbytes by distros, so almost all
bpf+tracing programs would need to increase it, since they use maps,
but kernel charges maximum map size upfront.
For example the hash map of 1024 elements will be charged as 64Kbyte.
It's inconvenient for current users and changes current behavior for root,
but probably worth doing to be consistent root vs non-root.

Similar accounting logic is done by mmap of perf_event.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-12 19:13:36 -07:00
Alexei Starovoitov
1be7f75d16 bpf: enable non-root eBPF programs
In order to let unprivileged users load and execute eBPF programs
teach verifier to prevent pointer leaks.
Verifier will prevent
- any arithmetic on pointers
  (except R10+Imm which is used to compute stack addresses)
- comparison of pointers
  (except if (map_value_ptr == 0) ... )
- passing pointers to helper functions
- indirectly passing pointers in stack to helper functions
- returning pointer from bpf program
- storing pointers into ctx or maps

Spill/fill of pointers into stack is allowed, but mangling
of pointers stored in the stack or reading them byte by byte is not.

Within bpf programs the pointers do exist, since programs need to
be able to access maps, pass skb pointer to LD_ABS insns, etc
but programs cannot pass such pointer values to the outside
or obfuscate them.

Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs,
so that socket filters (tcpdump), af_packet (quic acceleration)
and future kcm can use it.
tracing and tc cls/act program types still require root permissions,
since tracing actually needs to be able to see all kernel pointers
and tc is for root only.

For example, the following unprivileged socket filter program is allowed:
int bpf_prog1(struct __sk_buff *skb)
{
  u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol));
  u64 *value = bpf_map_lookup_elem(&my_map, &index);

  if (value)
	*value += skb->len;
  return 0;
}

but the following program is not:
int bpf_prog1(struct __sk_buff *skb)
{
  u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol));
  u64 *value = bpf_map_lookup_elem(&my_map, &index);

  if (value)
	*value += (u64) skb;
  return 0;
}
since it would leak the kernel address into the map.

Unprivileged socket filter bpf programs have access to the
following helper functions:
- map lookup/update/delete (but they cannot store kernel pointers into them)
- get_random (it's already exposed to unprivileged user space)
- get_smp_processor_id
- tail_call into another socket filter program
- ktime_get_ns

The feature is controlled by sysctl kernel.unprivileged_bpf_disabled.
This toggle defaults to off (0), but can be set true (1).  Once true,
bpf programs and maps cannot be accessed from unprivileged process,
and the toggle cannot be set back to false.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-12 19:13:35 -07:00
Alexei Starovoitov
ff936a04e5 bpf: fix cb access in socket filter programs
eBPF socket filter programs may see junk in 'u32 cb[5]' area,
since it could have been used by protocol layers earlier.

For socket filter programs used in af_packet we need to clean
20 bytes of skb->cb area if it could be used by the program.
For programs attached to TCP/UDP sockets we need to save/restore
these 20 bytes, since it's used by protocol layers.

Remove SK_RUN_FILTER macro, since it's no longer used.

Long term we may move this bpf cb area to per-cpu scratch, but that
requires addition of new 'per-cpu load/store' instructions,
so not suitable as a short term fix.

Fixes: d691f9e8d4 ("bpf: allow programs to write to certain skb fields")
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-11 04:40:05 -07:00
Daniel Borkmann
3ad0040573 bpf: split state from prandom_u32() and consolidate {c, e}BPF prngs
While recently arguing on a seccomp discussion that raw prandom_u32()
access shouldn't be exposed to unpriviledged user space, I forgot the
fact that SKF_AD_RANDOM extension actually already does it for some time
in cBPF via commit 4cd3675ebf ("filter: added BPF random opcode").

Since prandom_u32() is being used in a lot of critical networking code,
lets be more conservative and split their states. Furthermore, consolidate
eBPF and cBPF prandom handlers to use the new internal PRNG. For eBPF,
bpf_get_prandom_u32() was only accessible for priviledged users, but
should that change one day, we also don't want to leak raw sequences
through things like eBPF maps.

One thought was also to have own per bpf_prog states, but due to ABI
reasons this is not easily possible, i.e. the program code currently
cannot access bpf_prog itself, and copying the rnd_state to/from the
stack scratch space whenever a program uses the prng seems not really
worth the trouble and seems too hacky. If needed, taus113 could in such
cases be implemented within eBPF using a map entry to keep the state
space, or get_random_bytes() could become a second helper in cases where
performance would not be critical.

Both sides can trigger a one-time late init via prandom_init_once() on
the shared state. Performance-wise, there should even be a tiny gain
as bpf_user_rnd_u32() saves one function call. The PRNG needs to live
inside the BPF core since kernels could have a NET-less config as well.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Cc: Chema Gonzalez <chema@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 05:26:39 -07:00
Daniel Borkmann
0cdf5640e4 ebpf: include perf_event only where really needed
Commit ea317b267e ("bpf: Add new bpf map type to store the pointer
to struct perf_event") added perf_event.h to the main eBPF header, so
it gets included for all users. perf_event.h is actually only needed
from array map side, so lets sanitize this a bit.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Kaixu Xia <xiakaixu@huawei.com>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-05 07:04:08 -07:00
Daniel Borkmann
c46646d048 sched, bpf: add helper for retrieving routing realms
Using routing realms as part of the classifier is quite useful, it
can be viewed as a tag for one or multiple routing entries (think of
an analogy to net_cls cgroup for processes), set by user space routing
daemons or via iproute2 as an indicator for traffic classifiers and
later on processed in the eBPF program.

Unlike actions, the classifier can inspect device flags and enable
netif_keep_dst() if necessary. tc actions don't have that possibility,
but in case people know what they are doing, it can be used from there
as well (e.g. via devs that must keep dsts by design anyway).

If a realm is set, the handler returns the non-zero realm. User space
can set the full 32bit realm for the dst.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-03 05:02:41 -07:00
Daniel Borkmann
a91263d520 ebpf: migrate bpf_prog's flags to bitfield
As we need to add further flags to the bpf_prog structure, lets migrate
both bools to a bitfield representation. The size of the base structure
(excluding insns) remains unchanged at 40 bytes.

Add also tags for the kmemchecker, so that it doesn't throw false
positives. Even in case gcc would generate suboptimal code, it's not
being accessed in performance critical paths.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-03 05:02:39 -07:00
Alexei Starovoitov
687f07156b bpf: fix out of bounds access in verifier log
when the verifier log is enabled the print_bpf_insn() is doing
bpf_alu_string[BPF_OP(insn->code) >> 4]
and
bpf_jmp_string[BPF_OP(insn->code) >> 4]
where BPF_OP is a 4-bit instruction opcode.
Malformed insns can cause out of bounds access.
Fix it by sizing arrays appropriately.

The bug was found by clang address sanitizer with libfuzzer.

Reported-by: Yonghong Song <yhs@plumgrid.com>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-09 14:11:55 -07:00
Daniel Borkmann
592867bfab ebpf: fix fd refcount leaks related to maps in bpf syscall
We may already have gotten a proper fd struct through fdget(), so
whenever we return at the end of an map operation, we need to call
fdput(). However, each map operation from syscall side first probes
CHECK_ATTR() to verify that unused fields in the bpf_attr union are
zero.

In case of malformed input, we return with error, but the lookup to
the map_fd was already performed at that time, so that we return
without an corresponding fdput(). Fix it by performing an fdget()
only right before bpf_map_get(). The fdget() invocation on maps in
the verifier is not affected.

Fixes: db20fd2b01 ("bpf: add lookup/update/delete/iterate methods to BPF maps")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-09 12:39:34 -07:00
Wei-Chun Chao
140d8b335a bpf: fix bpf_perf_event_read() loop upper bound
Verifier rejects programs incorrectly.

Fixes: 35578d7984 ("bpf: Implement function bpf_perf_event_read()")
Cc: Kaixu Xia <xiakaixu@huawei.com>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: Wei-Chun Chao <weichunc@plumgrid.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-12 16:42:50 -07:00
Kaixu Xia
35578d7984 bpf: Implement function bpf_perf_event_read() that get the selected hardware PMU conuter
According to the perf_event_map_fd and index, the function
bpf_perf_event_read() can convert the corresponding map
value to the pointer to struct perf_event and return the
Hardware PMU counter value.

Signed-off-by: Kaixu Xia <xiakaixu@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-09 22:50:06 -07:00
Kaixu Xia
ea317b267e bpf: Add new bpf map type to store the pointer to struct perf_event
Introduce a new bpf map type 'BPF_MAP_TYPE_PERF_EVENT_ARRAY'.
This map only stores the pointer to struct perf_event. The
user space event FDs from perf_event_open() syscall are converted
to the pointer to struct perf_event and stored in map.

Signed-off-by: Kaixu Xia <xiakaixu@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-09 22:50:05 -07:00
Wang Nan
2a36f0b92e bpf: Make the bpf_prog_array_map more generic
All the map backends are of generic nature. In order to avoid
adding much special code into the eBPF core, rewrite part of
the bpf_prog_array map code and make it more generic. So the
new perf_event_array map type can reuse most of code with
bpf_prog_array map and add fewer lines of special code.

Signed-off-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Kaixu Xia <xiakaixu@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-09 22:50:05 -07:00
Alex Gartrell
24b4d2abd0 ebpf: Allow dereferences of PTR_TO_STACK registers
mov %rsp, %r1           ; r1 = rsp
        add $-8, %r1            ; r1 = rsp - 8
        store_q $123, -8(%rsp)  ; *(u64*)r1 = 123  <- valid
        store_q $123, (%r1)     ; *(u64*)r1 = 123  <- previously invalid
        mov $0, %r0
        exit                    ; Always need to exit

And we'd get the following error:

	0: (bf) r1 = r10
	1: (07) r1 += -8
	2: (7a) *(u64 *)(r10 -8) = 999
	3: (7a) *(u64 *)(r1 +0) = 999
	R1 invalid mem access 'fp'

	Unable to load program

We already know that a register is a stack address and the appropriate
offset, so we should be able to validate those references as well.

Signed-off-by: Alex Gartrell <agartrell@fb.com>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-27 00:54:10 -07:00
Alexei Starovoitov
4d9c5c53ac test_bpf: add bpf_skb_vlan_push/pop() tests
improve accuracy of timing in test_bpf and add two stress tests:
- {skb->data[0], get_smp_processor_id} repeated 2k times
- {skb->data[0], vlan_push} x 68 followed by {skb->data[0], vlan_pop} x 68

1st test is useful to test performance of JIT implementation of BPF_LD_ABS
together with BPF_CALL instructions.
2nd test is stressing skb_vlan_push/pop logic together with skb->data access
via BPF_LD_ABS insn which checks that re-caching of skb->data is done correctly.

In order to call bpf_skb_vlan_push() from test_bpf.ko have to add
three export_symbol_gpl.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-20 20:52:32 -07:00
Daniel Borkmann
c4675f9353 ebpf: remove self-assignment in interpreter's tail call
ARG1 = BPF_R1 as it stands, evaluates to regs[BPF_REG_1] = regs[BPF_REG_1]
and thus has no effect. Add a comment instead, explaining what happens and
why it's okay to just remove it. Since from user space side, a tail call is
invoked as a pseudo helper function via bpf_tail_call_proto, the verifier
checks the arguments just like with any other helper function and makes
sure that the first argument (regs[BPF_REG_1])'s type is ARG_PTR_TO_CTX.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-13 13:11:41 -07:00
Alexei Starovoitov
0756ea3e85 bpf: allow networking programs to use bpf_trace_printk() for debugging
bpf_trace_printk() is a helper function used to debug eBPF programs.
Let socket and TC programs use it as well.
Note, it's DEBUG ONLY helper. If it's used in the program,
the kernel will print warning banner to make sure users don't use
it in production.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-06-15 15:53:50 -07:00
Alexei Starovoitov
ffeedafbf0 bpf: introduce current->pid, tgid, uid, gid, comm accessors
eBPF programs attached to kprobes need to filter based on
current->pid, uid and other fields, so introduce helper functions:

u64 bpf_get_current_pid_tgid(void)
Return: current->tgid << 32 | current->pid

u64 bpf_get_current_uid_gid(void)
Return: current_gid << 32 | current_uid

bpf_get_current_comm(char *buf, int size_of_buf)
stores current->comm into buf

They can be used from the programs attached to TC as well to classify packets
based on current task fields.

Update tracex2 example to print histogram of write syscalls for each process
instead of aggregated for all.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-06-15 15:53:50 -07:00
Alexei Starovoitov
d691f9e8d4 bpf: allow programs to write to certain skb fields
allow programs read/write skb->mark, tc_index fields and
((struct qdisc_skb_cb *)cb)->data.

mark and tc_index are generically useful in TC.
cb[0]-cb[4] are primarily used to pass arguments from one
program to another called via bpf_tail_call() which can
be seen in sockex3_kern.c example.

All fields of 'struct __sk_buff' are readable to socket and tc_cls_act progs.
mark, tc_index are writeable from tc_cls_act only.
cb[0]-cb[4] are writeable by both sockets and tc_cls_act.

Add verifier tests and improve sample code.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-06-07 02:01:33 -07:00
Daniel Borkmann
3324b584b6 ebpf: misc core cleanup
Besides others, move bpf_tail_call_proto to the remaining definitions
of other protos, improve comments a bit (i.e. remove some obvious ones,
where the code is already self-documenting, add objectives for others),
simplify bpf_prog_array_compatible() a bit.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-31 21:44:44 -07:00
Daniel Borkmann
17ca8cbf49 ebpf: allow bpf_ktime_get_ns_proto also for networking
As this is already exported from tracing side via commit d9847d310a
("tracing: Allow BPF programs to call bpf_ktime_get_ns()"), we might
as well want to move it to the core, so also networking users can make
use of it, e.g. to measure diffs for certain flows from ingress/egress.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-31 21:44:44 -07:00
Alexei Starovoitov
abf2e7d6e2 bpf: add missing rcu protection when releasing programs from prog_array
Normally the program attachment place (like sockets, qdiscs) takes
care of rcu protection and calls bpf_prog_put() after a grace period.
The programs stored inside prog_array may not be attached anywhere,
so prog_array needs to take care of preserving rcu protection.
Otherwise bpf_tail_call() will race with bpf_prog_put().
To solve that introduce bpf_prog_put_rcu() helper function and use
it in 3 places where unattached program can decrement refcnt:
closing program fd, deleting/replacing program in prog_array.

Fixes: 04fd61ab36 ("bpf: allow bpf programs to tail-call other bpf programs")
Reported-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-31 00:27:51 -07:00
Alexei Starovoitov
04fd61ab36 bpf: allow bpf programs to tail-call other bpf programs
introduce bpf_tail_call(ctx, &jmp_table, index) helper function
which can be used from BPF programs like:
int bpf_prog(struct pt_regs *ctx)
{
  ...
  bpf_tail_call(ctx, &jmp_table, index);
  ...
}
that is roughly equivalent to:
int bpf_prog(struct pt_regs *ctx)
{
  ...
  if (jmp_table[index])
    return (*jmp_table[index])(ctx);
  ...
}
The important detail that it's not a normal call, but a tail call.
The kernel stack is precious, so this helper reuses the current
stack frame and jumps into another BPF program without adding
extra call frame.
It's trivially done in interpreter and a bit trickier in JITs.
In case of x64 JIT the bigger part of generated assembler prologue
is common for all programs, so it is simply skipped while jumping.
Other JITs can do similar prologue-skipping optimization or
do stack unwind before jumping into the next program.

bpf_tail_call() arguments:
ctx - context pointer
jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table
index - index in the jump table

Since all BPF programs are idenitified by file descriptor, user space
need to populate the jmp_table with FDs of other BPF programs.
If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere
and program execution continues as normal.

New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can
populate this jmp_table array with FDs of other bpf programs.
Programs can share the same jmp_table array or use multiple jmp_tables.

The chain of tail calls can form unpredictable dynamic loops therefore
tail_call_cnt is used to limit the number of calls and currently is set to 32.

Use cases:
Acked-by: Daniel Borkmann <daniel@iogearbox.net>

==========
- simplify complex programs by splitting them into a sequence of small programs

- dispatch routine
  For tracing and future seccomp the program may be triggered on all system
  calls, but processing of syscall arguments will be different. It's more
  efficient to implement them as:
  int syscall_entry(struct seccomp_data *ctx)
  {
     bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */);
     ... default: process unknown syscall ...
  }
  int sys_write_event(struct seccomp_data *ctx) {...}
  int sys_read_event(struct seccomp_data *ctx) {...}
  syscall_jmp_table[__NR_write] = sys_write_event;
  syscall_jmp_table[__NR_read] = sys_read_event;

  For networking the program may call into different parsers depending on
  packet format, like:
  int packet_parser(struct __sk_buff *skb)
  {
     ... parse L2, L3 here ...
     __u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol));
     bpf_tail_call(skb, &ipproto_jmp_table, ipproto);
     ... default: process unknown protocol ...
  }
  int parse_tcp(struct __sk_buff *skb) {...}
  int parse_udp(struct __sk_buff *skb) {...}
  ipproto_jmp_table[IPPROTO_TCP] = parse_tcp;
  ipproto_jmp_table[IPPROTO_UDP] = parse_udp;

- for TC use case, bpf_tail_call() allows to implement reclassify-like logic

- bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table
  are atomic, so user space can build chains of BPF programs on the fly

Implementation details:
=======================
- high performance of bpf_tail_call() is the goal.
  It could have been implemented without JIT changes as a wrapper on top of
  BPF_PROG_RUN() macro, but with two downsides:
  . all programs would have to pay performance penalty for this feature and
    tail call itself would be slower, since mandatory stack unwind, return,
    stack allocate would be done for every tailcall.
  . tailcall would be limited to programs running preempt_disabled, since
    generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would
    need to be either global per_cpu variable accessed by helper and by wrapper
    or global variable protected by locks.

  In this implementation x64 JIT bypasses stack unwind and jumps into the
  callee program after prologue.

- bpf_prog_array_compatible() ensures that prog_type of callee and caller
  are the same and JITed/non-JITed flag is the same, since calling JITed
  program from non-JITed is invalid, since stack frames are different.
  Similarly calling kprobe type program from socket type program is invalid.

- jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map'
  abstraction, its user space API and all of verifier logic.
  It's in the existing arraymap.c file, since several functions are
  shared with regular array map.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-21 17:07:59 -04:00
Alexei Starovoitov
876a7ae65b bpf: fix 64-bit divide
ALU64_DIV instruction should be dividing 64-bit by 64-bit,
whereas do_div() does 64-bit by 32-bit divide.
x64 and arm64 JITs correctly implement 64 by 64 unsigned divide.
llvm BPF backend emits code assuming that ALU64_DIV does 64 by 64.

Fixes: 89aa075832 ("net: sock: allow eBPF programs to be attached to sockets")
Reported-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-27 23:11:49 -04:00
Alexei Starovoitov
725f9dcd58 bpf: fix two bugs in verification logic when accessing 'ctx' pointer
1.
first bug is a silly mistake. It broke tracing examples and prevented
simple bpf programs from loading.

In the following code:
if (insn->imm == 0 && BPF_SIZE(insn->code) == BPF_W) {
} else if (...) {
  // this part should have been executed when
  // insn->code == BPF_W and insn->imm != 0
}

Obviously it's not doing that. So simple instructions like:
r2 = *(u64 *)(r1 + 8)
will be rejected. Note the comments in the code around these branches
were and still valid and indicate the true intent.

Replace it with:
if (BPF_SIZE(insn->code) != BPF_W)
  continue;

if (insn->imm == 0) {
} else if (...) {
  // now this code will be executed when
  // insn->code == BPF_W and insn->imm != 0
}

2.
second bug is more subtle.
If malicious code is using the same dest register as source register,
the checks designed to prevent the same instruction to be used with different
pointer types will fail to trigger, since we were assigning src_reg_type
when it was already overwritten by check_mem_access().
The fix is trivial. Just move line:
src_reg_type = regs[insn->src_reg].type;
before check_mem_access().
Add new 'access skb fields bad4' test to check this case.

Fixes: 9bac3d6d54 ("bpf: allow extended BPF programs access skb fields")
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-16 14:08:49 -04:00
Alexei Starovoitov
c3de6317d7 bpf: fix verifier memory corruption
Due to missing bounds check the DAG pass of the BPF verifier can corrupt
the memory which can cause random crashes during program loading:

[8.449451] BUG: unable to handle kernel paging request at ffffffffffffffff
[8.451293] IP: [<ffffffff811de33d>] kmem_cache_alloc_trace+0x8d/0x2f0
[8.452329] Oops: 0000 [#1] SMP
[8.452329] Call Trace:
[8.452329]  [<ffffffff8116cc82>] bpf_check+0x852/0x2000
[8.452329]  [<ffffffff8116b7e4>] bpf_prog_load+0x1e4/0x310
[8.452329]  [<ffffffff811b190f>] ? might_fault+0x5f/0xb0
[8.452329]  [<ffffffff8116c206>] SyS_bpf+0x806/0xa30

Fixes: f1bca824da ("bpf: add search pruning optimization to verifier")
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-16 12:06:11 -04:00
Linus Torvalds
6c373ca893 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:

 1) Add BQL support to via-rhine, from Tino Reichardt.

 2) Integrate SWITCHDEV layer support into the DSA layer, so DSA drivers
    can support hw switch offloading.  From Floria Fainelli.

 3) Allow 'ip address' commands to initiate multicast group join/leave,
    from Madhu Challa.

 4) Many ipv4 FIB lookup optimizations from Alexander Duyck.

 5) Support EBPF in cls_bpf classifier and act_bpf action, from Daniel
    Borkmann.

 6) Remove the ugly compat support in ARP for ugly layers like ax25,
    rose, etc.  And use this to clean up the neigh layer, then use it to
    implement MPLS support.  All from Eric Biederman.

 7) Support L3 forwarding offloading in switches, from Scott Feldman.

 8) Collapse the LOCAL and MAIN ipv4 FIB tables when possible, to speed
    up route lookups even further.  From Alexander Duyck.

 9) Many improvements and bug fixes to the rhashtable implementation,
    from Herbert Xu and Thomas Graf.  In particular, in the case where
    an rhashtable user bulk adds a large number of items into an empty
    table, we expand the table much more sanely.

10) Don't make the tcp_metrics hash table per-namespace, from Eric
    Biederman.

11) Extend EBPF to access SKB fields, from Alexei Starovoitov.

12) Split out new connection request sockets so that they can be
    established in the main hash table.  Much less false sharing since
    hash lookups go direct to the request sockets instead of having to
    go first to the listener then to the request socks hashed
    underneath.  From Eric Dumazet.

13) Add async I/O support for crytpo AF_ALG sockets, from Tadeusz Struk.

14) Support stable privacy address generation for RFC7217 in IPV6.  From
    Hannes Frederic Sowa.

15) Hash network namespace into IP frag IDs, also from Hannes Frederic
    Sowa.

16) Convert PTP get/set methods to use 64-bit time, from Richard
    Cochran.

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1816 commits)
  fm10k: Bump driver version to 0.15.2
  fm10k: corrected VF multicast update
  fm10k: mbx_update_max_size does not drop all oversized messages
  fm10k: reset head instead of calling update_max_size
  fm10k: renamed mbx_tx_dropped to mbx_tx_oversized
  fm10k: update xcast mode before synchronizing multicast addresses
  fm10k: start service timer on probe
  fm10k: fix function header comment
  fm10k: comment next_vf_mbx flow
  fm10k: don't handle mailbox events in iov_event path and always process mailbox
  fm10k: use separate workqueue for fm10k driver
  fm10k: Set PF queues to unlimited bandwidth during virtualization
  fm10k: expose tx_timeout_count as an ethtool stat
  fm10k: only increment tx_timeout_count in Tx hang path
  fm10k: remove extraneous "Reset interface" message
  fm10k: separate PF only stats so that VF does not display them
  fm10k: use hw->mac.max_queues for stats
  fm10k: only show actual queues, not the maximum in hardware
  fm10k: allow creation of VLAN on default vid
  fm10k: fix unused warnings
  ...
2015-04-15 09:00:47 -07:00
Alexei Starovoitov
2541517c32 tracing, perf: Implement BPF programs attached to kprobes
BPF programs, attached to kprobes, provide a safe way to execute
user-defined BPF byte-code programs without being able to crash or
hang the kernel in any way. The BPF engine makes sure that such
programs have a finite execution time and that they cannot break
out of their sandbox.

The user interface is to attach to a kprobe via the perf syscall:

	struct perf_event_attr attr = {
		.type	= PERF_TYPE_TRACEPOINT,
		.config	= event_id,
		...
	};

	event_fd = perf_event_open(&attr,...);
	ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd);

'prog_fd' is a file descriptor associated with BPF program
previously loaded.

'event_id' is an ID of the kprobe created.

Closing 'event_fd':

	close(event_fd);

... automatically detaches BPF program from it.

BPF programs can call in-kernel helper functions to:

  - lookup/update/delete elements in maps

  - probe_read - wraper of probe_kernel_read() used to access any
    kernel data structures

BPF programs receive 'struct pt_regs *' as an input ('struct pt_regs' is
architecture dependent) and return 0 to ignore the event and 1 to store
kprobe event into the ring buffer.

Note, kprobes are a fundamentally _not_ a stable kernel ABI,
so BPF programs attached to kprobes must be recompiled for
every kernel version and user must supply correct LINUX_VERSION_CODE
in attr.kern_version during bpf_prog_load() call.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1427312966-8434-4-git-send-email-ast@plumgrid.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 13:25:49 +02:00