Commit graph

84 commits

Author SHA1 Message Date
Christoph Lameter
ba0268a8b0 SLUB: accurately compare debug flags during slab cache merge
This was posted on Aug 28 and fixes an issue that could cause troubles
when slab caches >=128k are created.

http://marc.info/?l=linux-mm&m=118798149918424&w=2

Currently we simply add the debug flags unconditional when checking for a
matching slab.  This creates issues for sysfs processing when slabs exist
that are exempt from debugging due to their huge size or because only a
subset of slabs was selected for debugging.

We need to only add the flags if kmem_cache_open() would also add them.

Create a function to calculate the flags that would be set
if the cache would be opened and use that function to determine
the flags before looking for a compatible slab.

[akpm@linux-foundation.org: fixlets]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Chuck Ebbert <cebbert@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-11 17:21:27 -07:00
Christoph Lameter
5d540fb715 slub: do not fail if we cannot register a slab with sysfs
Do not BUG() if we cannot register a slab with sysfs.  Just print an error.
 The only consequence of not registering is that the slab cache is not
visible via /sys/slab.  A BUG() may not be visible that early during boot
and we have had multiple issues here already.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-31 01:42:22 -07:00
Christoph Lameter
a2f92ee7e7 SLUB: do not fail on broken memory configurations
Print a big fat warning and do what is necessary to continue if a node is
marked as up (meaning either node is online (upstream) or node has memory
(Andrew's tree)) but allocations from the node do not succeed.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-22 19:52:47 -07:00
Christoph Lameter
9e86943b6c SLUB: use atomic_long_read for atomic_long variables
SLUB is using atomic_read() for variables declared atomic_long_t.
Switch to atomic_long_read().

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-22 19:52:47 -07:00
Christoph Lameter
1ceef40249 SLUB: Fix dynamic dma kmalloc cache creation
The dynamic dma kmalloc creation can run into trouble if a
GFP_ATOMIC allocation is the first one performed for a certain size
of dma kmalloc slab.

- Move the adding of the slab to sysfs into a workqueue
  (sysfs does GFP_KERNEL allocations)
- Do not call kmem_cache_destroy() (uses slub_lock)
- Only acquire the slub_lock once and--if we cannot wait--do a trylock.

  This introduces a slight risk of the first kmalloc(x, GFP_DMA|GFP_ATOMIC)
  for a range of sizes failing due to another process holding the slub_lock.
  However, we only need to acquire the spinlock once in order to establish
  each power of two DMA kmalloc cache. The possible conflict is with the
  slub_lock taken during slab management actions (create / remove slab cache).

  It is rather typical that a driver will first fill its buffers using
  GFP_KERNEL allocations which will wait until the slub_lock can be acquired.
  Drivers will also create its slab caches first outside of an atomic
  context before starting to use atomic kmalloc from an interrupt context.

  If there are any failures then they will occur early after boot or when
  loading of multiple drivers concurrently. Drivers can already accomodate
  failures of GFP_ATOMIC for other reasons. Retries will then create the slab.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
2007-08-09 21:57:16 -07:00
Christoph Lameter
fcda3d89bf SLUB: Remove checks for MAX_PARTIAL from kmem_cache_shrink
The MAX_PARTIAL checks were supposed to be an optimization. However, slab
shrinking is a manually triggered process either through running slabinfo
or by the kernel calling kmem_cache_shrink.

If one really wants to shrink a slab then all operations should be done
regardless of the size of the partial list. This also fixes an issue that
could surface if the number of partial slabs was initially above MAX_PARTIAL
in kmem_cache_shrink and later drops below MAX_PARTIAL through the
elimination of empty slabs on the partial list (rare). In that case a few
slabs may be left off the partial list (and only be put back when they
are empty).

Signed-off-by: Christoph Lameter <clameter@sgi.com>
2007-08-09 21:57:15 -07:00
Peter Zijlstra
2208b764c1 slub: fix bug in slub debug support
We ClearSlabDebug() before the last SlabDebug() check. Clear it later.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
2007-07-30 12:15:15 -07:00
Peter Zijlstra
02febdf7f6 slub: add lock debugging check
Ingo noticed that the SLUB code does include the lock debugging free
check.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
2007-07-30 12:12:39 -07:00
Paul Mundt
20c2df83d2 mm: Remove slab destructors from kmem_cache_create().
Slab destructors were no longer supported after Christoph's
c59def9f22 change. They've been
BUGs for both slab and slub, and slob never supported them
either.

This rips out support for the dtor pointer from kmem_cache_create()
completely and fixes up every single callsite in the kernel (there were
about 224, not including the slab allocator definitions themselves,
or the documentation references).

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2007-07-20 10:11:58 +09:00
Linus Torvalds
9550b105b8 slub: fix ksize() for zero-sized pointers
The slab and slob allocators already did this right, but slub would call
"get_object_page()" on the magic ZERO_SIZE_PTR, with all kinds of nasty
end results.

Noted by Ingo Molnar.

Cc: Ingo Molnar <mingo@elte.hu>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 13:21:34 -07:00
Christoph Lameter
8ab1372fac SLUB: Fix CONFIG_SLUB_DEBUG use for CONFIG_NUMA
We currently cannot disable CONFIG_SLUB_DEBUG for CONFIG_NUMA.  Now that
embedded systems start to use NUMA we may need this.

Put an #ifdef around places where NUMA only code uses fields only valid
for CONFIG_SLUB_DEBUG.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:02 -07:00
Christoph Lameter
a0e1d1be20 SLUB: Move sysfs operations outside of slub_lock
Sysfs can do a gazillion things when called.  Make sure that we do not call
any sysfs functions while holding the slub_lock.

Just protect the essentials:

1. The list of all slab caches
2. The kmalloc_dma array
3. The ref counters of the slabs.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:02 -07:00
Christoph Lameter
434e245ddd SLUB: Do not allocate object bit array on stack
The objects per slab increase with the current patches in mm since we allow up
to order 3 allocs by default.  More patches in mm actually allow to use 2M or
higher sized slabs.  For slab validation we need per object bitmaps in order
to check a slab.  We end up with up to 64k objects per slab resulting in a
potential requirement of 8K stack space.  That does not look good.

Allocate the bit arrays via kmalloc.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:02 -07:00
Christoph Lameter
81cda66261 Slab allocators: Cleanup zeroing allocations
It becomes now easy to support the zeroing allocs with generic inline
functions in slab.h.  Provide inline definitions to allow the continued use of
kzalloc, kmem_cache_zalloc etc but remove other definitions of zeroing
functions from the slab allocators and util.c.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
ce15fea827 SLUB: Do not use length parameter in slab_alloc()
We can get to the length of the object through the kmem_cache_structure.  The
additional parameter does no good and causes the compiler to generate bad
code.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
12ad6843dd SLUB: Style fix up the loop to disable small slabs
Do proper spacing and we only need to do this in steps of 8.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Adrian Bunk
5af328a510 mm/slub.c: make code static
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
7b55f620e6 SLUB: Simplify dma index -> size calculation
There is no need to caculate the dma slab size ourselves. We can simply
lookup the size of the corresponding non dma slab.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
f1b2633936 SLUB: faster more efficient slab determination for __kmalloc
kmalloc_index is a long series of comparisons.  The attempt to replace
kmalloc_index with something more efficient like ilog2 failed due to compiler
issues with constant folding on gcc 3.3 / powerpc.

kmalloc_index()'es long list of comparisons works fine for constant folding
since all the comparisons are optimized away.  However, SLUB also uses
kmalloc_index to determine the slab to use for the __kmalloc_xxx functions.
This leads to a large set of comparisons in get_slab().

The patch here allows to get rid of that list of comparisons in get_slab():

1. If the requested size is larger than 192 then we can simply use
   fls to determine the slab index since all larger slabs are
   of the power of two type.

2. If the requested size is smaller then we cannot use fls since there
   are non power of two caches to be considered. However, the sizes are
   in a managable range. So we divide the size by 8. Then we have only
   24 possibilities left and then we simply look up the kmalloc index
   in a table.

Code size of slub.o decreases by more than 200 bytes through this patch.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
dfce8648d6 SLUB: do proper locking during dma slab creation
We modify the kmalloc_cache_dma[] array without proper locking.  Do the proper
locking and undo the dma cache creation if another processor has already
created it.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
2e443fd003 SLUB: extract dma_kmalloc_cache from get_cache.
The rarely used dma functionality in get_slab() makes the function too
complex.  The compiler begins to spill variables from the working set onto the
stack.  The created function is only used in extremely rare cases so make sure
that the compiler does not decide on its own to merge it back into get_slab().

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
0c71001320 SLUB: add some more inlines and #ifdef CONFIG_SLUB_DEBUG
Add #ifdefs around data structures only needed if debugging is compiled into
SLUB.

Add inlines to small functions to reduce code size.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
d07dbea464 Slab allocators: support __GFP_ZERO in all allocators
A kernel convention for many allocators is that if __GFP_ZERO is passed to an
allocator then the allocated memory should be zeroed.

This is currently not supported by the slab allocators.  The inconsistency
makes it difficult to implement in derived allocators such as in the uncached
allocator and the pool allocators.

In addition the support zeroed allocations in the slab allocators does not
have a consistent API.  There are no zeroing allocator functions for NUMA node
placement (kmalloc_node, kmem_cache_alloc_node).  The zeroing allocations are
only provided for default allocs (kzalloc, kmem_cache_zalloc_node).
__GFP_ZERO will make zeroing universally available and does not require any
addititional functions.

So add the necessary logic to all slab allocators to support __GFP_ZERO.

The code is added to the hot path.  The gfp flags are on the stack and so the
cacheline is readily available for checking if we want a zeroed object.

Zeroing while allocating is now a frequent operation and we seem to be
gradually approaching a 1-1 parity between zeroing and not zeroing allocs.
The current tree has 3476 uses of kmalloc vs 2731 uses of kzalloc.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
6cb8f91320 Slab allocators: consistent ZERO_SIZE_PTR support and NULL result semantics
Define ZERO_OR_NULL_PTR macro to be able to remove the checks from the
allocators.  Move ZERO_SIZE_PTR related stuff into slab.h.

Make ZERO_SIZE_PTR work for all slab allocators and get rid of the
WARN_ON_ONCE(size == 0) that is still remaining in SLAB.

Make slub return NULL like the other allocators if a too large memory segment
is requested via __kmalloc.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
ef2ad80c7d Slab allocators: consolidate code for krealloc in mm/util.c
The size of a kmalloc object is readily available via ksize().  ksize is
provided by all allocators and thus we can implement krealloc in a generic
way.

Implement krealloc in mm/util.c and drop slab specific implementations of
krealloc.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
d45f39cb06 SLUB Debug: fix initial object debug state of NUMA bootstrap objects
The function we are calling to initialize object debug state during early NUMA
bootstrap sets up an inactive object giving it the wrong redzone signature.
The bootstrap nodes are active objects and should have active redzone
signatures.

Currently slab validation complains and reverts the object to active state.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
6300ea7503 SLUB: ensure that the number of objects per slab stays low for high orders
Currently SLUB has no provision to deal with too high page orders that may
be specified on the kernel boot line.  If an order higher than 6 (on a 4k
platform) is generated then we will BUG() because slabs get more than 65535
objects.

Add some logic that decreases order for slabs that have too many objects.
This allow booting with slab sizes up to MAX_ORDER.

For example

	slub_min_order=10

will boot with a default slab size of 4M and reduce slab sizes for small
object sizes to lower orders if the number of objects becomes too big.
Large slab sizes like that allow a concentration of objects of the same
slab cache under as few as possible TLB entries and thus potentially
reduces TLB pressure.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
68dff6a9af SLUB slab validation: Move tracking information alloc outside of lock
We currently have to do an GFP_ATOMIC allocation because the list_lock is
already taken when we first allocate memory for tracking allocation
information.  It would be better if we could avoid atomic allocations.

Allocate a size of the tracking table that is usually sufficient (one page)
before we take the list lock.  We will then only do the atomic allocation
if we need to resize the table to become larger than a page (mostly only
needed under large NUMA because of the tracking of cpus and nodes otherwise
the table stays small).

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
5b95a4acf1 SLUB: use list_for_each_entry for loops over all slabs
Use list_for_each_entry() instead of list_for_each().

Get rid of for_all_slabs(). It had only one user. So fold it into the
callback. This also gets rid of cpu_slab_flush.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
2492268472 SLUB: change error reporting format to follow lockdep loosely
Changes the error reporting format to loosely follow lockdep.

If data corruption is detected then we generate the following lines:

============================================
BUG <slab-cache>: <problem>
--------------------------------------------

INFO: <more information> [possibly multiple times]

<object dump>

FIX <slab-cache>: <remedial action>

This also adds some more intelligence to the data corruption detection. Its
now capable of figuring out the start and end.

Add a comment on how to configure SLUB so that a production system may
continue to operate even though occasional slab corruption occur through
a misbehaving kernel component. See "Emergency operations" in
Documentation/vm/slub.txt.

[akpm@linux-foundation.org: build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:01 -07:00
Christoph Lameter
f0630fff54 SLUB: support slub_debug on by default
Add a new configuration variable

CONFIG_SLUB_DEBUG_ON

If set then the kernel will be booted by default with slab debugging
switched on. Similar to CONFIG_SLAB_DEBUG. By default slab debugging
is available but must be enabled by specifying "slub_debug" as a
kernel parameter.

Also add support to switch off slab debugging for a kernel that was
built with CONFIG_SLUB_DEBUG_ON. This works by specifying

slub_debug=-

as a kernel parameter.

Dave Jones wanted this feature.
http://marc.info/?l=linux-kernel&m=118072189913045&w=2

[akpm@linux-foundation.org: clean up switch statement]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 09:05:36 -07:00
Christoph Lameter
d23cf676d0 slub: remove useless EXPORT_SYMBOL
kmem_cache_open is static. EXPORT_SYMBOL was leftover from some earlier
time period where kmem_cache_open was usable outside of slub.

(Fixes powerpc build error)

Signed-off-by: Chrsitoph Lameter <clameter@sgi.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-06 11:45:11 -07:00
Christoph Lameter
dbc55faa64 SLUB: Make lockdep happy by not calling add_partial with interrupts enabled during bootstrap
If we move the local_irq_enable() to the end of the function then
add_partial() in early_kmem_cache_node_alloc() will be called
with interrupts disabled like during regular operations.

This makes lockdep happy.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Tested-by: Andre Noll <maan@systemlinux.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-03 13:56:13 -07:00
Christoph Lameter
8496634302 SLUB: fix behavior if the text output of list_locations overflows PAGE_SIZE
If slabs are allocated or freed from a large set of call sites (typical for
the kmalloc area) then we may create more output than fits into a single
PAGE and sysfs only gives us one page.  The output should be truncated.
This patch fixes the checks to do the truncation properly.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-06-24 08:59:11 -07:00
Christoph Lameter
4b356be019 SLUB: minimum alignment fixes
If ARCH_KMALLOC_MINALIGN is set to a value greater than 8 (SLUBs smallest
kmalloc cache) then SLUB may generate duplicate slabs in sysfs (yes again)
because the object size is padded to reach ARCH_KMALLOC_MINALIGN.  Thus the
size of the small slabs is all the same.

No arch sets ARCH_KMALLOC_MINALIGN larger than 8 though except mips which
for some reason wants a 128 byte alignment.

This patch increases the size of the smallest cache if
ARCH_KMALLOC_MINALIGN is greater than 8.  In that case more and more of the
smallest caches are disabled.

If we do that then the count of the active general caches that is displayed
on boot is not correct anymore since we may skip elements of the kmalloc
array.  So count them separately.

This approach was tested by Havard yesterday.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-06-16 13:16:16 -07:00
Christoph Lameter
dd08c40e3e SLUB slab validation: Alloc while interrupts are disabled must use GFP_ATOMIC
The data structure to manage the information gathered about functions
allocating and freeing objects is allocated when the list_lock has already
been taken.  We need to allocate with GFP_ATOMIC instead of GFP_KERNEL.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-06-16 13:16:15 -07:00
Christoph Lameter
272c1d21d6 SLUB: return ZERO_SIZE_PTR for kmalloc(0)
Instead of returning the smallest available object return ZERO_SIZE_PTR.

A ZERO_SIZE_PTR can be legitimately used as an object pointer as long as it
is not deferenced.  The dereference of ZERO_SIZE_PTR causes a distinctive
fault.  kfree can handle a ZERO_SIZE_PTR in the same way as NULL.

This enables functions to use zero sized object. e.g. n = number of objects.

	objects = kmalloc(n * sizeof(object));

	for (i = 0; i < n; i++)
		objects[i].x = y;

	kfree(objects);

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-06-08 17:23:33 -07:00
Christoph Lameter
27390bc335 SLUB: fix locking for hotplug callbacks
Hotplug callbacks are performed with interrupts enabled.  Slub requires
interrupts to be disabled for flushing caches.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Michal Piotrowski <michal.k.k.piotrowski@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-06-01 08:18:30 -07:00
Christoph Lameter
8ffa68755a SLUB: Fix NUMA / SYSFS bootstrap issue
We need this patch in ASAP.  Patch fixes the mysterious hang that remained
on some particular configurations with lockdep on after the first fix that
moved the #idef CONFIG_SLUB_DEBUG to the right location.  See
http://marc.info/?t=117963072300001&r=1&w=2

The kmem_cache_node cache is very special because it is needed for NUMA
bootstrap.  Under certain conditions (like for example if lockdep is
enabled and significantly increases the size of spinlock_t) the structure
may become exactly the size as one of the larger caches in the kmalloc
array.

That early during bootstrap we cannot perform merging properly.  The unique
id for the kmem_cache_node cache will match one of the kmalloc array.
Sysfs will complain about a duplicate directory entry.  All of this occurs
while the console is not yet fully operational.  Thus boot may appear to be
silently failing.

The kmem_cache_node cache is very special.  During early boostrap the main
allocation function is not operational yet and so we have to run our own
small special alloc function during early boot.  It is also special in that
it is never freed.

We really do not want any merging on that cache.  Set the refcount -1 and
forbid merging of slabs that have a negative refcount.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-31 07:58:14 -07:00
Christoph Lameter
33e9e24101 SLUB Debug: fix check for super sized slabs (>512k 64bit, >256k 32bit)
The check for super sized slabs where we can no longer move the free
pointer behind the object for debugging purposes etc is accessing a
field that is not setup yet.  We must use objsize here since the size of
the slab has not been determined yet.

The effect of this is that a global slab shrink via "slabinfo -s" will
show errors about offsets being wrong if booted with slub_debug.
Potentially there are other troubles with huge slabs under slub_debug
because the calculated free pointer offset is truncated.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-23 20:14:13 -07:00
Christoph Lameter
c12b3c6251 SLUB Debug: Fix object size calculation
The object size calculation is wrong if !CONFIG_SLUB_DEBUG because the
#ifdef CONFIG_SLUB_DEBUG is now switching off the size adjustments for
DESTROY_BY_RCU and ctor.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-23 20:14:11 -07:00
Christoph Lameter
3ec0974210 SLUB: Simplify debug code
Consolidate functionality into the #ifdef section.

Extract tracing into one subroutine.

Move object debug processing into the #ifdef section so that the
code in __slab_alloc and __slab_free becomes minimal.

Reduce number of functions we need to provide stubs for in the !SLUB_DEBUG case.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-17 05:23:04 -07:00
Christoph Lameter
a35afb830f Remove SLAB_CTOR_CONSTRUCTOR
SLAB_CTOR_CONSTRUCTOR is always specified. No point in checking it.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Steven French <sfrench@us.ibm.com>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Anton Altaparmakov <aia21@cantab.net>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@ucw.cz>
Cc: David Chinner <dgc@sgi.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-17 05:23:04 -07:00
Christoph Lameter
5577bd8a85 SLUB: Do our own flags based on PG_active and PG_error
The atomicity when handling flags in SLUB is not necessary since both flags
used by SLUB are not updated in a racy way.  Flag updates are either done
during slab creation or destruction or under slab_lock.  Some of these flags
do not have the non atomic variants that we need.  So define our own.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-17 05:23:03 -07:00
Christoph Lameter
4b6f075045 SLUB: Define functions for cpu slab handling instead of using PageActive
Use inline functions to access the per cpu bit.  Intoduce the notion of
"freezing" a slab to make things more understandable.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-17 05:23:03 -07:00
Christoph Lameter
c59def9f22 Slab allocators: Drop support for destructors
There is no user of destructors left.  There is no reason why we should keep
checking for destructors calls in the slab allocators.

The RFC for this patch was discussed at
http://marc.info/?l=linux-kernel&m=117882364330705&w=2

Destructors were mainly used for list management which required them to take a
spinlock.  Taking a spinlock in a destructor is a bit risky since the slab
allocators may run the destructors anytime they decide a slab is no longer
needed.

Patch drops destructor support.  Any attempt to use a destructor will BUG().

Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-17 05:23:03 -07:00
Hugh Dickins
1800782016 slub: don't confuse ctor and dtor
kmem_cache_create() was swapping ctor and dtor in calling find_mergeable():
though it caused no bug, and probably never would, even if destructors are
retained; but fix it so as not to generate anxiety ;)

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-16 21:19:15 -07:00
Christoph Lameter
bcf889f965 SLUB: remove nr_cpu_ids hack
This was in SLUB in order to head off trouble while the nr_cpu_ids
functionality was not merged.  Its merged now so no need to still have this.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-10 09:26:53 -07:00
Christoph Lameter
894b8788d7 slub: support concurrent local and remote frees and allocs on a slab
Avoid atomic overhead in slab_alloc and slab_free

SLUB needs to use the slab_lock for the per cpu slabs to synchronize with
potential kfree operations.  This patch avoids that need by moving all free
objects onto a lockless_freelist.  The regular freelist continues to exist
and will be used to free objects.  So while we consume the
lockless_freelist the regular freelist may build up objects.

If we are out of objects on the lockless_freelist then we may check the
regular freelist.  If it has objects then we move those over to the
lockless_freelist and do this again.  There is a significant savings in
terms of atomic operations that have to be performed.

We can even free directly to the lockless_freelist if we know that we are
running on the same processor.  So this speeds up short lived objects.
They may be allocated and freed without taking the slab_lock.  This is
particular good for netperf.

In order to maximize the effect of the new faster hotpath we extract the
hottest performance pieces into inlined functions.  These are then inlined
into kmem_cache_alloc and kmem_cache_free.  So hotpath allocation and
freeing no longer requires a subroutine call within SLUB.

[I am not sure that it is worth doing this because it changes the easy to
read structure of slub just to reduce atomic ops.  However, there is
someone out there with a benchmark on 4 way and 8 way processor systems
that seems to show a 5% regression vs.  Slab.  Seems that the regression is
due to increased atomic operations use vs.  SLAB in SLUB).  I wonder if
this is applicable or discernable at all in a real workload?]

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-10 09:26:52 -07:00
Christoph Lameter
4037d45220 Move remote node draining out of slab allocators
Currently the slab allocators contain callbacks into the page allocator to
perform the draining of pagesets on remote nodes.  This requires SLUB to have
a whole subsystem in order to be compatible with SLAB.  Moving node draining
out of the slab allocators avoids a section of code in SLUB.

Move the node draining so that is is done when the vm statistics are updated.
At that point we are already touching all the cachelines with the pagesets of
a processor.

Add a expire counter there.  If we have to update per zone or global vm
statistics then assume that the pageset will require subsequent draining.

The expire counter will be decremented on each vm stats update pass until it
reaches zero.  Then we will drain one batch from the pageset.  The draining
will cause vm counter updates which will then cause another expiration until
the pcp is empty.  So we will drain a batch every 3 seconds.

Note that remote node draining is a somewhat esoteric feature that is required
on large NUMA systems because otherwise significant portions of system memory
can become trapped in pcp queues.  The number of pcp is determined by the
number of processors and nodes in a system.  A system with 4 processors and 2
nodes has 8 pcps which is okay.  But a system with 1024 processors and 512
nodes has 512k pcps with a high potential for large amount of memory being
caught in them.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 12:30:56 -07:00