Allows a userspace metadata handler to take action upon detecting a device
failure.
Based on an original patch by Neil Brown.
Changes:
-added blocked_wait waitqueue to rdev
-don't qualify Blocked with Faulty always let userspace block writes
-added md_wait_for_blocked_rdev to wait for the block device to be clear, if
userspace misses the notification another one is sent every 5 seconds
-set MD_RECOVERY_NEEDED after clearing "blocked"
-kill DoBlock flag, just test mddev->external
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Improve write performance by preventing the delayed_list from dumping all its
stripes onto the handle_list in one shot. Delayed stripes are now further
delayed by being held on the 'hold_list'. The 'hold_list' is bypassed when:
* a STRIPE_IO_STARTED stripe is found at the head of 'handle_list'
* 'handle_list' is empty and i/o is being done to satisfy full stripe-width
write requests
* 'bypass_count' is less than 'bypass_threshold'. By default the threshold
is 1, i.e. every other stripe handled is a preread stripe provided the
top two conditions are false.
Benchmark data:
System: 2x Xeon 5150, 4x SATA, mem=1GB
Baseline: 2.6.24-rc7
Configuration: mdadm --create /dev/md0 /dev/sd[b-e] -n 4 -l 5 --assume-clean
Test1: dd if=/dev/zero of=/dev/md0 bs=1024k count=2048
* patched: +33% (stripe_cache_size = 256), +25% (stripe_cache_size = 512)
Test2: tiobench --size 2048 --numruns 5 --block 4096 --block 131072 (XFS)
* patched: +13%
* patched + preread_bypass_threshold = 0: +37%
Changes since v1:
* reduce bypass_threshold from (chunk_size / sectors_per_chunk) to (1) and
make it configurable. This defaults to fairness and modest performance
gains out of the box.
Changes since v2:
* [neilb@suse.de]: kill STRIPE_PRIO_HI and preread_needed as they are not
necessary, the important change was clearing STRIPE_DELAYED in
add_stripe_bio and this has been moved out to make_request for the hang
fix.
* [neilb@suse.de]: simplify get_priority_stripe
* [dan.j.williams@intel.com]: reset the bypass_count when ->hold_list is
sampled empty (+11%)
* [dan.j.williams@intel.com]: decrement the bypass_count at the detection
of stripes being naturally promoted off of hold_list +2%. Note, resetting
bypass_count instead of decrementing on these events yields +4% but that is
probably too aggressive.
Changes since v3:
* cosmetic fixups
Tested-by: James W. Laferriere <babydr@baby-dragons.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
None of these files use any of the functionality promised by
asm/semaphore.h. It's possible that they (or some user of them) rely
on it dragging in some unrelated header file, but I can't build all
these files, so we'll have to fix any build failures as they come up.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
When a raid1 array is stopped, all components currently get added to the list
for auto-detection. However we should really only add components that were
found by autodetection in the first place. So add a flag to record that
information, and use it.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On an md array with a write-intent bitmap, a thread wakes up every few seconds
and scans the bitmap looking for work to do. If the array is idle, there will
be no work to do, but a lot of scanning is done to discover this.
So cache the fact that the bitmap is completely clean, and avoid scanning the
whole bitmap when the cache is known to be clean.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Finish ITERATE_ to for_each conversion.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As this is more in line with common practice in the kernel. Also swap the
args around to be more like list_for_each.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, a given device is "claimed" by a particular array so that it cannot
be used by other arrays.
This is not ideal for DDF and other metadata schemes which have their own
partitioning concept.
So for externally managed metadata, just claim the device for md in general,
require that "offset" and "size" are set properly for each device, and make
sure that if a device is included in different arrays then the active sections
do not overlap.
This involves adding another flag to the rdev which makes it awkward to set
"->flags = 0" to clear certain flags. So now clear flags explicitly by name
when we want to clear things.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows userspace to control resync/reshape progress and synchronise it
with other activities, such as shared access in a SAN, or backing up critical
sections during a tricky reshape.
Writing a number of sectors (which must be a multiple of the chunk size if
such is meaningful) causes a resync to pause when it gets to that point.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Add a state flag 'external' to indicate that the metadata is managed
externally (by user-space) so important changes need to be
left of user-space to handle.
Alternates are non-persistant ('none') where there is no stable metadata -
after the array is stopped there is no record of it's status - and
internal which can be version 0.90 or version 1.x
These are selected by writing to the 'metadata' attribute.
- move the updating of superblocks (sync_sbs) to after we have checked if
there are any superblocks or not.
- New array state 'write_pending'. This means that the metadata records
the array as 'clean', but a write has been requested, so the metadata has
to be updated to record a 'dirty' array before the write can continue.
This change is reported to md by writing 'active' to the array_state
attribute.
- tidy up marking of sb_dirty:
- don't set sb_dirty when resync finishes as md_check_recovery
calls md_update_sb when the sync thread finishes anyway.
- Don't set sb_dirty in multipath_run as the array might not be dirty.
- don't mark superblock dirty when switching to 'clean' if there
is no internal superblock (if external, userspace can choose to
update the superblock whenever it chooses to).
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently an md array with a write-intent bitmap does not updated that bitmap
to reflect successful partial resync. Rather the entire bitmap is updated
when the resync completes.
This is because there is no guarentee that resync requests will complete in
order, and tracking each request individually is unnecessarily burdensome.
However there is value in regularly updating the bitmap, so add code to
periodically pause while all pending sync requests complete, then update the
bitmap. Doing this only every few seconds (the same as the bitmap update
time) does not notciably affect resync performance.
[snitzer@gmail.com: export bitmap_cond_end_sync]
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: "Mike Snitzer" <snitzer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
bitmap_active() no longer exists and BITMAP_ACTIVE is no longer used.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some of the code has been gradually transitioned to using the proper
struct request_queue, but there's lots left. So do a full sweet of
the kernel and get rid of this typedef and replace its uses with
the proper type.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
bitmap_unplug only ever returns 0, so it may as well be void. Two callers try
to print a message if it returns non-zero, but that message is already printed
by bitmap_file_kick.
write_page returns an error which is not consistently checked. It always
causes BITMAP_WRITE_ERROR to be set on an error, and that can more
conveniently be checked.
When the return of write_page is checked, an error causes bitmap_file_kick to
be called - so move that call into write_page - and protect against recursive
calls into bitmap_file_kick.
bitmap_update_sb returns an error that is never checked.
So make these 'void' and be consistent about checking the bit.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Don't use 'unsigned' variable to track sync vs non-sync IO, as the only thing
we want to do with them is a signed comparison, and fix up the comment which
had become quite wrong.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a read bio is attached to the stripe and the corresponding block is
marked R5_UPTODATE, then a read (biofill) operation is scheduled to copy
the data from the stripe cache to the bio buffer. handle_stripe flags the
blocks to be operated on with the R5_Wantfill flag. If new read requests
arrive while raid5_run_ops is running they will not be handled until
handle_stripe is scheduled to run again.
Changelog:
* cleanup to_read and to_fill accounting
* do not fail reads that have reached the cache
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
handle_stripe will compute a block when a backing disk has failed, or when
it determines it can save a disk read by computing the block from all the
other up-to-date blocks.
Previously a block would be computed under the lock and subsequent logic in
handle_stripe could use the newly up-to-date block. With the raid5_run_ops
implementation the compute operation is carried out a later time outside
the lock. To preserve the old functionality we take advantage of the
dependency chain feature of async_tx to flag the block as R5_Wantcompute
and then let other parts of handle_stripe operate on the block as if it
were up-to-date. raid5_run_ops guarantees that the block will be ready
before it is used in another operation.
However, this only works in cases where the compute and the dependent
operation are scheduled at the same time. If a previous call to
handle_stripe sets the R5_Wantcompute flag there is no facility to pass the
async_tx dependency chain across successive calls to raid5_run_ops. The
req_compute variable protects against this case.
Changelog:
* remove the req_compute BUG_ON
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
When the raid acceleration work was proposed, Neil laid out the following
attack plan:
1/ move the xor and copy operations outside spin_lock(&sh->lock)
2/ find/implement an asynchronous offload api
The raid5_run_ops routine uses the asynchronous offload api (async_tx) and
the stripe_operations member of a stripe_head to carry out xor+copy
operations asynchronously, outside the lock.
To perform operations outside the lock a new set of state flags is needed
to track new requests, in-flight requests, and completed requests. In this
new model handle_stripe is tasked with scanning the stripe_head for work,
updating the stripe_operations structure, and finally dropping the lock and
calling raid5_run_ops for processing. The following flags outline the
requests that handle_stripe can make of raid5_run_ops:
STRIPE_OP_BIOFILL
- copy data into request buffers to satisfy a read request
STRIPE_OP_COMPUTE_BLK
- generate a missing block in the cache from the other blocks
STRIPE_OP_PREXOR
- subtract existing data as part of the read-modify-write process
STRIPE_OP_BIODRAIN
- copy data out of request buffers to satisfy a write request
STRIPE_OP_POSTXOR
- recalculate parity for new data that has entered the cache
STRIPE_OP_CHECK
- verify that the parity is correct
STRIPE_OP_IO
- submit i/o to the member disks (note this was already performed outside
the stripe lock, but it made sense to add it as an operation type
The flow is:
1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending
2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the
operation to the async_tx api
3/ async_tx triggers the completion callback routine to set
sh->ops.complete and release the stripe
4/ handle_stripe runs again to finish the operation and optionally submit
new operations that were previously blocked
Note this patch just defines raid5_run_ops, subsequent commits (one per
major operation type) modify handle_stripe to take advantage of this
routine.
Changelog:
* removed ops_complete_biodrain in favor of ops_complete_postxor and
ops_complete_write.
* removed the raid5_run_ops workqueue
* call bi_end_io for reads in ops_complete_biofill, saves a call to
handle_stripe
* explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown
* fix race between async engines and bi_end_io call for reads, Neil Brown
* remove unnecessary spin_lock from ops_complete_biofill
* remove test_and_set/test_and_clear BUG_ONs, Neil Brown
* remove explicit interrupt handling for channel switching, this feature
was absorbed (i.e. it is now implicit) by the async_tx api
* use return_io in ops_complete_biofill
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
handle_stripe5 and handle_stripe6 have very deep logic paths handling the
various states of a stripe_head. By introducing the 'stripe_head_state'
and 'r6_state' objects, large portions of the logic can be moved to
sub-routines.
'struct stripe_head_state' consumes all of the automatic variables that previously
stood alone in handle_stripe5,6. 'struct r6_state' contains the handle_stripe6
specific variables like p_failed and q_failed.
One of the nice side effects of the 'stripe_head_state' change is that it
allows for further reductions in code duplication between raid5 and raid6.
The following new routines are shared between raid5 and raid6:
handle_completed_write_requests
handle_requests_to_failed_array
handle_stripe_expansion
Changes:
* v2: fixed 'conf->raid_disk-1' for the raid6 'handle_stripe_expansion' path
* v3: removed the unused 'dirty' field from struct stripe_head_state
* v3: coalesced open coded bi_end_io routines into return_io()
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
The async_tx api provides methods for describing a chain of asynchronous
bulk memory transfers/transforms with support for inter-transactional
dependencies. It is implemented as a dmaengine client that smooths over
the details of different hardware offload engine implementations. Code
that is written to the api can optimize for asynchronous operation and the
api will fit the chain of operations to the available offload resources.
I imagine that any piece of ADMA hardware would register with the
'async_*' subsystem, and a call to async_X would be routed as
appropriate, or be run in-line. - Neil Brown
async_tx exploits the capabilities of struct dma_async_tx_descriptor to
provide an api of the following general format:
struct dma_async_tx_descriptor *
async_<operation>(..., struct dma_async_tx_descriptor *depend_tx,
dma_async_tx_callback cb_fn, void *cb_param)
{
struct dma_chan *chan = async_tx_find_channel(depend_tx, <operation>);
struct dma_device *device = chan ? chan->device : NULL;
int int_en = cb_fn ? 1 : 0;
struct dma_async_tx_descriptor *tx = device ?
device->device_prep_dma_<operation>(chan, len, int_en) : NULL;
if (tx) { /* run <operation> asynchronously */
...
tx->tx_set_dest(addr, tx, index);
...
tx->tx_set_src(addr, tx, index);
...
async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
} else { /* run <operation> synchronously */
...
<operation>
...
async_tx_sync_epilog(flags, depend_tx, cb_fn, cb_param);
}
return tx;
}
async_tx_find_channel() returns a capable channel from its pool. The
channel pool is organized as a per-cpu array of channel pointers. The
async_tx_rebalance() routine is tasked with managing these arrays. In the
uniprocessor case async_tx_rebalance() tries to spread responsibility
evenly over channels of similar capabilities. For example if there are two
copy+xor channels, one will handle copy operations and the other will
handle xor. In the SMP case async_tx_rebalance() attempts to spread the
operations evenly over the cpus, e.g. cpu0 gets copy channel0 and xor
channel0 while cpu1 gets copy channel 1 and xor channel 1. When a
dependency is specified async_tx_find_channel defaults to keeping the
operation on the same channel. A xor->copy->xor chain will stay on one
channel if it supports both operation types, otherwise the transaction will
transition between a copy and a xor resource.
Currently the raid5 implementation in the MD raid456 driver has been
converted to the async_tx api. A driver for the offload engines on the
Intel Xscale series of I/O processors, iop-adma, is provided in a later
commit. With the iop-adma driver and async_tx, raid456 is able to offload
copy, xor, and xor-zero-sum operations to hardware engines.
On iop342 tiobench showed higher throughput for sequential writes (20 - 30%
improvement) and sequential reads to a degraded array (40 - 55%
improvement). For the other cases performance was roughly equal, +/- a few
percentage points. On a x86-smp platform the performance of the async_tx
implementation (in synchronous mode) was also +/- a few percentage points
of the original implementation. According to 'top' on iop342 CPU
utilization drops from ~50% to ~15% during a 'resync' while the speed
according to /proc/mdstat doubles from ~25 MB/s to ~50 MB/s.
The tiobench command line used for testing was: tiobench --size 2048
--block 4096 --block 131072 --dir /mnt/raid --numruns 5
* iop342 had 1GB of memory available
Details:
* if CONFIG_DMA_ENGINE=n the asynchronous path is compiled away by making
async_tx_find_channel a static inline routine that always returns NULL
* when a callback is specified for a given transaction an interrupt will
fire at operation completion time and the callback will occur in a
tasklet. if the the channel does not support interrupts then a live
polling wait will be performed
* the api is written as a dmaengine client that requests all available
channels
* In support of dependencies the api implicitly schedules channel-switch
interrupts. The interrupt triggers the cleanup tasklet which causes
pending operations to be scheduled on the next channel
* Xor engines treat an xor destination address differently than a software
xor routine. To the software routine the destination address is an implied
source, whereas engines treat it as a write-only destination. This patch
modifies the xor_blocks routine to take a an explicit destination address
to mirror the hardware.
Changelog:
* fixed a leftover debug print
* don't allow callbacks in async_interrupt_cond
* fixed xor_block changes
* fixed usage of ASYNC_TX_XOR_DROP_DEST
* drop dma mapping methods, suggested by Chris Leech
* printk warning fixups from Andrew Morton
* don't use inline in C files, Adrian Bunk
* select the API when MD is enabled
* BUG_ON xor source counts <= 1
* implicitly handle hardware concerns like channel switching and
interrupts, Neil Brown
* remove the per operation type list, and distribute operation capabilities
evenly amongst the available channels
* simplify async_tx_find_channel to optimize the fast path
* introduce the channel_table_initialized flag to prevent early calls to
the api
* reorganize the code to mimic crypto
* include mm.h as not all archs include it in dma-mapping.h
* make the Kconfig options non-user visible, Adrian Bunk
* move async_tx under crypto since it is meant as 'core' functionality, and
the two may share algorithms in the future
* move large inline functions into c files
* checkpatch.pl fixes
* gpl v2 only correction
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
The async_tx api tries to use a dma engine for an operation, but will fall
back to an optimized software routine otherwise. Xor support is
implemented using the raid5 xor routines. For organizational purposes this
routine is moved to a common area.
The following fixes are also made:
* rename xor_block => xor_blocks, suggested by Adrian Bunk
* ensure that xor.o initializes before md.o in the built-in case
* checkpatch.pl fixes
* mark calibrate_xor_blocks __init, Adrian Bunk
Cc: Adrian Bunk <bunk@stusta.de>
Cc: NeilBrown <neilb@suse.de>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
It is possible that real data or metadata follows the bitmap without full page
alignment.
So limit the last write to be only the required number of bytes, rounded up to
the hard sector size of the device.
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 5b479c91da.
Quoth Neil Brown:
"It causes an oops when auto-detecting raid arrays, and it doesn't
seem easy to fix.
The array may not be 'open' when do_md_run is called, so
bdev->bd_disk might be NULL, so bd_set_size can oops.
This whole approach of opening an md device before it has been
assembled just seems to get more and more painful. I think I'm going
to have to come up with something clever to provide both backward
comparability with usage expectation, and sane integration into the
rest of the kernel."
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
md currently uses ->media_changed to make sure rescan_partitions
is call on md array after they are assembled.
However that doesn't happen until the array is opened, which is later
than some people would like.
So use blkdev_ioctl to do the rescan immediately that the
array has been assembled.
This means we can remove all the ->change infrastructure as it was only used
to trigger a partition rescan.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A device can be removed from an md array via e.g.
echo remove > /sys/block/md3/md/dev-sde/state
This will try to remove the 'dev-sde' subtree which will deadlock
since
commit e7b0d26a86
With this patch we run the kobject_del via schedule_work so as to
avoid the deadlock.
Cc: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
md/bitmap tracks how many active write requests are pending on blocks
associated with each bit in the bitmap, so that it knows when it can clear
the bit (when count hits zero).
The counter has 14 bits of space, so if there are ever more than 16383, we
cannot cope.
Currently the code just calles BUG_ON as "all" drivers have request queue
limits much smaller than this.
However is seems that some don't. Apparently some multipath configurations
can allow more than 16383 concurrent write requests.
So, in this unlikely situation, instead of calling BUG_ON we now wait
for the count to drop down a bit. This requires a new wait_queue_head,
some waiting code, and a wakeup call.
Tested by limiting the counter to 20 instead of 16383 (writes go a lot slower
in that case...).
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a GFP_KERNEL allocation is attempted in md while the mddev_lock is held,
it is possible for a deadlock to eventuate.
This happens if the array was marked 'clean', and the memalloc triggers a
write-out to the md device.
For the writeout to succeed, the array must be marked 'dirty', and that
requires getting the mddev_lock.
So, before attempting a GFP_KERNEL allocation while holding the lock, make
sure the array is marked 'dirty' (unless it is currently read-only).
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a bypass-the-cache read fails, we simply try again through the cache. If
it fails again it will trigger normal recovery precedures.
update 1:
From: NeilBrown <neilb@suse.de>
1/
chunk_aligned_read and retry_aligned_read assume that
data_disks == raid_disks - 1
which is not true for raid6.
So when an aligned read request bypasses the cache, we can get the wrong data.
2/ The cloned bio is being used-after-free in raid5_align_endio
(to test BIO_UPTODATE).
3/ We forgot to add rdev->data_offset when submitting
a bio for aligned-read
4/ clone_bio calls blk_recount_segments and then we change bi_bdev,
so we need to invalidate the segment counts.
5/ We don't de-reference the rdev when the read completes.
This means we need to record the rdev to so it is still
available in the end_io routine. Fortunately
bi_next in the original bio is unused at this point so
we can stuff it in there.
6/ We leak a cloned bio if the target rdev is not usable.
From: NeilBrown <neilb@suse.de>
update 2:
1/ When aligned requests fail (read error) they need to be retried
via the normal method (stripe cache). As we cannot be sure that
we can process a single read in one go (we may not be able to
allocate all the stripes needed) we store a bio-being-retried
and a list of bioes-that-still-need-to-be-retried.
When find a bio that needs to be retried, we should add it to
the list, not to single-bio...
2/ We were never incrementing 'scnt' when resubmitting failed
aligned requests.
[akpm@osdl.org: build fix]
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Replace all uses of kmem_cache_t with struct kmem_cache.
The patch was generated using the following script:
#!/bin/sh
#
# Replace one string by another in all the kernel sources.
#
set -e
for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do
quilt add $file
sed -e "1,\$s/$1/$2/g" $file >/tmp/$$
mv /tmp/$$ $file
quilt refresh
done
The script was run like this
sh replace kmem_cache_t "struct kmem_cache"
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
And a couple of bug fixes found by sparse.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Includes a couple of bugfixes found by sparse.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Once upon a time we needed to fixed limit to the number of md devices,
probably because we preallocated some array. This need no longer exists, but
we still have an arbitrary limit.
So remove MAX_MD_DEVS and allow as many devices as we can fit into the 'minor'
part of a device number.
Also remove some useless noise at init time (which reports MAX_MD_DEVS) and
remove MD_THREAD_NAME_MAX which hasn't been used for a while.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It is equivalent to conf->raid_disks - conf->mddev->degraded.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a new sysfs interface that allows the bitmap of an array to be dirtied.
The interface is write-only, and is used as follows:
echo "1000" > /sys/block/md2/md/bitmap
(dirty the bit for chunk 1000 [offset 0] in the in-memory and on-disk
bitmaps of array md2)
echo "1000-2000" > /sys/block/md1/md/bitmap
(dirty the bits for chunks 1000-2000 in md1's bitmap)
This is useful, for example, in cluster environments where you may need to
combine two disjoint bitmaps into one (following a server failure, after a
secondary server has taken over the array). By combining the bitmaps on
the two servers, a full resync can be avoided (This was discussed on the
list back on March 18, 2005, "[PATCH 1/2] md bitmap bug fixes" thread).
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It isn't needed as mddev->degraded contains equivalent info.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
They are not needed. conf->failed_disks is the same as mddev->degraded and
conf->working_disks is conf->raid_disks - mddev->degraded.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Instead of magic numbers (0,1,2,3) in sb_dirty, we have
some flags instead:
MD_CHANGE_DEVS
Some device state has changed requiring superblock update
on all devices.
MD_CHANGE_CLEAN
The array has transitions from 'clean' to 'dirty' or back,
requiring a superblock update on active devices, but possibly
not on spares
MD_CHANGE_PENDING
A superblock update is underway.
We wait for an update to complete by waiting for all flags to be clear. A
flag can be set at any time, even during an update, without risk that the
change will be lost.
Stop exporting md_update_sb - isn't needed.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch contains the scheduled removal of the START_ARRAY ioctl for md.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We introduced 'io_sectors' recently so we could count the sectors that causes
io during resync separate from sectors which didn't cause IO - there can be a
difference if a bitmap is being used to accelerate resync.
However when a speed is reported, we find the number of sectors processed
recently by subtracting an oldish io_sectors count from a current
'curr_resync' count. This is wrong because curr_resync counts all sectors,
not just io sectors.
So, add a field to mddev to store the curren io_sectors separately from
curr_resync, and use that in the calculations.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- record the 'event' count on each individual device (they
might sometimes be slightly different now)
- add a new value for 'sb_dirty': '3' means that the super
block only needs to be updated to record a clean<->dirty
transition.
- Prefer odd event numbers for dirty states and even numbers
for clean states
- Using all the above, don't update the superblock on
a spare device if the update is just doing a clean-dirty
transition. To accomodate this, a transition from
dirty back to clean might now decrement the events counter
if nothing else has changed.
The net effect of this is that spare drives will not see any IO requests
during normal running of the array, so they can go to sleep if that is what
they want to do.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If md is asked to store a bitmap in a file, it tries to hold onto the page
cache pages for that file, manipulate them directly, and call a cocktail of
operations to write the file out. I don't believe this is a supportable
approach.
This patch changes the approach to use the same approach as swap files. i.e.
bmap is used to enumerate all the block address of parts of the file and we
write directly to those blocks of the device.
swapfile only uses parts of the file that provide a full pages at contiguous
addresses. We don't have that luxury so we have to cope with pages that are
non-contiguous in storage. To handle this we attach buffers to each page, and
store the addresses in those buffers.
With this approach the pagecache may contain data which is inconsistent with
what is on disk. To alleviate the problems this can cause, md invalidates the
pagecache when releasing the file. If the file is to be examined while the
array is active (a non-critical but occasionally useful function), O_DIRECT io
must be used. And new version of mdadm will have support for this.
This approach simplifies a lot of code:
- we no longer need to keep a list of pages which we need to wait for,
as the b_endio function can keep track of how many outstanding
writes there are. This saves a mempool.
- -EAGAIN returns from write_page are no longer possible (not sure if
they ever were actually).
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
md/bitmap currently has a separate thread to wait for writes to the bitmap
file to complete (as we cannot get a callback on that action).
However this isn't needed as bitmap_unplug is called from process context and
waits for the writeback thread to do it's work. The same result can be
achieved by doing the waiting directly in bitmap_unplug.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch makes the needlessly global md_print_devices() static.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The "industry standard" DDF format allows for a stripe/offset layout where
data is duplicated on different stripes. e.g.
A B C D
D A B C
E F G H
H E F G
(columns are drives, rows are stripes, LETTERS are chunks of data).
This is similar to raid10's 'far' mode, but not quite the same. So enhance
'far' mode with a 'far/offset' option which follows the layout of DDFs
stripe/offset.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
For a while we have had checkpointing of resync. The version-1 superblock
allows recovery to be checkpointed as well, and this patch implements that.
Due to early carelessness we need to add a feature flag to signal that the
recovery_offset field is in use, otherwise older kernels would assume that a
partially recovered array is in fact fully recovered.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There is a lot of commonality between raid5.c and raid6main.c. This patches
merges both into one module called raid456. This saves a lot of code, and
paves the way for online raid5->raid6 migrations.
There is still duplication, e.g. between handle_stripe5 and handle_stripe6.
This will probably be cleaned up later.
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The largest chunk size the code can support without substantial surgery is
2^30 bytes, so make that the limit instead of an arbitrary 4Meg. Some day,
the 'chunksize' should change to a sector-shift instead of a byte-count. Then
no limit would be needed.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This adds the Kbuild files listing the files which are to be installed by
the 'headers_install' make target, in generic directories.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
reshape_position is a 64bit field that was not 64bit aligned. So swap with
new_level.
NOTE: this is a user-visible change. However:
- The bad code has not appeared in a released kernel
- This code is still marked 'experimental'
- This only affects version-1 superblock, which are not in wide use
- These field are only used (rather than simply reported) by user-space
tools in extemely rare circumstances : after a reshape crashes in the
first second of the reshape process.
So I believe that, at this stage, the change is safe. Especially if people
heed the 'help' message on use mdadm-2.4.1.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
... being careful that mutex_trylock is inverted wrt down_trylock
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This allows user-space to access data safely. This is needed for raid5
reshape as user-space needs to take a backup of the first few stripes before
allowing reshape to commence.
It will also be useful in cluster-aware raid1 configurations so that all
cluster members can leave a section of the array untouched while a
resync/recovery happens.
A 'start' and 'end' of the suspended range are written to 2 sysfs attributes.
Note that only one range can be suspended at a time.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
check_reshape checks validity and does things that can be done instantly -
like adding devices to raid1. start_reshape initiates a restriping process to
convert the whole array.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Instead of checkpointing at each stripe, only checkpoint when a new write
would overwrite uncheckpointed data. Block any write to the uncheckpointed
area. Arbitrarily checkpoint at least every 3Meg.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We allow the superblock to record an 'old' and a 'new' geometry, and a
position where any conversion is up to. The geometry allows for changing
chunksize, layout and level as well as number of devices.
When using verion-0.90 superblock, we convert the version to 0.91 while the
conversion is happening so that an old kernel will refuse the assemble the
array. For version-1, we use a feature bit for the same effect.
When starting an array we check for an incomplete reshape and restart the
reshape process if needed. If the reshape stopped at an awkward time (like
when updating the first stripe) we refuse to assemble the array, and let
user-space worry about it.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch adds raid5_reshape and end_reshape which will start and finish the
reshape processes.
raid5_reshape is only enabled in CONFIG_MD_RAID5_RESHAPE is set, to discourage
accidental use.
Read the 'help' for the CONFIG_MD_RAID5_RESHAPE entry.
and Make sure that you have backups, just in case.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch provides the core of the resize/expand process.
sync_request notices if a 'reshape' is happening and acts accordingly.
It allocated new stripe_heads for the next chunk-wide-stripe in the target
geometry, marking them STRIPE_EXPANDING.
Then it finds which stripe heads in the old geometry can provide data needed
by these and marks them STRIPE_EXPAND_SOURCE. This causes stripe_handle to
read all blocks on those stripes.
Once all blocks on a STRIPE_EXPAND_SOURCE stripe_head are read, any that are
needed are copied into the corresponding STRIPE_EXPANDING stripe_head. Once a
STRIPE_EXPANDING stripe_head is full, it is marks STRIPE_EXPAND_READY and then
is written out and released.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We need to allow that different stripes are of different effective sizes, and
use the appropriate size. Also, when a stripe is being expanded, we must
block any IO attempts until the stripe is stable again.
Key elements in this change are:
- each stripe_head gets a 'disk' field which is part of the key,
thus there can sometimes be two stripe heads of the same area of
the array, but covering different numbers of devices. One of these
will be marked STRIPE_EXPANDING and so won't accept new requests.
- conf->expand_progress tracks how the expansion is progressing and
is used to determine whether the target part of the array has been
expanded yet or not.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Before a RAID-5 can be expanded, we need to be able to expand the stripe-cache
data structure.
This requires allocating new stripes in a new kmem_cache. If this succeeds,
we copy cache pages over and release the old stripes and kmem_cache.
We then allocate new pages. If that fails, we leave the stripe cache at it's
new size. It isn't worth the effort to shrink it back again.
Unfortuanately this means we need two kmem_cache names as we, for a short
period of time, we have two kmem_caches. So they are raid5/%s and
raid5/%s-alt
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The remainder of this batch implements raid5 reshaping. Currently the only
shape change that is supported is added a device, but it is envisioned that
changing the chunksize and layout will also be supported, as well as changing
the level (e.g. 1->5, 5->6).
The reshape process naturally has to move all of the data in the array, and so
should be used with caution. It is believed to work, and some testing does
support this, but wider testing would be great for increasing my confidence.
You will need a version of mdadm newer than 2.3.1 to make use of raid5 growth.
This is because mdadm need to take a copy of a 'critical section' at the
start of the array incase there is a crash at an awkward moment. On restart,
mdadm will restore the critical section and allow reshape to continue.
I hope to release a 2.4-pre by early next week - it still needs a little more
polishing.
This patch:
Previously the array of disk information was included in the raid5 'conf'
structure which was allocated to an appropriate size. This makes it awkward
to change the size of that array. So we split it off into a separate
kmalloced array which will require a little extra indexing, but is much easier
to grow.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Both R1BIO_Barrier and R1BIO_Returned are 4 !!!!
This means that barrier requests don't get returned (i.e. b_endio called)
because it looks like they already have been.
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Also export current (average) speed and status in sysfs.
Signed-off-by: Neil Brown <neilb@suse.de>
Acked-by: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Store this total in superblock (As appropriate), and make it available to
userspace via sysfs.
Signed-off-by: Neil Brown <neilb@suse.de>
Acked-by: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
.. because they aren't used outside md.c
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
md sometimes call put_page on NULL pointers (treating it like kfree). This is
not safe, so define and use a 'safe_put_page' which checks for NULL.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
md supports multiple different RAID level, each being implemented by a
'personality' (which is often in a separate module).
These personalities have fairly artificial 'numbers'. The numbers
are use to:
1- provide an index into an array where the various personalities
are recorded
2- identify the module (via an alias) which implements are particular
personality.
Neither of these uses really justify the existence of personality numbers.
The array can be replaced by a linked list which is searched (array lookup
only happens very rarely). Module identification can be done using an alias
based on level rather than 'personality' number.
The current 'raid5' modules support two level (4 and 5) but only one
personality. This slight awkwardness (which was handled in the mapping from
level to personality) can be better handled by allowing raid5 to register 2
personalities.
With this change in place, the core md module does not need to have an
exhaustive list of all possible personalities, so other personalities can be
added independently.
This patch also moves the check for chunksize being non-zero into the ->run
routines for the personalities that need it, rather than having it in core-md.
This has a side effect of allowing 'faulty' and 'linear' not to have a
chunk-size set.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- replace open-coded hash chain with hlist macros
- Fix hash-table size at one page - it is already quite generous, so there
will never be a need to use multiple pages, so no need for __get_free_pages
No functional change.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add in correct read-error handling for resync and read-only situations.
When read-only, we don't over-write, so we need to mark the failed drive in
the r10_bio so we don't re-try it. During resync, we always read all blocks,
so if there is a read error, we simply over-write it with the good block that
we found (assuming we found one).
Note that the recovery case still isn't handled in an interesting way. There
is nothing useful to do for the 2-copies case. If there are 3 or more copies,
then we could try reading from one of the non-missing copies, but this is a
bit complicated and very rarely would be used, so I'm leaving it for now.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Largely just a cross-port from raid1.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There is this "FIXME" comment with a typo in it!! that been annoying me for
days, so I just had to remove it.
conf->disks[i].rdev should only be accessed if
- we know we hold a reference or
- the mddev->reconfig_sem is down or
- we have a rcu_readlock
handle_stripe was referencing rdev in three places without any of these. For
the first two, get an rcu_readlock. For the last, the same access
(md_sync_acct call) is made a little later after the rdev has been claimed
under and rcu_readlock, if R5_Syncio is set. So just use that access...
However R5_Syncio isn't really needed as the 'syncing' variable contains the
same information. So use that instead.
Issues, comment, and fix are identical in raid5 and raid6.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
On a read-error we suspend the array, then synchronously read the block from
other arrays until we find one where we can read it. Then we try writing the
good data back everywhere and make sure it works. If any write or subsequent
read fails, only then do we fail the device out of the array.
To be able to suspend the array, we need to also keep track of how many
requests are queued for handling by raid1d.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
raid6 currently does not check the P/Q syndromes when doing a resync, it just
calculates the correct value and writes it. Doing the check can reduce writes
(often to 0) for a resync, and it is needed to properly implement the
echo check > sync_action
operation.
This patch implements the appropriate checks and tidies up some related code.
It also allows raid6 user-requested resync to bypass the intent bitmap.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
See patch to md.txt for more details
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
raid10 needs to put up a barrier to new requests while it does resync or other
background recovery. The code for this is currently open-coded, slighty
obscure by its use of two waitqueues, and not documented.
This patch gathers all the related code into 4 functions, and includes a
comment which (hopefully) explains what is happening.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
raid1 needs to put up a barrier to new requests while it does resync or other
background recovery. The code for this is currently open-coded, slighty
obscure by its use of two waitqueues, and not documented.
This patch gathers all the related code into 4 functions, and includes a
comment which (hopefully) explains what is happening.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There are a few loose ends following the conversion of md to use kthreads:
- Some fields in mdk_thread_t that aren't needed (kthreads does it's own
completion and manages it's own name).
- thread->run is now never NULL, so no need to check
- Some tests for signal_pending that aren't needed (As we don't use signals
to stop threads any more)
- Some flush_signals are not needed
- Some waits are interruptible and don't need to be.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We can only accept BARRIER requests if all slaves handle
barriers, and that can, of course, change with time....
So we keep track of whether the whole array seems safe for barriers,
and also whether each individual rdev handles barriers.
We initially assumes barriers are OK.
When writing the superblock we try a barrier, and if that fails, we flag
things for no-barriers. This will usually clear the flags fairly quickly.
If writing the superblock finds that BIO_RW_BARRIER is -ENOTSUPP, we need to
resubmit, so introduce function "md_super_wait" which waits for requests to
finish, and retries ENOTSUPP requests without the barrier flag.
When writing the real raid1, write requests which were BIO_RW_BARRIER but
which aresn't supported need to be retried. So raid1d is enhanced to do this,
and when any bio write completes (i.e. no retry needed) we remove it from the
r1bio, so that devices needing retry are easy to find.
We should hardly ever get -ENOTSUPP errors when writing data to the raid.
It should only happen if:
1/ the device used to support BARRIER, but now doesn't. Few devices
change like this, though raid1 can!
or
2/ the array has no persistent superblock, so there was no opportunity to
pre-test for barriers when writing the superblock.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Current bitmaps use set_bit et.al and so are host-endian, which means
not-portable. Oops.
Define a new version number (4) for which bitmaps are little-endian.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This has the advantage of removing the confusion caused by 'rdev_t' and
'mddev_t' both having 'in_sync' fields.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Two refinements to the 'attempt-overwrite-on-read-error' mechanism.
1/ If the array is read-only, don't attempt an over-write.
2/ If there are more than max_nr_stripes read errors on a device with
no success, fail the drive. This will make sure a dead
drive will be eventually kicked even when we aren't trying
to rewrite (which would normally kick a dead drive more quickly.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There isn't really a need for raid5 attributes to be an a subdirectory,
so this patch moves them from
/sys/block/mdX/md/raid5/attribute
to
/sys/block/mdX/md/attribute
This suggests that all md personalities should co-operate about
namespace usage, but that shouldn't be a problem.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
With this, raid5 can be asked to check parity without repairing it. It also
keeps a count of the number of incorrect parity blocks found (mismatches) and
reports them through sysfs.
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
You can trigger a 'check' with
echo check > /sys/block/mdX/md/scan_mode
or a check-and-repair errors with
echo repair > /sys/block/mdX/md/scan_mode
and read the current state from the same file.
Note: personalities need to know the different between 'check' and 'repair',
but don't yet. Until they do, 'check' will be the same as 'repair' and will
just do a normal resync pass.
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
/sys/block/mdX/md/raid5/
contains raid5-related attributes.
Currently
stripe_cache_size
is number of entries in stripe cache, and is settable.
stripe_cache_active
is number of active entries, and in only readable.
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Each device in an md array how has a corresponding
/sys/block/mdX/md/devNN/
directory which can contain attributes. Currently there is only 'state' which
summarises the state, nd 'super' which has a copy of the superblock, and
'block' which is a symlink to the block device.
Also, /sys/block/mdX/md/rdNN represents slot 'NN' in the array, and is a
symlink to the relevant 'devNN'. Obviously spare devices do not have a slot
in the array, and so don't have such a symlink.
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Start using kobjects in mddevs, and provide a couple of simple attributes
(level and disks). Attributes live in
/sys/block/mdX/md/attr-name
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch changes the behaviour of raid5 when it gets a read error.
Instead of just failing the device, it tried to find out what should have
been there, and writes it over the bad block. For some media-errors, this
has a reasonable chance of fixing the error. If the write succeeds, and a
subsequent read succeeds as well, raid5 decided the address is OK and
conitnues.
Instead of failing a drive on read-error, we attempt to re-write the block,
and then re-read. If that all works, we allow the device to remain in the
array.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Most awkward part of this is delaying write requests until bitmap updates have
been flushed.
To achieve this, we have a sequence number (seq_flush) which is incremented
each time the raid5 is unplugged.
If the raid thread notices that this has changed, it flushes bitmap changes,
and assigned the value of seq_flush to seq_write.
When a write request arrives, it is given the number from seq_write, and that
write request may not complete until seq_flush is larger than the saved seq
number.
We have a new queue for storing stripes which are waiting for a bitmap flush
and an extra flag for stripes to record if the write was 'degraded' and so
should not clear the a bit in the bitmap.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
version-1 superblocks are not (normally) 4K long, and can be of variable size.
Writing the full 4K can cause corruption (but only in non-default
configurations).
With this patch the super-block-flavour can choose a size to read, and set a
size to write based on what it finds.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
These inlines haven't been used for ages, they should go.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
As this is used to flag an internal bitmap.
Also, introduce symbolic names for feature bits.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
linear currently uses division by the size of the smallest componenet device
to find which device a request goes to. If that smallest device is larger
than 2 terabytes, then the division will not work on some systems.
So we introduce a pre-shift, and take care not to make the hash table too
large, much like the code in raid0.
Also get rid of conf->nr_zones, which is not needed.
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If a device is flagged 'WriteMostly' and the array has a bitmap, and the
bitmap superblock indicates that write_behind is allowed, then write_behind is
enabled for WriteMostly devices.
Write requests will be acknowledges as complete to the caller (via b_end_io)
when all non-WriteMostly devices have completed the write, but will not be
cleared from the bitmap until all devices complete.
This requires memory allocation to make a local copy of the data being
written. If there is insufficient memory, then we fall-back on normal write
semantics.
Signed-Off-By: Paul Clements <paul.clements@steeleye.com>
Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>