Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client: (205 commits)
  ceph: update for write_inode API change
  ceph: reset osd after relevant messages timed out
  ceph: fix flush_dirty_caps race with caps migration
  ceph: include migrating caps in issued set
  ceph: fix osdmap decoding when pools include (removed) snaps
  ceph: return EBADF if waiting for caps on closed file
  ceph: set osd request message front length correctly
  ceph: reset front len on return to msgpool; BUG on mismatched front iov
  ceph: fix snaptrace decoding on cap migration between mds
  ceph: use single osd op reply msg
  ceph: reset bits on connection close
  ceph: remove bogus mds forward warning
  ceph: remove fragile __map_osds optimization
  ceph: fix connection fault STANDBY check
  ceph: invalidate_authorizer without con->mutex held
  ceph: don't clobber write return value when using O_SYNC
  ceph: fix client_request_forward decoding
  ceph: drop messages on unregistered mds sessions; cleanup
  ceph: fix comments, locking in destroy_inode
  ceph: move dereference after NULL test
  ...

Fix trivial conflicts in Documentation/ioctl/ioctl-number.txt
This commit is contained in:
Linus Torvalds 2010-03-19 09:43:06 -07:00
commit fc7f99cf36
67 changed files with 28066 additions and 0 deletions

View file

@ -0,0 +1,139 @@
Ceph Distributed File System
============================
Ceph is a distributed network file system designed to provide good
performance, reliability, and scalability.
Basic features include:
* POSIX semantics
* Seamless scaling from 1 to many thousands of nodes
* High availability and reliability. No single points of failure.
* N-way replication of data across storage nodes
* Fast recovery from node failures
* Automatic rebalancing of data on node addition/removal
* Easy deployment: most FS components are userspace daemons
Also,
* Flexible snapshots (on any directory)
* Recursive accounting (nested files, directories, bytes)
In contrast to cluster filesystems like GFS, OCFS2, and GPFS that rely
on symmetric access by all clients to shared block devices, Ceph
separates data and metadata management into independent server
clusters, similar to Lustre. Unlike Lustre, however, metadata and
storage nodes run entirely as user space daemons. Storage nodes
utilize btrfs to store data objects, leveraging its advanced features
(checksumming, metadata replication, etc.). File data is striped
across storage nodes in large chunks to distribute workload and
facilitate high throughputs. When storage nodes fail, data is
re-replicated in a distributed fashion by the storage nodes themselves
(with some minimal coordination from a cluster monitor), making the
system extremely efficient and scalable.
Metadata servers effectively form a large, consistent, distributed
in-memory cache above the file namespace that is extremely scalable,
dynamically redistributes metadata in response to workload changes,
and can tolerate arbitrary (well, non-Byzantine) node failures. The
metadata server takes a somewhat unconventional approach to metadata
storage to significantly improve performance for common workloads. In
particular, inodes with only a single link are embedded in
directories, allowing entire directories of dentries and inodes to be
loaded into its cache with a single I/O operation. The contents of
extremely large directories can be fragmented and managed by
independent metadata servers, allowing scalable concurrent access.
The system offers automatic data rebalancing/migration when scaling
from a small cluster of just a few nodes to many hundreds, without
requiring an administrator carve the data set into static volumes or
go through the tedious process of migrating data between servers.
When the file system approaches full, new nodes can be easily added
and things will "just work."
Ceph includes flexible snapshot mechanism that allows a user to create
a snapshot on any subdirectory (and its nested contents) in the
system. Snapshot creation and deletion are as simple as 'mkdir
.snap/foo' and 'rmdir .snap/foo'.
Ceph also provides some recursive accounting on directories for nested
files and bytes. That is, a 'getfattr -d foo' on any directory in the
system will reveal the total number of nested regular files and
subdirectories, and a summation of all nested file sizes. This makes
the identification of large disk space consumers relatively quick, as
no 'du' or similar recursive scan of the file system is required.
Mount Syntax
============
The basic mount syntax is:
# mount -t ceph monip[:port][,monip2[:port]...]:/[subdir] mnt
You only need to specify a single monitor, as the client will get the
full list when it connects. (However, if the monitor you specify
happens to be down, the mount won't succeed.) The port can be left
off if the monitor is using the default. So if the monitor is at
1.2.3.4,
# mount -t ceph 1.2.3.4:/ /mnt/ceph
is sufficient. If /sbin/mount.ceph is installed, a hostname can be
used instead of an IP address.
Mount Options
=============
ip=A.B.C.D[:N]
Specify the IP and/or port the client should bind to locally.
There is normally not much reason to do this. If the IP is not
specified, the client's IP address is determined by looking at the
address it's connection to the monitor originates from.
wsize=X
Specify the maximum write size in bytes. By default there is no
maximu. Ceph will normally size writes based on the file stripe
size.
rsize=X
Specify the maximum readahead.
mount_timeout=X
Specify the timeout value for mount (in seconds), in the case
of a non-responsive Ceph file system. The default is 30
seconds.
rbytes
When stat() is called on a directory, set st_size to 'rbytes',
the summation of file sizes over all files nested beneath that
directory. This is the default.
norbytes
When stat() is called on a directory, set st_size to the
number of entries in that directory.
nocrc
Disable CRC32C calculation for data writes. If set, the OSD
must rely on TCP's error correction to detect data corruption
in the data payload.
noasyncreaddir
Disable client's use its local cache to satisfy readdir
requests. (This does not change correctness; the client uses
cached metadata only when a lease or capability ensures it is
valid.)
More Information
================
For more information on Ceph, see the home page at
http://ceph.newdream.net/
The Linux kernel client source tree is available at
git://ceph.newdream.net/linux-ceph-client.git
and the source for the full system is at
git://ceph.newdream.net/ceph.git

View file

@ -291,6 +291,7 @@ Code Seq#(hex) Include File Comments
0x92 00-0F drivers/usb/mon/mon_bin.c
0x93 60-7F linux/auto_fs.h
0x94 all fs/btrfs/ioctl.h
0x97 00-7F fs/ceph/ioctl.h Ceph file system
0x99 00-0F 537-Addinboard driver
<mailto:buk@buks.ipn.de>
0xA0 all linux/sdp/sdp.h Industrial Device Project

View file

@ -1441,6 +1441,15 @@ F: arch/powerpc/include/asm/spu*.h
F: arch/powerpc/oprofile/*cell*
F: arch/powerpc/platforms/cell/
CEPH DISTRIBUTED FILE SYSTEM CLIENT
M: Sage Weil <sage@newdream.net>
L: ceph-devel@lists.sourceforge.net
W: http://ceph.newdream.net/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client.git
S: Supported
F: Documentation/filesystems/ceph.txt
F: fs/ceph
CERTIFIED WIRELESS USB (WUSB) SUBSYSTEM:
M: David Vrabel <david.vrabel@csr.com>
L: linux-usb@vger.kernel.org

View file

@ -235,6 +235,7 @@ config NFS_COMMON
source "net/sunrpc/Kconfig"
source "fs/smbfs/Kconfig"
source "fs/ceph/Kconfig"
source "fs/cifs/Kconfig"
source "fs/ncpfs/Kconfig"
source "fs/coda/Kconfig"

View file

@ -125,3 +125,4 @@ obj-$(CONFIG_OCFS2_FS) += ocfs2/
obj-$(CONFIG_BTRFS_FS) += btrfs/
obj-$(CONFIG_GFS2_FS) += gfs2/
obj-$(CONFIG_EXOFS_FS) += exofs/
obj-$(CONFIG_CEPH_FS) += ceph/

27
fs/ceph/Kconfig Normal file
View file

@ -0,0 +1,27 @@
config CEPH_FS
tristate "Ceph distributed file system (EXPERIMENTAL)"
depends on INET && EXPERIMENTAL
select LIBCRC32C
select CONFIG_CRYPTO_AES
help
Choose Y or M here to include support for mounting the
experimental Ceph distributed file system. Ceph is an extremely
scalable file system designed to provide high performance,
reliable access to petabytes of storage.
More information at http://ceph.newdream.net/.
If unsure, say N.
config CEPH_FS_PRETTYDEBUG
bool "Include file:line in ceph debug output"
depends on CEPH_FS
default n
help
If you say Y here, debug output will include a filename and
line to aid debugging. This icnreases kernel size and slows
execution slightly when debug call sites are enabled (e.g.,
via CONFIG_DYNAMIC_DEBUG).
If unsure, say N.

39
fs/ceph/Makefile Normal file
View file

@ -0,0 +1,39 @@
#
# Makefile for CEPH filesystem.
#
ifneq ($(KERNELRELEASE),)
obj-$(CONFIG_CEPH_FS) += ceph.o
ceph-objs := super.o inode.o dir.o file.o addr.o ioctl.o \
export.o caps.o snap.o xattr.o \
messenger.o msgpool.o buffer.o pagelist.o \
mds_client.o mdsmap.o \
mon_client.o \
osd_client.o osdmap.o crush/crush.o crush/mapper.o crush/hash.o \
debugfs.o \
auth.o auth_none.o \
crypto.o armor.o \
auth_x.o \
ceph_fs.o ceph_strings.o ceph_hash.o ceph_frag.o
else
#Otherwise we were called directly from the command
# line; invoke the kernel build system.
KERNELDIR ?= /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)
default: all
all:
$(MAKE) -C $(KERNELDIR) M=$(PWD) CONFIG_CEPH_FS=m modules
modules_install:
$(MAKE) -C $(KERNELDIR) M=$(PWD) CONFIG_CEPH_FS=m modules_install
clean:
$(MAKE) -C $(KERNELDIR) M=$(PWD) clean
endif

20
fs/ceph/README Normal file
View file

@ -0,0 +1,20 @@
#
# The following files are shared by (and manually synchronized
# between) the Ceph userland and kernel client.
#
# userland kernel
src/include/ceph_fs.h fs/ceph/ceph_fs.h
src/include/ceph_fs.cc fs/ceph/ceph_fs.c
src/include/msgr.h fs/ceph/msgr.h
src/include/rados.h fs/ceph/rados.h
src/include/ceph_strings.cc fs/ceph/ceph_strings.c
src/include/ceph_frag.h fs/ceph/ceph_frag.h
src/include/ceph_frag.cc fs/ceph/ceph_frag.c
src/include/ceph_hash.h fs/ceph/ceph_hash.h
src/include/ceph_hash.cc fs/ceph/ceph_hash.c
src/crush/crush.c fs/ceph/crush/crush.c
src/crush/crush.h fs/ceph/crush/crush.h
src/crush/mapper.c fs/ceph/crush/mapper.c
src/crush/mapper.h fs/ceph/crush/mapper.h
src/crush/hash.h fs/ceph/crush/hash.h
src/crush/hash.c fs/ceph/crush/hash.c

1188
fs/ceph/addr.c Normal file

File diff suppressed because it is too large Load diff

99
fs/ceph/armor.c Normal file
View file

@ -0,0 +1,99 @@
#include <linux/errno.h>
/*
* base64 encode/decode.
*/
const char *pem_key = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static int encode_bits(int c)
{
return pem_key[c];
}
static int decode_bits(char c)
{
if (c >= 'A' && c <= 'Z')
return c - 'A';
if (c >= 'a' && c <= 'z')
return c - 'a' + 26;
if (c >= '0' && c <= '9')
return c - '0' + 52;
if (c == '+')
return 62;
if (c == '/')
return 63;
if (c == '=')
return 0; /* just non-negative, please */
return -EINVAL;
}
int ceph_armor(char *dst, const char *src, const char *end)
{
int olen = 0;
int line = 0;
while (src < end) {
unsigned char a, b, c;
a = *src++;
*dst++ = encode_bits(a >> 2);
if (src < end) {
b = *src++;
*dst++ = encode_bits(((a & 3) << 4) | (b >> 4));
if (src < end) {
c = *src++;
*dst++ = encode_bits(((b & 15) << 2) |
(c >> 6));
*dst++ = encode_bits(c & 63);
} else {
*dst++ = encode_bits((b & 15) << 2);
*dst++ = '=';
}
} else {
*dst++ = encode_bits(((a & 3) << 4));
*dst++ = '=';
*dst++ = '=';
}
olen += 4;
line += 4;
if (line == 64) {
line = 0;
*(dst++) = '\n';
olen++;
}
}
return olen;
}
int ceph_unarmor(char *dst, const char *src, const char *end)
{
int olen = 0;
while (src < end) {
int a, b, c, d;
if (src < end && src[0] == '\n')
src++;
if (src + 4 > end)
return -EINVAL;
a = decode_bits(src[0]);
b = decode_bits(src[1]);
c = decode_bits(src[2]);
d = decode_bits(src[3]);
if (a < 0 || b < 0 || c < 0 || d < 0)
return -EINVAL;
*dst++ = (a << 2) | (b >> 4);
if (src[2] == '=')
return olen + 1;
*dst++ = ((b & 15) << 4) | (c >> 2);
if (src[3] == '=')
return olen + 2;
*dst++ = ((c & 3) << 6) | d;
olen += 3;
src += 4;
}
return olen;
}

257
fs/ceph/auth.c Normal file
View file

@ -0,0 +1,257 @@
#include "ceph_debug.h"
#include <linux/module.h>
#include <linux/err.h>
#include "types.h"
#include "auth_none.h"
#include "auth_x.h"
#include "decode.h"
#include "super.h"
#include "messenger.h"
/*
* get protocol handler
*/
static u32 supported_protocols[] = {
CEPH_AUTH_NONE,
CEPH_AUTH_CEPHX
};
int ceph_auth_init_protocol(struct ceph_auth_client *ac, int protocol)
{
switch (protocol) {
case CEPH_AUTH_NONE:
return ceph_auth_none_init(ac);
case CEPH_AUTH_CEPHX:
return ceph_x_init(ac);
default:
return -ENOENT;
}
}
/*
* setup, teardown.
*/
struct ceph_auth_client *ceph_auth_init(const char *name, const char *secret)
{
struct ceph_auth_client *ac;
int ret;
dout("auth_init name '%s' secret '%s'\n", name, secret);
ret = -ENOMEM;
ac = kzalloc(sizeof(*ac), GFP_NOFS);
if (!ac)
goto out;
ac->negotiating = true;
if (name)
ac->name = name;
else
ac->name = CEPH_AUTH_NAME_DEFAULT;
dout("auth_init name %s secret %s\n", ac->name, secret);
ac->secret = secret;
return ac;
out:
return ERR_PTR(ret);
}
void ceph_auth_destroy(struct ceph_auth_client *ac)
{
dout("auth_destroy %p\n", ac);
if (ac->ops)
ac->ops->destroy(ac);
kfree(ac);
}
/*
* Reset occurs when reconnecting to the monitor.
*/
void ceph_auth_reset(struct ceph_auth_client *ac)
{
dout("auth_reset %p\n", ac);
if (ac->ops && !ac->negotiating)
ac->ops->reset(ac);
ac->negotiating = true;
}
int ceph_entity_name_encode(const char *name, void **p, void *end)
{
int len = strlen(name);
if (*p + 2*sizeof(u32) + len > end)
return -ERANGE;
ceph_encode_32(p, CEPH_ENTITY_TYPE_CLIENT);
ceph_encode_32(p, len);
ceph_encode_copy(p, name, len);
return 0;
}
/*
* Initiate protocol negotiation with monitor. Include entity name
* and list supported protocols.
*/
int ceph_auth_build_hello(struct ceph_auth_client *ac, void *buf, size_t len)
{
struct ceph_mon_request_header *monhdr = buf;
void *p = monhdr + 1, *end = buf + len, *lenp;
int i, num;
int ret;
dout("auth_build_hello\n");
monhdr->have_version = 0;
monhdr->session_mon = cpu_to_le16(-1);
monhdr->session_mon_tid = 0;
ceph_encode_32(&p, 0); /* no protocol, yet */
lenp = p;
p += sizeof(u32);
ceph_decode_need(&p, end, 1 + sizeof(u32), bad);
ceph_encode_8(&p, 1);
num = ARRAY_SIZE(supported_protocols);
ceph_encode_32(&p, num);
ceph_decode_need(&p, end, num * sizeof(u32), bad);
for (i = 0; i < num; i++)
ceph_encode_32(&p, supported_protocols[i]);
ret = ceph_entity_name_encode(ac->name, &p, end);
if (ret < 0)
return ret;
ceph_decode_need(&p, end, sizeof(u64), bad);
ceph_encode_64(&p, ac->global_id);
ceph_encode_32(&lenp, p - lenp - sizeof(u32));
return p - buf;
bad:
return -ERANGE;
}
int ceph_build_auth_request(struct ceph_auth_client *ac,
void *msg_buf, size_t msg_len)
{
struct ceph_mon_request_header *monhdr = msg_buf;
void *p = monhdr + 1;
void *end = msg_buf + msg_len;
int ret;
monhdr->have_version = 0;
monhdr->session_mon = cpu_to_le16(-1);
monhdr->session_mon_tid = 0;
ceph_encode_32(&p, ac->protocol);
ret = ac->ops->build_request(ac, p + sizeof(u32), end);
if (ret < 0) {
pr_err("error %d building request\n", ret);
return ret;
}
dout(" built request %d bytes\n", ret);
ceph_encode_32(&p, ret);
return p + ret - msg_buf;
}
/*
* Handle auth message from monitor.
*/
int ceph_handle_auth_reply(struct ceph_auth_client *ac,
void *buf, size_t len,
void *reply_buf, size_t reply_len)
{
void *p = buf;
void *end = buf + len;
int protocol;
s32 result;
u64 global_id;
void *payload, *payload_end;
int payload_len;
char *result_msg;
int result_msg_len;
int ret = -EINVAL;
dout("handle_auth_reply %p %p\n", p, end);
ceph_decode_need(&p, end, sizeof(u32) * 3 + sizeof(u64), bad);
protocol = ceph_decode_32(&p);
result = ceph_decode_32(&p);
global_id = ceph_decode_64(&p);
payload_len = ceph_decode_32(&p);
payload = p;
p += payload_len;
ceph_decode_need(&p, end, sizeof(u32), bad);
result_msg_len = ceph_decode_32(&p);
result_msg = p;
p += result_msg_len;
if (p != end)
goto bad;
dout(" result %d '%.*s' gid %llu len %d\n", result, result_msg_len,
result_msg, global_id, payload_len);
payload_end = payload + payload_len;
if (global_id && ac->global_id != global_id) {
dout(" set global_id %lld -> %lld\n", ac->global_id, global_id);
ac->global_id = global_id;
}
if (ac->negotiating) {
/* server does not support our protocols? */
if (!protocol && result < 0) {
ret = result;
goto out;
}
/* set up (new) protocol handler? */
if (ac->protocol && ac->protocol != protocol) {
ac->ops->destroy(ac);
ac->protocol = 0;
ac->ops = NULL;
}
if (ac->protocol != protocol) {
ret = ceph_auth_init_protocol(ac, protocol);
if (ret) {
pr_err("error %d on auth protocol %d init\n",
ret, protocol);
goto out;
}
}
ac->negotiating = false;
}
ret = ac->ops->handle_reply(ac, result, payload, payload_end);
if (ret == -EAGAIN) {
return ceph_build_auth_request(ac, reply_buf, reply_len);
} else if (ret) {
pr_err("authentication error %d\n", ret);
return ret;
}
return 0;
bad:
pr_err("failed to decode auth msg\n");
out:
return ret;
}
int ceph_build_auth(struct ceph_auth_client *ac,
void *msg_buf, size_t msg_len)
{
if (!ac->protocol)
return ceph_auth_build_hello(ac, msg_buf, msg_len);
BUG_ON(!ac->ops);
if (!ac->ops->is_authenticated(ac))
return ceph_build_auth_request(ac, msg_buf, msg_len);
return 0;
}
int ceph_auth_is_authenticated(struct ceph_auth_client *ac)
{
if (!ac->ops)
return 0;
return ac->ops->is_authenticated(ac);
}

84
fs/ceph/auth.h Normal file
View file

@ -0,0 +1,84 @@
#ifndef _FS_CEPH_AUTH_H
#define _FS_CEPH_AUTH_H
#include "types.h"
#include "buffer.h"
/*
* Abstract interface for communicating with the authenticate module.
* There is some handshake that takes place between us and the monitor
* to acquire the necessary keys. These are used to generate an
* 'authorizer' that we use when connecting to a service (mds, osd).
*/
struct ceph_auth_client;
struct ceph_authorizer;
struct ceph_auth_client_ops {
/*
* true if we are authenticated and can connect to
* services.
*/
int (*is_authenticated)(struct ceph_auth_client *ac);
/*
* build requests and process replies during monitor
* handshake. if handle_reply returns -EAGAIN, we build
* another request.
*/
int (*build_request)(struct ceph_auth_client *ac, void *buf, void *end);
int (*handle_reply)(struct ceph_auth_client *ac, int result,
void *buf, void *end);
/*
* Create authorizer for connecting to a service, and verify
* the response to authenticate the service.
*/
int (*create_authorizer)(struct ceph_auth_client *ac, int peer_type,
struct ceph_authorizer **a,
void **buf, size_t *len,
void **reply_buf, size_t *reply_len);
int (*verify_authorizer_reply)(struct ceph_auth_client *ac,
struct ceph_authorizer *a, size_t len);
void (*destroy_authorizer)(struct ceph_auth_client *ac,
struct ceph_authorizer *a);
void (*invalidate_authorizer)(struct ceph_auth_client *ac,
int peer_type);
/* reset when we (re)connect to a monitor */
void (*reset)(struct ceph_auth_client *ac);
void (*destroy)(struct ceph_auth_client *ac);
};
struct ceph_auth_client {
u32 protocol; /* CEPH_AUTH_* */
void *private; /* for use by protocol implementation */
const struct ceph_auth_client_ops *ops; /* null iff protocol==0 */
bool negotiating; /* true if negotiating protocol */
const char *name; /* entity name */
u64 global_id; /* our unique id in system */
const char *secret; /* our secret key */
unsigned want_keys; /* which services we want */
};
extern struct ceph_auth_client *ceph_auth_init(const char *name,
const char *secret);
extern void ceph_auth_destroy(struct ceph_auth_client *ac);
extern void ceph_auth_reset(struct ceph_auth_client *ac);
extern int ceph_auth_build_hello(struct ceph_auth_client *ac,
void *buf, size_t len);
extern int ceph_handle_auth_reply(struct ceph_auth_client *ac,
void *buf, size_t len,
void *reply_buf, size_t reply_len);
extern int ceph_entity_name_encode(const char *name, void **p, void *end);
extern int ceph_build_auth(struct ceph_auth_client *ac,
void *msg_buf, size_t msg_len);
extern int ceph_auth_is_authenticated(struct ceph_auth_client *ac);
#endif

121
fs/ceph/auth_none.c Normal file
View file

@ -0,0 +1,121 @@
#include "ceph_debug.h"
#include <linux/err.h>
#include <linux/module.h>
#include <linux/random.h>
#include "auth_none.h"
#include "auth.h"
#include "decode.h"
static void reset(struct ceph_auth_client *ac)
{
struct ceph_auth_none_info *xi = ac->private;
xi->starting = true;
xi->built_authorizer = false;
}
static void destroy(struct ceph_auth_client *ac)
{
kfree(ac->private);
ac->private = NULL;
}
static int is_authenticated(struct ceph_auth_client *ac)
{
struct ceph_auth_none_info *xi = ac->private;
return !xi->starting;
}
/*
* the generic auth code decode the global_id, and we carry no actual
* authenticate state, so nothing happens here.
*/
static int handle_reply(struct ceph_auth_client *ac, int result,
void *buf, void *end)
{
struct ceph_auth_none_info *xi = ac->private;
xi->starting = false;
return result;
}
/*
* build an 'authorizer' with our entity_name and global_id. we can
* reuse a single static copy since it is identical for all services
* we connect to.
*/
static int ceph_auth_none_create_authorizer(
struct ceph_auth_client *ac, int peer_type,
struct ceph_authorizer **a,
void **buf, size_t *len,
void **reply_buf, size_t *reply_len)
{
struct ceph_auth_none_info *ai = ac->private;
struct ceph_none_authorizer *au = &ai->au;
void *p, *end;
int ret;
if (!ai->built_authorizer) {
p = au->buf;
end = p + sizeof(au->buf);
ceph_encode_8(&p, 1);
ret = ceph_entity_name_encode(ac->name, &p, end - 8);
if (ret < 0)
goto bad;
ceph_decode_need(&p, end, sizeof(u64), bad2);
ceph_encode_64(&p, ac->global_id);
au->buf_len = p - (void *)au->buf;
ai->built_authorizer = true;
dout("built authorizer len %d\n", au->buf_len);
}
*a = (struct ceph_authorizer *)au;
*buf = au->buf;
*len = au->buf_len;
*reply_buf = au->reply_buf;
*reply_len = sizeof(au->reply_buf);
return 0;
bad2:
ret = -ERANGE;
bad:
return ret;
}
static void ceph_auth_none_destroy_authorizer(struct ceph_auth_client *ac,
struct ceph_authorizer *a)
{
/* nothing to do */
}
static const struct ceph_auth_client_ops ceph_auth_none_ops = {
.reset = reset,
.destroy = destroy,
.is_authenticated = is_authenticated,
.handle_reply = handle_reply,
.create_authorizer = ceph_auth_none_create_authorizer,
.destroy_authorizer = ceph_auth_none_destroy_authorizer,
};
int ceph_auth_none_init(struct ceph_auth_client *ac)
{
struct ceph_auth_none_info *xi;
dout("ceph_auth_none_init %p\n", ac);
xi = kzalloc(sizeof(*xi), GFP_NOFS);
if (!xi)
return -ENOMEM;
xi->starting = true;
xi->built_authorizer = false;
ac->protocol = CEPH_AUTH_NONE;
ac->private = xi;
ac->ops = &ceph_auth_none_ops;
return 0;
}

28
fs/ceph/auth_none.h Normal file
View file

@ -0,0 +1,28 @@
#ifndef _FS_CEPH_AUTH_NONE_H
#define _FS_CEPH_AUTH_NONE_H
#include "auth.h"
/*
* null security mode.
*
* we use a single static authorizer that simply encodes our entity name
* and global id.
*/
struct ceph_none_authorizer {
char buf[128];
int buf_len;
char reply_buf[0];
};
struct ceph_auth_none_info {
bool starting;
bool built_authorizer;
struct ceph_none_authorizer au; /* we only need one; it's static */
};
extern int ceph_auth_none_init(struct ceph_auth_client *ac);
#endif

656
fs/ceph/auth_x.c Normal file
View file

@ -0,0 +1,656 @@
#include "ceph_debug.h"
#include <linux/err.h>
#include <linux/module.h>
#include <linux/random.h>
#include "auth_x.h"
#include "auth_x_protocol.h"
#include "crypto.h"
#include "auth.h"
#include "decode.h"
struct kmem_cache *ceph_x_ticketbuf_cachep;
#define TEMP_TICKET_BUF_LEN 256
static void ceph_x_validate_tickets(struct ceph_auth_client *ac, int *pneed);
static int ceph_x_is_authenticated(struct ceph_auth_client *ac)
{
struct ceph_x_info *xi = ac->private;
int need;
ceph_x_validate_tickets(ac, &need);
dout("ceph_x_is_authenticated want=%d need=%d have=%d\n",
ac->want_keys, need, xi->have_keys);
return (ac->want_keys & xi->have_keys) == ac->want_keys;
}
static int ceph_x_encrypt(struct ceph_crypto_key *secret,
void *ibuf, int ilen, void *obuf, size_t olen)
{
struct ceph_x_encrypt_header head = {
.struct_v = 1,
.magic = cpu_to_le64(CEPHX_ENC_MAGIC)
};
size_t len = olen - sizeof(u32);
int ret;
ret = ceph_encrypt2(secret, obuf + sizeof(u32), &len,
&head, sizeof(head), ibuf, ilen);
if (ret)
return ret;
ceph_encode_32(&obuf, len);
return len + sizeof(u32);
}
static int ceph_x_decrypt(struct ceph_crypto_key *secret,
void **p, void *end, void *obuf, size_t olen)
{
struct ceph_x_encrypt_header head;
size_t head_len = sizeof(head);
int len, ret;
len = ceph_decode_32(p);
if (*p + len > end)
return -EINVAL;
dout("ceph_x_decrypt len %d\n", len);
ret = ceph_decrypt2(secret, &head, &head_len, obuf, &olen,
*p, len);
if (ret)
return ret;
if (head.struct_v != 1 || le64_to_cpu(head.magic) != CEPHX_ENC_MAGIC)
return -EPERM;
*p += len;
return olen;
}
/*
* get existing (or insert new) ticket handler
*/
struct ceph_x_ticket_handler *get_ticket_handler(struct ceph_auth_client *ac,
int service)
{
struct ceph_x_ticket_handler *th;
struct ceph_x_info *xi = ac->private;
struct rb_node *parent = NULL, **p = &xi->ticket_handlers.rb_node;
while (*p) {
parent = *p;
th = rb_entry(parent, struct ceph_x_ticket_handler, node);
if (service < th->service)
p = &(*p)->rb_left;
else if (service > th->service)
p = &(*p)->rb_right;
else
return th;
}
/* add it */
th = kzalloc(sizeof(*th), GFP_NOFS);
if (!th)
return ERR_PTR(-ENOMEM);
th->service = service;
rb_link_node(&th->node, parent, p);
rb_insert_color(&th->node, &xi->ticket_handlers);
return th;
}
static void remove_ticket_handler(struct ceph_auth_client *ac,
struct ceph_x_ticket_handler *th)
{
struct ceph_x_info *xi = ac->private;
dout("remove_ticket_handler %p %d\n", th, th->service);
rb_erase(&th->node, &xi->ticket_handlers);
ceph_crypto_key_destroy(&th->session_key);
if (th->ticket_blob)
ceph_buffer_put(th->ticket_blob);
kfree(th);
}
static int ceph_x_proc_ticket_reply(struct ceph_auth_client *ac,
struct ceph_crypto_key *secret,
void *buf, void *end)
{
struct ceph_x_info *xi = ac->private;
int num;
void *p = buf;
int ret;
char *dbuf;
char *ticket_buf;
u8 struct_v;
dbuf = kmem_cache_alloc(ceph_x_ticketbuf_cachep, GFP_NOFS | GFP_ATOMIC);
if (!dbuf)
return -ENOMEM;
ret = -ENOMEM;
ticket_buf = kmem_cache_alloc(ceph_x_ticketbuf_cachep,
GFP_NOFS | GFP_ATOMIC);
if (!ticket_buf)
goto out_dbuf;
ceph_decode_need(&p, end, 1 + sizeof(u32), bad);
struct_v = ceph_decode_8(&p);
if (struct_v != 1)
goto bad;
num = ceph_decode_32(&p);
dout("%d tickets\n", num);
while (num--) {
int type;
u8 struct_v;
struct ceph_x_ticket_handler *th;
void *dp, *dend;
int dlen;
char is_enc;
struct timespec validity;
struct ceph_crypto_key old_key;
void *tp, *tpend;
ceph_decode_need(&p, end, sizeof(u32) + 1, bad);
type = ceph_decode_32(&p);
dout(" ticket type %d %s\n", type, ceph_entity_type_name(type));
struct_v = ceph_decode_8(&p);
if (struct_v != 1)
goto bad;
th = get_ticket_handler(ac, type);
if (IS_ERR(th)) {
ret = PTR_ERR(th);
goto out;
}
/* blob for me */
dlen = ceph_x_decrypt(secret, &p, end, dbuf,
TEMP_TICKET_BUF_LEN);
if (dlen <= 0) {
ret = dlen;
goto out;
}
dout(" decrypted %d bytes\n", dlen);
dend = dbuf + dlen;
dp = dbuf;
struct_v = ceph_decode_8(&dp);
if (struct_v != 1)
goto bad;
memcpy(&old_key, &th->session_key, sizeof(old_key));
ret = ceph_crypto_key_decode(&th->session_key, &dp, dend);
if (ret)
goto out;
ceph_decode_copy(&dp, &th->validity, sizeof(th->validity));
ceph_decode_timespec(&validity, &th->validity);
th->expires = get_seconds() + validity.tv_sec;
th->renew_after = th->expires - (validity.tv_sec / 4);
dout(" expires=%lu renew_after=%lu\n", th->expires,
th->renew_after);
/* ticket blob for service */
ceph_decode_8_safe(&p, end, is_enc, bad);
tp = ticket_buf;
if (is_enc) {
/* encrypted */
dout(" encrypted ticket\n");
dlen = ceph_x_decrypt(&old_key, &p, end, ticket_buf,
TEMP_TICKET_BUF_LEN);
if (dlen < 0) {
ret = dlen;
goto out;
}
dlen = ceph_decode_32(&tp);
} else {
/* unencrypted */
ceph_decode_32_safe(&p, end, dlen, bad);
ceph_decode_need(&p, end, dlen, bad);
ceph_decode_copy(&p, ticket_buf, dlen);
}
tpend = tp + dlen;
dout(" ticket blob is %d bytes\n", dlen);
ceph_decode_need(&tp, tpend, 1 + sizeof(u64), bad);
struct_v = ceph_decode_8(&tp);
th->secret_id = ceph_decode_64(&tp);
ret = ceph_decode_buffer(&th->ticket_blob, &tp, tpend);
if (ret)
goto out;
dout(" got ticket service %d (%s) secret_id %lld len %d\n",
type, ceph_entity_type_name(type), th->secret_id,
(int)th->ticket_blob->vec.iov_len);
xi->have_keys |= th->service;
}
ret = 0;
out:
kmem_cache_free(ceph_x_ticketbuf_cachep, ticket_buf);
out_dbuf:
kmem_cache_free(ceph_x_ticketbuf_cachep, dbuf);
return ret;
bad:
ret = -EINVAL;
goto out;
}
static int ceph_x_build_authorizer(struct ceph_auth_client *ac,
struct ceph_x_ticket_handler *th,
struct ceph_x_authorizer *au)
{
int len;
struct ceph_x_authorize_a *msg_a;
struct ceph_x_authorize_b msg_b;
void *p, *end;
int ret;
int ticket_blob_len =
(th->ticket_blob ? th->ticket_blob->vec.iov_len : 0);
dout("build_authorizer for %s %p\n",
ceph_entity_type_name(th->service), au);
len = sizeof(*msg_a) + sizeof(msg_b) + sizeof(u32) +
ticket_blob_len + 16;
dout(" need len %d\n", len);
if (au->buf && au->buf->alloc_len < len) {
ceph_buffer_put(au->buf);
au->buf = NULL;
}
if (!au->buf) {
au->buf = ceph_buffer_new(len, GFP_NOFS);
if (!au->buf)
return -ENOMEM;
}
au->service = th->service;
msg_a = au->buf->vec.iov_base;
msg_a->struct_v = 1;
msg_a->global_id = cpu_to_le64(ac->global_id);
msg_a->service_id = cpu_to_le32(th->service);
msg_a->ticket_blob.struct_v = 1;
msg_a->ticket_blob.secret_id = cpu_to_le64(th->secret_id);
msg_a->ticket_blob.blob_len = cpu_to_le32(ticket_blob_len);
if (ticket_blob_len) {
memcpy(msg_a->ticket_blob.blob, th->ticket_blob->vec.iov_base,
th->ticket_blob->vec.iov_len);
}
dout(" th %p secret_id %lld %lld\n", th, th->secret_id,
le64_to_cpu(msg_a->ticket_blob.secret_id));
p = msg_a + 1;
p += ticket_blob_len;
end = au->buf->vec.iov_base + au->buf->vec.iov_len;
get_random_bytes(&au->nonce, sizeof(au->nonce));
msg_b.struct_v = 1;
msg_b.nonce = cpu_to_le64(au->nonce);
ret = ceph_x_encrypt(&th->session_key, &msg_b, sizeof(msg_b),
p, end - p);
if (ret < 0)
goto out_buf;
p += ret;
au->buf->vec.iov_len = p - au->buf->vec.iov_base;
dout(" built authorizer nonce %llx len %d\n", au->nonce,
(int)au->buf->vec.iov_len);
return 0;
out_buf:
ceph_buffer_put(au->buf);
au->buf = NULL;
return ret;
}
static int ceph_x_encode_ticket(struct ceph_x_ticket_handler *th,
void **p, void *end)
{
ceph_decode_need(p, end, 1 + sizeof(u64), bad);
ceph_encode_8(p, 1);
ceph_encode_64(p, th->secret_id);
if (th->ticket_blob) {
const char *buf = th->ticket_blob->vec.iov_base;
u32 len = th->ticket_blob->vec.iov_len;
ceph_encode_32_safe(p, end, len, bad);
ceph_encode_copy_safe(p, end, buf, len, bad);
} else {
ceph_encode_32_safe(p, end, 0, bad);
}
return 0;
bad:
return -ERANGE;
}
static void ceph_x_validate_tickets(struct ceph_auth_client *ac, int *pneed)
{
int want = ac->want_keys;
struct ceph_x_info *xi = ac->private;
int service;
*pneed = ac->want_keys & ~(xi->have_keys);
for (service = 1; service <= want; service <<= 1) {
struct ceph_x_ticket_handler *th;
if (!(ac->want_keys & service))
continue;
if (*pneed & service)
continue;
th = get_ticket_handler(ac, service);
if (!th) {
*pneed |= service;
continue;
}
if (get_seconds() >= th->renew_after)
*pneed |= service;
if (get_seconds() >= th->expires)
xi->have_keys &= ~service;
}
}
static int ceph_x_build_request(struct ceph_auth_client *ac,
void *buf, void *end)
{
struct ceph_x_info *xi = ac->private;
int need;
struct ceph_x_request_header *head = buf;
int ret;
struct ceph_x_ticket_handler *th =
get_ticket_handler(ac, CEPH_ENTITY_TYPE_AUTH);
ceph_x_validate_tickets(ac, &need);
dout("build_request want %x have %x need %x\n",
ac->want_keys, xi->have_keys, need);
if (need & CEPH_ENTITY_TYPE_AUTH) {
struct ceph_x_authenticate *auth = (void *)(head + 1);
void *p = auth + 1;
struct ceph_x_challenge_blob tmp;
char tmp_enc[40];
u64 *u;
if (p > end)
return -ERANGE;
dout(" get_auth_session_key\n");
head->op = cpu_to_le16(CEPHX_GET_AUTH_SESSION_KEY);
/* encrypt and hash */
get_random_bytes(&auth->client_challenge, sizeof(u64));
tmp.client_challenge = auth->client_challenge;
tmp.server_challenge = cpu_to_le64(xi->server_challenge);
ret = ceph_x_encrypt(&xi->secret, &tmp, sizeof(tmp),
tmp_enc, sizeof(tmp_enc));
if (ret < 0)
return ret;
auth->struct_v = 1;
auth->key = 0;
for (u = (u64 *)tmp_enc; u + 1 <= (u64 *)(tmp_enc + ret); u++)
auth->key ^= *u;
dout(" server_challenge %llx client_challenge %llx key %llx\n",
xi->server_challenge, le64_to_cpu(auth->client_challenge),
le64_to_cpu(auth->key));
/* now encode the old ticket if exists */
ret = ceph_x_encode_ticket(th, &p, end);
if (ret < 0)
return ret;
return p - buf;
}
if (need) {
void *p = head + 1;
struct ceph_x_service_ticket_request *req;
if (p > end)
return -ERANGE;
head->op = cpu_to_le16(CEPHX_GET_PRINCIPAL_SESSION_KEY);
BUG_ON(!th);
ret = ceph_x_build_authorizer(ac, th, &xi->auth_authorizer);
if (ret)
return ret;
ceph_encode_copy(&p, xi->auth_authorizer.buf->vec.iov_base,
xi->auth_authorizer.buf->vec.iov_len);
req = p;
req->keys = cpu_to_le32(need);
p += sizeof(*req);
return p - buf;
}
return 0;
}
static int ceph_x_handle_reply(struct ceph_auth_client *ac, int result,
void *buf, void *end)
{
struct ceph_x_info *xi = ac->private;
struct ceph_x_reply_header *head = buf;
struct ceph_x_ticket_handler *th;
int len = end - buf;
int op;
int ret;
if (result)
return result; /* XXX hmm? */
if (xi->starting) {
/* it's a hello */
struct ceph_x_server_challenge *sc = buf;
if (len != sizeof(*sc))
return -EINVAL;
xi->server_challenge = le64_to_cpu(sc->server_challenge);
dout("handle_reply got server challenge %llx\n",
xi->server_challenge);
xi->starting = false;
xi->have_keys &= ~CEPH_ENTITY_TYPE_AUTH;
return -EAGAIN;
}
op = le32_to_cpu(head->op);
result = le32_to_cpu(head->result);
dout("handle_reply op %d result %d\n", op, result);
switch (op) {
case CEPHX_GET_AUTH_SESSION_KEY:
/* verify auth key */
ret = ceph_x_proc_ticket_reply(ac, &xi->secret,
buf + sizeof(*head), end);
break;
case CEPHX_GET_PRINCIPAL_SESSION_KEY:
th = get_ticket_handler(ac, CEPH_ENTITY_TYPE_AUTH);
BUG_ON(!th);
ret = ceph_x_proc_ticket_reply(ac, &th->session_key,
buf + sizeof(*head), end);
break;
default:
return -EINVAL;
}
if (ret)
return ret;
if (ac->want_keys == xi->have_keys)
return 0;
return -EAGAIN;
}
static int ceph_x_create_authorizer(
struct ceph_auth_client *ac, int peer_type,
struct ceph_authorizer **a,
void **buf, size_t *len,
void **reply_buf, size_t *reply_len)
{
struct ceph_x_authorizer *au;
struct ceph_x_ticket_handler *th;
int ret;
th = get_ticket_handler(ac, peer_type);
if (IS_ERR(th))
return PTR_ERR(th);
au = kzalloc(sizeof(*au), GFP_NOFS);
if (!au)
return -ENOMEM;
ret = ceph_x_build_authorizer(ac, th, au);
if (ret) {
kfree(au);
return ret;
}
*a = (struct ceph_authorizer *)au;
*buf = au->buf->vec.iov_base;
*len = au->buf->vec.iov_len;
*reply_buf = au->reply_buf;
*reply_len = sizeof(au->reply_buf);
return 0;
}
static int ceph_x_verify_authorizer_reply(struct ceph_auth_client *ac,
struct ceph_authorizer *a, size_t len)
{
struct ceph_x_authorizer *au = (void *)a;
struct ceph_x_ticket_handler *th;
int ret = 0;
struct ceph_x_authorize_reply reply;
void *p = au->reply_buf;
void *end = p + sizeof(au->reply_buf);
th = get_ticket_handler(ac, au->service);
if (!th)
return -EIO; /* hrm! */
ret = ceph_x_decrypt(&th->session_key, &p, end, &reply, sizeof(reply));
if (ret < 0)
return ret;
if (ret != sizeof(reply))
return -EPERM;
if (au->nonce + 1 != le64_to_cpu(reply.nonce_plus_one))
ret = -EPERM;
else
ret = 0;
dout("verify_authorizer_reply nonce %llx got %llx ret %d\n",
au->nonce, le64_to_cpu(reply.nonce_plus_one), ret);
return ret;
}
static void ceph_x_destroy_authorizer(struct ceph_auth_client *ac,
struct ceph_authorizer *a)
{
struct ceph_x_authorizer *au = (void *)a;
ceph_buffer_put(au->buf);
kfree(au);
}
static void ceph_x_reset(struct ceph_auth_client *ac)
{
struct ceph_x_info *xi = ac->private;
dout("reset\n");
xi->starting = true;
xi->server_challenge = 0;
}
static void ceph_x_destroy(struct ceph_auth_client *ac)
{
struct ceph_x_info *xi = ac->private;
struct rb_node *p;
dout("ceph_x_destroy %p\n", ac);
ceph_crypto_key_destroy(&xi->secret);
while ((p = rb_first(&xi->ticket_handlers)) != NULL) {
struct ceph_x_ticket_handler *th =
rb_entry(p, struct ceph_x_ticket_handler, node);
remove_ticket_handler(ac, th);
}
kmem_cache_destroy(ceph_x_ticketbuf_cachep);
kfree(ac->private);
ac->private = NULL;
}
static void ceph_x_invalidate_authorizer(struct ceph_auth_client *ac,
int peer_type)
{
struct ceph_x_ticket_handler *th;
th = get_ticket_handler(ac, peer_type);
if (th && !IS_ERR(th))
remove_ticket_handler(ac, th);
}
static const struct ceph_auth_client_ops ceph_x_ops = {
.is_authenticated = ceph_x_is_authenticated,
.build_request = ceph_x_build_request,
.handle_reply = ceph_x_handle_reply,
.create_authorizer = ceph_x_create_authorizer,
.verify_authorizer_reply = ceph_x_verify_authorizer_reply,
.destroy_authorizer = ceph_x_destroy_authorizer,
.invalidate_authorizer = ceph_x_invalidate_authorizer,
.reset = ceph_x_reset,
.destroy = ceph_x_destroy,
};
int ceph_x_init(struct ceph_auth_client *ac)
{
struct ceph_x_info *xi;
int ret;
dout("ceph_x_init %p\n", ac);
xi = kzalloc(sizeof(*xi), GFP_NOFS);
if (!xi)
return -ENOMEM;
ret = -ENOMEM;
ceph_x_ticketbuf_cachep = kmem_cache_create("ceph_x_ticketbuf",
TEMP_TICKET_BUF_LEN, 8,
(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD),
NULL);
if (!ceph_x_ticketbuf_cachep)
goto done_nomem;
ret = -EINVAL;
if (!ac->secret) {
pr_err("no secret set (for auth_x protocol)\n");
goto done_nomem;
}
ret = ceph_crypto_key_unarmor(&xi->secret, ac->secret);
if (ret)
goto done_nomem;
xi->starting = true;
xi->ticket_handlers = RB_ROOT;
ac->protocol = CEPH_AUTH_CEPHX;
ac->private = xi;
ac->ops = &ceph_x_ops;
return 0;
done_nomem:
kfree(xi);
if (ceph_x_ticketbuf_cachep)
kmem_cache_destroy(ceph_x_ticketbuf_cachep);
return ret;
}

49
fs/ceph/auth_x.h Normal file
View file

@ -0,0 +1,49 @@
#ifndef _FS_CEPH_AUTH_X_H
#define _FS_CEPH_AUTH_X_H
#include <linux/rbtree.h>
#include "crypto.h"
#include "auth.h"
#include "auth_x_protocol.h"
/*
* Handle ticket for a single service.
*/
struct ceph_x_ticket_handler {
struct rb_node node;
unsigned service;
struct ceph_crypto_key session_key;
struct ceph_timespec validity;
u64 secret_id;
struct ceph_buffer *ticket_blob;
unsigned long renew_after, expires;
};
struct ceph_x_authorizer {
struct ceph_buffer *buf;
unsigned service;
u64 nonce;
char reply_buf[128]; /* big enough for encrypted blob */
};
struct ceph_x_info {
struct ceph_crypto_key secret;
bool starting;
u64 server_challenge;
unsigned have_keys;
struct rb_root ticket_handlers;
struct ceph_x_authorizer auth_authorizer;
};
extern int ceph_x_init(struct ceph_auth_client *ac);
#endif

90
fs/ceph/auth_x_protocol.h Normal file
View file

@ -0,0 +1,90 @@
#ifndef __FS_CEPH_AUTH_X_PROTOCOL
#define __FS_CEPH_AUTH_X_PROTOCOL
#define CEPHX_GET_AUTH_SESSION_KEY 0x0100
#define CEPHX_GET_PRINCIPAL_SESSION_KEY 0x0200
#define CEPHX_GET_ROTATING_KEY 0x0400
/* common bits */
struct ceph_x_ticket_blob {
__u8 struct_v;
__le64 secret_id;
__le32 blob_len;
char blob[];
} __attribute__ ((packed));
/* common request/reply headers */
struct ceph_x_request_header {
__le16 op;
} __attribute__ ((packed));
struct ceph_x_reply_header {
__le16 op;
__le32 result;
} __attribute__ ((packed));
/* authenticate handshake */
/* initial hello (no reply header) */
struct ceph_x_server_challenge {
__u8 struct_v;
__le64 server_challenge;
} __attribute__ ((packed));
struct ceph_x_authenticate {
__u8 struct_v;
__le64 client_challenge;
__le64 key;
/* ticket blob */
} __attribute__ ((packed));
struct ceph_x_service_ticket_request {
__u8 struct_v;
__le32 keys;
} __attribute__ ((packed));
struct ceph_x_challenge_blob {
__le64 server_challenge;
__le64 client_challenge;
} __attribute__ ((packed));
/* authorize handshake */
/*
* The authorizer consists of two pieces:
* a - service id, ticket blob
* b - encrypted with session key
*/
struct ceph_x_authorize_a {
__u8 struct_v;
__le64 global_id;
__le32 service_id;
struct ceph_x_ticket_blob ticket_blob;
} __attribute__ ((packed));
struct ceph_x_authorize_b {
__u8 struct_v;
__le64 nonce;
} __attribute__ ((packed));
struct ceph_x_authorize_reply {
__u8 struct_v;
__le64 nonce_plus_one;
} __attribute__ ((packed));
/*
* encyption bundle
*/
#define CEPHX_ENC_MAGIC 0xff009cad8826aa55ull
struct ceph_x_encrypt_header {
__u8 struct_v;
__le64 magic;
} __attribute__ ((packed));
#endif

78
fs/ceph/buffer.c Normal file
View file

@ -0,0 +1,78 @@
#include "ceph_debug.h"
#include "buffer.h"
#include "decode.h"
struct ceph_buffer *ceph_buffer_new(size_t len, gfp_t gfp)
{
struct ceph_buffer *b;
b = kmalloc(sizeof(*b), gfp);
if (!b)
return NULL;
b->vec.iov_base = kmalloc(len, gfp | __GFP_NOWARN);
if (b->vec.iov_base) {
b->is_vmalloc = false;
} else {
b->vec.iov_base = __vmalloc(len, gfp, PAGE_KERNEL);
if (!b->vec.iov_base) {
kfree(b);
return NULL;
}
b->is_vmalloc = true;
}
kref_init(&b->kref);
b->alloc_len = len;
b->vec.iov_len = len;
dout("buffer_new %p\n", b);
return b;
}
void ceph_buffer_release(struct kref *kref)
{
struct ceph_buffer *b = container_of(kref, struct ceph_buffer, kref);
dout("buffer_release %p\n", b);
if (b->vec.iov_base) {
if (b->is_vmalloc)
vfree(b->vec.iov_base);
else
kfree(b->vec.iov_base);
}
kfree(b);
}
int ceph_buffer_alloc(struct ceph_buffer *b, int len, gfp_t gfp)
{
b->vec.iov_base = kmalloc(len, gfp | __GFP_NOWARN);
if (b->vec.iov_base) {
b->is_vmalloc = false;
} else {
b->vec.iov_base = __vmalloc(len, gfp, PAGE_KERNEL);
b->is_vmalloc = true;
}
if (!b->vec.iov_base)
return -ENOMEM;
b->alloc_len = len;
b->vec.iov_len = len;
return 0;
}
int ceph_decode_buffer(struct ceph_buffer **b, void **p, void *end)
{
size_t len;
ceph_decode_need(p, end, sizeof(u32), bad);
len = ceph_decode_32(p);
dout("decode_buffer len %d\n", (int)len);
ceph_decode_need(p, end, len, bad);
*b = ceph_buffer_new(len, GFP_NOFS);
if (!*b)
return -ENOMEM;
ceph_decode_copy(p, (*b)->vec.iov_base, len);
return 0;
bad:
return -EINVAL;
}

39
fs/ceph/buffer.h Normal file
View file

@ -0,0 +1,39 @@
#ifndef __FS_CEPH_BUFFER_H
#define __FS_CEPH_BUFFER_H
#include <linux/kref.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/types.h>
#include <linux/uio.h>
/*
* a simple reference counted buffer.
*
* use kmalloc for small sizes (<= one page), vmalloc for larger
* sizes.
*/
struct ceph_buffer {
struct kref kref;
struct kvec vec;
size_t alloc_len;
bool is_vmalloc;
};
extern struct ceph_buffer *ceph_buffer_new(size_t len, gfp_t gfp);
extern void ceph_buffer_release(struct kref *kref);
static inline struct ceph_buffer *ceph_buffer_get(struct ceph_buffer *b)
{
kref_get(&b->kref);
return b;
}
static inline void ceph_buffer_put(struct ceph_buffer *b)
{
kref_put(&b->kref, ceph_buffer_release);
}
extern int ceph_decode_buffer(struct ceph_buffer **b, void **p, void *end);
#endif

2927
fs/ceph/caps.c Normal file

File diff suppressed because it is too large Load diff

37
fs/ceph/ceph_debug.h Normal file
View file

@ -0,0 +1,37 @@
#ifndef _FS_CEPH_DEBUG_H
#define _FS_CEPH_DEBUG_H
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#ifdef CONFIG_CEPH_FS_PRETTYDEBUG
/*
* wrap pr_debug to include a filename:lineno prefix on each line.
* this incurs some overhead (kernel size and execution time) due to
* the extra function call at each call site.
*/
# if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
extern const char *ceph_file_part(const char *s, int len);
# define dout(fmt, ...) \
pr_debug(" %12.12s:%-4d : " fmt, \
ceph_file_part(__FILE__, sizeof(__FILE__)), \
__LINE__, ##__VA_ARGS__)
# else
/* faux printk call just to see any compiler warnings. */
# define dout(fmt, ...) do { \
if (0) \
printk(KERN_DEBUG fmt, ##__VA_ARGS__); \
} while (0)
# endif
#else
/*
* or, just wrap pr_debug
*/
# define dout(fmt, ...) pr_debug(" " fmt, ##__VA_ARGS__)
#endif
#endif

21
fs/ceph/ceph_frag.c Normal file
View file

@ -0,0 +1,21 @@
/*
* Ceph 'frag' type
*/
#include "types.h"
int ceph_frag_compare(__u32 a, __u32 b)
{
unsigned va = ceph_frag_value(a);
unsigned vb = ceph_frag_value(b);
if (va < vb)
return -1;
if (va > vb)
return 1;
va = ceph_frag_bits(a);
vb = ceph_frag_bits(b);
if (va < vb)
return -1;
if (va > vb)
return 1;
return 0;
}

109
fs/ceph/ceph_frag.h Normal file
View file

@ -0,0 +1,109 @@
#ifndef _FS_CEPH_FRAG_H
#define _FS_CEPH_FRAG_H
/*
* "Frags" are a way to describe a subset of a 32-bit number space,
* using a mask and a value to match against that mask. Any given frag
* (subset of the number space) can be partitioned into 2^n sub-frags.
*
* Frags are encoded into a 32-bit word:
* 8 upper bits = "bits"
* 24 lower bits = "value"
* (We could go to 5+27 bits, but who cares.)
*
* We use the _most_ significant bits of the 24 bit value. This makes
* values logically sort.
*
* Unfortunately, because the "bits" field is still in the high bits, we
* can't sort encoded frags numerically. However, it does allow you
* to feed encoded frags as values into frag_contains_value.
*/
static inline __u32 ceph_frag_make(__u32 b, __u32 v)
{
return (b << 24) |
(v & (0xffffffu << (24-b)) & 0xffffffu);
}
static inline __u32 ceph_frag_bits(__u32 f)
{
return f >> 24;
}
static inline __u32 ceph_frag_value(__u32 f)
{
return f & 0xffffffu;
}
static inline __u32 ceph_frag_mask(__u32 f)
{
return (0xffffffu << (24-ceph_frag_bits(f))) & 0xffffffu;
}
static inline __u32 ceph_frag_mask_shift(__u32 f)
{
return 24 - ceph_frag_bits(f);
}
static inline int ceph_frag_contains_value(__u32 f, __u32 v)
{
return (v & ceph_frag_mask(f)) == ceph_frag_value(f);
}
static inline int ceph_frag_contains_frag(__u32 f, __u32 sub)
{
/* is sub as specific as us, and contained by us? */
return ceph_frag_bits(sub) >= ceph_frag_bits(f) &&
(ceph_frag_value(sub) & ceph_frag_mask(f)) == ceph_frag_value(f);
}
static inline __u32 ceph_frag_parent(__u32 f)
{
return ceph_frag_make(ceph_frag_bits(f) - 1,
ceph_frag_value(f) & (ceph_frag_mask(f) << 1));
}
static inline int ceph_frag_is_left_child(__u32 f)
{
return ceph_frag_bits(f) > 0 &&
(ceph_frag_value(f) & (0x1000000 >> ceph_frag_bits(f))) == 0;
}
static inline int ceph_frag_is_right_child(__u32 f)
{
return ceph_frag_bits(f) > 0 &&
(ceph_frag_value(f) & (0x1000000 >> ceph_frag_bits(f))) == 1;
}
static inline __u32 ceph_frag_sibling(__u32 f)
{
return ceph_frag_make(ceph_frag_bits(f),
ceph_frag_value(f) ^ (0x1000000 >> ceph_frag_bits(f)));
}
static inline __u32 ceph_frag_left_child(__u32 f)
{
return ceph_frag_make(ceph_frag_bits(f)+1, ceph_frag_value(f));
}
static inline __u32 ceph_frag_right_child(__u32 f)
{
return ceph_frag_make(ceph_frag_bits(f)+1,
ceph_frag_value(f) | (0x1000000 >> (1+ceph_frag_bits(f))));
}
static inline __u32 ceph_frag_make_child(__u32 f, int by, int i)
{
int newbits = ceph_frag_bits(f) + by;
return ceph_frag_make(newbits,
ceph_frag_value(f) | (i << (24 - newbits)));
}
static inline int ceph_frag_is_leftmost(__u32 f)
{
return ceph_frag_value(f) == 0;
}
static inline int ceph_frag_is_rightmost(__u32 f)
{
return ceph_frag_value(f) == ceph_frag_mask(f);
}
static inline __u32 ceph_frag_next(__u32 f)
{
return ceph_frag_make(ceph_frag_bits(f),
ceph_frag_value(f) + (0x1000000 >> ceph_frag_bits(f)));
}
/*
* comparator to sort frags logically, as when traversing the
* number space in ascending order...
*/
int ceph_frag_compare(__u32 a, __u32 b);
#endif

74
fs/ceph/ceph_fs.c Normal file
View file

@ -0,0 +1,74 @@
/*
* Some non-inline ceph helpers
*/
#include "types.h"
/*
* return true if @layout appears to be valid
*/
int ceph_file_layout_is_valid(const struct ceph_file_layout *layout)
{
__u32 su = le32_to_cpu(layout->fl_stripe_unit);
__u32 sc = le32_to_cpu(layout->fl_stripe_count);
__u32 os = le32_to_cpu(layout->fl_object_size);
/* stripe unit, object size must be non-zero, 64k increment */
if (!su || (su & (CEPH_MIN_STRIPE_UNIT-1)))
return 0;
if (!os || (os & (CEPH_MIN_STRIPE_UNIT-1)))
return 0;
/* object size must be a multiple of stripe unit */
if (os < su || os % su)
return 0;
/* stripe count must be non-zero */
if (!sc)
return 0;
return 1;
}
int ceph_flags_to_mode(int flags)
{
#ifdef O_DIRECTORY /* fixme */
if ((flags & O_DIRECTORY) == O_DIRECTORY)
return CEPH_FILE_MODE_PIN;
#endif
#ifdef O_LAZY
if (flags & O_LAZY)
return CEPH_FILE_MODE_LAZY;
#endif
if ((flags & O_APPEND) == O_APPEND)
flags |= O_WRONLY;
flags &= O_ACCMODE;
if ((flags & O_RDWR) == O_RDWR)
return CEPH_FILE_MODE_RDWR;
if ((flags & O_WRONLY) == O_WRONLY)
return CEPH_FILE_MODE_WR;
return CEPH_FILE_MODE_RD;
}
int ceph_caps_for_mode(int mode)
{
switch (mode) {
case CEPH_FILE_MODE_PIN:
return CEPH_CAP_PIN;
case CEPH_FILE_MODE_RD:
return CEPH_CAP_PIN | CEPH_CAP_FILE_SHARED |
CEPH_CAP_FILE_RD | CEPH_CAP_FILE_CACHE;
case CEPH_FILE_MODE_RDWR:
return CEPH_CAP_PIN | CEPH_CAP_FILE_SHARED |
CEPH_CAP_FILE_EXCL |
CEPH_CAP_FILE_RD | CEPH_CAP_FILE_CACHE |
CEPH_CAP_FILE_WR | CEPH_CAP_FILE_BUFFER |
CEPH_CAP_AUTH_SHARED | CEPH_CAP_AUTH_EXCL |
CEPH_CAP_XATTR_SHARED | CEPH_CAP_XATTR_EXCL;
case CEPH_FILE_MODE_WR:
return CEPH_CAP_PIN | CEPH_CAP_FILE_SHARED |
CEPH_CAP_FILE_EXCL |
CEPH_CAP_FILE_WR | CEPH_CAP_FILE_BUFFER |
CEPH_CAP_AUTH_SHARED | CEPH_CAP_AUTH_EXCL |
CEPH_CAP_XATTR_SHARED | CEPH_CAP_XATTR_EXCL;
}
return 0;
}

650
fs/ceph/ceph_fs.h Normal file
View file

@ -0,0 +1,650 @@
/*
* ceph_fs.h - Ceph constants and data types to share between kernel and
* user space.
*
* Most types in this file are defined as little-endian, and are
* primarily intended to describe data structures that pass over the
* wire or that are stored on disk.
*
* LGPL2
*/
#ifndef _FS_CEPH_CEPH_FS_H
#define _FS_CEPH_CEPH_FS_H
#include "msgr.h"
#include "rados.h"
/*
* Ceph release version
*/
#define CEPH_VERSION_MAJOR 0
#define CEPH_VERSION_MINOR 19
#define CEPH_VERSION_PATCH 0
#define _CEPH_STRINGIFY(x) #x
#define CEPH_STRINGIFY(x) _CEPH_STRINGIFY(x)
#define CEPH_MAKE_VERSION(x, y, z) CEPH_STRINGIFY(x) "." CEPH_STRINGIFY(y) \
"." CEPH_STRINGIFY(z)
#define CEPH_VERSION CEPH_MAKE_VERSION(CEPH_VERSION_MAJOR, \
CEPH_VERSION_MINOR, CEPH_VERSION_PATCH)
/*
* subprotocol versions. when specific messages types or high-level
* protocols change, bump the affected components. we keep rev
* internal cluster protocols separately from the public,
* client-facing protocol.
*/
#define CEPH_OSD_PROTOCOL 8 /* cluster internal */
#define CEPH_MDS_PROTOCOL 9 /* cluster internal */
#define CEPH_MON_PROTOCOL 5 /* cluster internal */
#define CEPH_OSDC_PROTOCOL 24 /* server/client */
#define CEPH_MDSC_PROTOCOL 32 /* server/client */
#define CEPH_MONC_PROTOCOL 15 /* server/client */
#define CEPH_INO_ROOT 1
#define CEPH_INO_CEPH 2 /* hidden .ceph dir */
/* arbitrary limit on max # of monitors (cluster of 3 is typical) */
#define CEPH_MAX_MON 31
/*
* feature bits
*/
#define CEPH_FEATURE_SUPPORTED 0
#define CEPH_FEATURE_REQUIRED 0
/*
* ceph_file_layout - describe data layout for a file/inode
*/
struct ceph_file_layout {
/* file -> object mapping */
__le32 fl_stripe_unit; /* stripe unit, in bytes. must be multiple
of page size. */
__le32 fl_stripe_count; /* over this many objects */
__le32 fl_object_size; /* until objects are this big, then move to
new objects */
__le32 fl_cas_hash; /* 0 = none; 1 = sha256 */
/* pg -> disk layout */
__le32 fl_object_stripe_unit; /* for per-object parity, if any */
/* object -> pg layout */
__le32 fl_pg_preferred; /* preferred primary for pg (-1 for none) */
__le32 fl_pg_pool; /* namespace, crush ruleset, rep level */
} __attribute__ ((packed));
#define CEPH_MIN_STRIPE_UNIT 65536
int ceph_file_layout_is_valid(const struct ceph_file_layout *layout);
/* crypto algorithms */
#define CEPH_CRYPTO_NONE 0x0
#define CEPH_CRYPTO_AES 0x1
/* security/authentication protocols */
#define CEPH_AUTH_UNKNOWN 0x0
#define CEPH_AUTH_NONE 0x1
#define CEPH_AUTH_CEPHX 0x2
/*********************************************
* message layer
*/
/*
* message types
*/
/* misc */
#define CEPH_MSG_SHUTDOWN 1
#define CEPH_MSG_PING 2
/* client <-> monitor */
#define CEPH_MSG_MON_MAP 4
#define CEPH_MSG_MON_GET_MAP 5
#define CEPH_MSG_STATFS 13
#define CEPH_MSG_STATFS_REPLY 14
#define CEPH_MSG_MON_SUBSCRIBE 15
#define CEPH_MSG_MON_SUBSCRIBE_ACK 16
#define CEPH_MSG_AUTH 17
#define CEPH_MSG_AUTH_REPLY 18
/* client <-> mds */
#define CEPH_MSG_MDS_MAP 21
#define CEPH_MSG_CLIENT_SESSION 22
#define CEPH_MSG_CLIENT_RECONNECT 23
#define CEPH_MSG_CLIENT_REQUEST 24
#define CEPH_MSG_CLIENT_REQUEST_FORWARD 25
#define CEPH_MSG_CLIENT_REPLY 26
#define CEPH_MSG_CLIENT_CAPS 0x310
#define CEPH_MSG_CLIENT_LEASE 0x311
#define CEPH_MSG_CLIENT_SNAP 0x312
#define CEPH_MSG_CLIENT_CAPRELEASE 0x313
/* osd */
#define CEPH_MSG_OSD_MAP 41
#define CEPH_MSG_OSD_OP 42
#define CEPH_MSG_OSD_OPREPLY 43
struct ceph_mon_request_header {
__le64 have_version;
__le16 session_mon;
__le64 session_mon_tid;
} __attribute__ ((packed));
struct ceph_mon_statfs {
struct ceph_mon_request_header monhdr;
struct ceph_fsid fsid;
} __attribute__ ((packed));
struct ceph_statfs {
__le64 kb, kb_used, kb_avail;
__le64 num_objects;
} __attribute__ ((packed));
struct ceph_mon_statfs_reply {
struct ceph_fsid fsid;
__le64 version;
struct ceph_statfs st;
} __attribute__ ((packed));
struct ceph_osd_getmap {
struct ceph_mon_request_header monhdr;
struct ceph_fsid fsid;
__le32 start;
} __attribute__ ((packed));
struct ceph_mds_getmap {
struct ceph_mon_request_header monhdr;
struct ceph_fsid fsid;
} __attribute__ ((packed));
struct ceph_client_mount {
struct ceph_mon_request_header monhdr;
} __attribute__ ((packed));
struct ceph_mon_subscribe_item {
__le64 have_version; __le64 have;
__u8 onetime;
} __attribute__ ((packed));
struct ceph_mon_subscribe_ack {
__le32 duration; /* seconds */
struct ceph_fsid fsid;
} __attribute__ ((packed));
/*
* mds states
* > 0 -> in
* <= 0 -> out
*/
#define CEPH_MDS_STATE_DNE 0 /* down, does not exist. */
#define CEPH_MDS_STATE_STOPPED -1 /* down, once existed, but no subtrees.
empty log. */
#define CEPH_MDS_STATE_BOOT -4 /* up, boot announcement. */
#define CEPH_MDS_STATE_STANDBY -5 /* up, idle. waiting for assignment. */
#define CEPH_MDS_STATE_CREATING -6 /* up, creating MDS instance. */
#define CEPH_MDS_STATE_STARTING -7 /* up, starting previously stopped mds */
#define CEPH_MDS_STATE_STANDBY_REPLAY -8 /* up, tailing active node's journal */
#define CEPH_MDS_STATE_REPLAY 8 /* up, replaying journal. */
#define CEPH_MDS_STATE_RESOLVE 9 /* up, disambiguating distributed
operations (import, rename, etc.) */
#define CEPH_MDS_STATE_RECONNECT 10 /* up, reconnect to clients */
#define CEPH_MDS_STATE_REJOIN 11 /* up, rejoining distributed cache */
#define CEPH_MDS_STATE_CLIENTREPLAY 12 /* up, replaying client operations */
#define CEPH_MDS_STATE_ACTIVE 13 /* up, active */
#define CEPH_MDS_STATE_STOPPING 14 /* up, but exporting metadata */
extern const char *ceph_mds_state_name(int s);
/*
* metadata lock types.
* - these are bitmasks.. we can compose them
* - they also define the lock ordering by the MDS
* - a few of these are internal to the mds
*/
#define CEPH_LOCK_DN 1
#define CEPH_LOCK_ISNAP 2
#define CEPH_LOCK_IVERSION 4 /* mds internal */
#define CEPH_LOCK_IFILE 8 /* mds internal */
#define CEPH_LOCK_IAUTH 32
#define CEPH_LOCK_ILINK 64
#define CEPH_LOCK_IDFT 128 /* dir frag tree */
#define CEPH_LOCK_INEST 256 /* mds internal */
#define CEPH_LOCK_IXATTR 512
#define CEPH_LOCK_INO 2048 /* immutable inode bits; not a lock */
/* client_session ops */
enum {
CEPH_SESSION_REQUEST_OPEN,
CEPH_SESSION_OPEN,
CEPH_SESSION_REQUEST_CLOSE,
CEPH_SESSION_CLOSE,
CEPH_SESSION_REQUEST_RENEWCAPS,
CEPH_SESSION_RENEWCAPS,
CEPH_SESSION_STALE,
CEPH_SESSION_RECALL_STATE,
};
extern const char *ceph_session_op_name(int op);
struct ceph_mds_session_head {
__le32 op;
__le64 seq;
struct ceph_timespec stamp;
__le32 max_caps, max_leases;
} __attribute__ ((packed));
/* client_request */
/*
* metadata ops.
* & 0x001000 -> write op
* & 0x010000 -> follow symlink (e.g. stat(), not lstat()).
& & 0x100000 -> use weird ino/path trace
*/
#define CEPH_MDS_OP_WRITE 0x001000
enum {
CEPH_MDS_OP_LOOKUP = 0x00100,
CEPH_MDS_OP_GETATTR = 0x00101,
CEPH_MDS_OP_LOOKUPHASH = 0x00102,
CEPH_MDS_OP_LOOKUPPARENT = 0x00103,
CEPH_MDS_OP_SETXATTR = 0x01105,
CEPH_MDS_OP_RMXATTR = 0x01106,
CEPH_MDS_OP_SETLAYOUT = 0x01107,
CEPH_MDS_OP_SETATTR = 0x01108,
CEPH_MDS_OP_MKNOD = 0x01201,
CEPH_MDS_OP_LINK = 0x01202,
CEPH_MDS_OP_UNLINK = 0x01203,
CEPH_MDS_OP_RENAME = 0x01204,
CEPH_MDS_OP_MKDIR = 0x01220,
CEPH_MDS_OP_RMDIR = 0x01221,
CEPH_MDS_OP_SYMLINK = 0x01222,
CEPH_MDS_OP_CREATE = 0x01301,
CEPH_MDS_OP_OPEN = 0x00302,
CEPH_MDS_OP_READDIR = 0x00305,
CEPH_MDS_OP_LOOKUPSNAP = 0x00400,
CEPH_MDS_OP_MKSNAP = 0x01400,
CEPH_MDS_OP_RMSNAP = 0x01401,
CEPH_MDS_OP_LSSNAP = 0x00402,
};
extern const char *ceph_mds_op_name(int op);
#define CEPH_SETATTR_MODE 1
#define CEPH_SETATTR_UID 2
#define CEPH_SETATTR_GID 4
#define CEPH_SETATTR_MTIME 8
#define CEPH_SETATTR_ATIME 16
#define CEPH_SETATTR_SIZE 32
#define CEPH_SETATTR_CTIME 64
union ceph_mds_request_args {
struct {
__le32 mask; /* CEPH_CAP_* */
} __attribute__ ((packed)) getattr;
struct {
__le32 mode;
__le32 uid;
__le32 gid;
struct ceph_timespec mtime;
struct ceph_timespec atime;
__le64 size, old_size; /* old_size needed by truncate */
__le32 mask; /* CEPH_SETATTR_* */
} __attribute__ ((packed)) setattr;
struct {
__le32 frag; /* which dir fragment */
__le32 max_entries; /* how many dentries to grab */
} __attribute__ ((packed)) readdir;
struct {
__le32 mode;
__le32 rdev;
} __attribute__ ((packed)) mknod;
struct {
__le32 mode;
} __attribute__ ((packed)) mkdir;
struct {
__le32 flags;
__le32 mode;
__le32 stripe_unit; /* layout for newly created file */
__le32 stripe_count; /* ... */
__le32 object_size;
__le32 file_replication;
__le32 preferred;
} __attribute__ ((packed)) open;
struct {
__le32 flags;
} __attribute__ ((packed)) setxattr;
struct {
struct ceph_file_layout layout;
} __attribute__ ((packed)) setlayout;
} __attribute__ ((packed));
#define CEPH_MDS_FLAG_REPLAY 1 /* this is a replayed op */
#define CEPH_MDS_FLAG_WANT_DENTRY 2 /* want dentry in reply */
struct ceph_mds_request_head {
__le64 oldest_client_tid;
__le32 mdsmap_epoch; /* on client */
__le32 flags; /* CEPH_MDS_FLAG_* */
__u8 num_retry, num_fwd; /* count retry, fwd attempts */
__le16 num_releases; /* # include cap/lease release records */
__le32 op; /* mds op code */
__le32 caller_uid, caller_gid;
__le64 ino; /* use this ino for openc, mkdir, mknod,
etc. (if replaying) */
union ceph_mds_request_args args;
} __attribute__ ((packed));
/* cap/lease release record */
struct ceph_mds_request_release {
__le64 ino, cap_id; /* ino and unique cap id */
__le32 caps, wanted; /* new issued, wanted */
__le32 seq, issue_seq, mseq;
__le32 dname_seq; /* if releasing a dentry lease, a */
__le32 dname_len; /* string follows. */
} __attribute__ ((packed));
/* client reply */
struct ceph_mds_reply_head {
__le32 op;
__le32 result;
__le32 mdsmap_epoch;
__u8 safe; /* true if committed to disk */
__u8 is_dentry, is_target; /* true if dentry, target inode records
are included with reply */
} __attribute__ ((packed));
/* one for each node split */
struct ceph_frag_tree_split {
__le32 frag; /* this frag splits... */
__le32 by; /* ...by this many bits */
} __attribute__ ((packed));
struct ceph_frag_tree_head {
__le32 nsplits; /* num ceph_frag_tree_split records */
struct ceph_frag_tree_split splits[];
} __attribute__ ((packed));
/* capability issue, for bundling with mds reply */
struct ceph_mds_reply_cap {
__le32 caps, wanted; /* caps issued, wanted */
__le64 cap_id;
__le32 seq, mseq;
__le64 realm; /* snap realm */
__u8 flags; /* CEPH_CAP_FLAG_* */
} __attribute__ ((packed));
#define CEPH_CAP_FLAG_AUTH 1 /* cap is issued by auth mds */
/* inode record, for bundling with mds reply */
struct ceph_mds_reply_inode {
__le64 ino;
__le64 snapid;
__le32 rdev;
__le64 version; /* inode version */
__le64 xattr_version; /* version for xattr blob */
struct ceph_mds_reply_cap cap; /* caps issued for this inode */
struct ceph_file_layout layout;
struct ceph_timespec ctime, mtime, atime;
__le32 time_warp_seq;
__le64 size, max_size, truncate_size;
__le32 truncate_seq;
__le32 mode, uid, gid;
__le32 nlink;
__le64 files, subdirs, rbytes, rfiles, rsubdirs; /* dir stats */
struct ceph_timespec rctime;
struct ceph_frag_tree_head fragtree; /* (must be at end of struct) */
} __attribute__ ((packed));
/* followed by frag array, then symlink string, then xattr blob */
/* reply_lease follows dname, and reply_inode */
struct ceph_mds_reply_lease {
__le16 mask; /* lease type(s) */
__le32 duration_ms; /* lease duration */
__le32 seq;
} __attribute__ ((packed));
struct ceph_mds_reply_dirfrag {
__le32 frag; /* fragment */
__le32 auth; /* auth mds, if this is a delegation point */
__le32 ndist; /* number of mds' this is replicated on */
__le32 dist[];
} __attribute__ ((packed));
/* file access modes */
#define CEPH_FILE_MODE_PIN 0
#define CEPH_FILE_MODE_RD 1
#define CEPH_FILE_MODE_WR 2
#define CEPH_FILE_MODE_RDWR 3 /* RD | WR */
#define CEPH_FILE_MODE_LAZY 4 /* lazy io */
#define CEPH_FILE_MODE_NUM 8 /* bc these are bit fields.. mostly */
int ceph_flags_to_mode(int flags);
/* capability bits */
#define CEPH_CAP_PIN 1 /* no specific capabilities beyond the pin */
/* generic cap bits */
#define CEPH_CAP_GSHARED 1 /* client can reads */
#define CEPH_CAP_GEXCL 2 /* client can read and update */
#define CEPH_CAP_GCACHE 4 /* (file) client can cache reads */
#define CEPH_CAP_GRD 8 /* (file) client can read */
#define CEPH_CAP_GWR 16 /* (file) client can write */
#define CEPH_CAP_GBUFFER 32 /* (file) client can buffer writes */
#define CEPH_CAP_GWREXTEND 64 /* (file) client can extend EOF */
#define CEPH_CAP_GLAZYIO 128 /* (file) client can perform lazy io */
/* per-lock shift */
#define CEPH_CAP_SAUTH 2
#define CEPH_CAP_SLINK 4
#define CEPH_CAP_SXATTR 6
#define CEPH_CAP_SFILE 8 /* goes at the end (uses >2 cap bits) */
#define CEPH_CAP_BITS 16
/* composed values */
#define CEPH_CAP_AUTH_SHARED (CEPH_CAP_GSHARED << CEPH_CAP_SAUTH)
#define CEPH_CAP_AUTH_EXCL (CEPH_CAP_GEXCL << CEPH_CAP_SAUTH)
#define CEPH_CAP_LINK_SHARED (CEPH_CAP_GSHARED << CEPH_CAP_SLINK)
#define CEPH_CAP_LINK_EXCL (CEPH_CAP_GEXCL << CEPH_CAP_SLINK)
#define CEPH_CAP_XATTR_SHARED (CEPH_CAP_GSHARED << CEPH_CAP_SXATTR)
#define CEPH_CAP_XATTR_EXCL (CEPH_CAP_GEXCL << CEPH_CAP_SXATTR)
#define CEPH_CAP_FILE(x) (x << CEPH_CAP_SFILE)
#define CEPH_CAP_FILE_SHARED (CEPH_CAP_GSHARED << CEPH_CAP_SFILE)
#define CEPH_CAP_FILE_EXCL (CEPH_CAP_GEXCL << CEPH_CAP_SFILE)
#define CEPH_CAP_FILE_CACHE (CEPH_CAP_GCACHE << CEPH_CAP_SFILE)
#define CEPH_CAP_FILE_RD (CEPH_CAP_GRD << CEPH_CAP_SFILE)
#define CEPH_CAP_FILE_WR (CEPH_CAP_GWR << CEPH_CAP_SFILE)
#define CEPH_CAP_FILE_BUFFER (CEPH_CAP_GBUFFER << CEPH_CAP_SFILE)
#define CEPH_CAP_FILE_WREXTEND (CEPH_CAP_GWREXTEND << CEPH_CAP_SFILE)
#define CEPH_CAP_FILE_LAZYIO (CEPH_CAP_GLAZYIO << CEPH_CAP_SFILE)
/* cap masks (for getattr) */
#define CEPH_STAT_CAP_INODE CEPH_CAP_PIN
#define CEPH_STAT_CAP_TYPE CEPH_CAP_PIN /* mode >> 12 */
#define CEPH_STAT_CAP_SYMLINK CEPH_CAP_PIN
#define CEPH_STAT_CAP_UID CEPH_CAP_AUTH_SHARED
#define CEPH_STAT_CAP_GID CEPH_CAP_AUTH_SHARED
#define CEPH_STAT_CAP_MODE CEPH_CAP_AUTH_SHARED
#define CEPH_STAT_CAP_NLINK CEPH_CAP_LINK_SHARED
#define CEPH_STAT_CAP_LAYOUT CEPH_CAP_FILE_SHARED
#define CEPH_STAT_CAP_MTIME CEPH_CAP_FILE_SHARED
#define CEPH_STAT_CAP_SIZE CEPH_CAP_FILE_SHARED
#define CEPH_STAT_CAP_ATIME CEPH_CAP_FILE_SHARED /* fixme */
#define CEPH_STAT_CAP_XATTR CEPH_CAP_XATTR_SHARED
#define CEPH_STAT_CAP_INODE_ALL (CEPH_CAP_PIN | \
CEPH_CAP_AUTH_SHARED | \
CEPH_CAP_LINK_SHARED | \
CEPH_CAP_FILE_SHARED | \
CEPH_CAP_XATTR_SHARED)
#define CEPH_CAP_ANY_SHARED (CEPH_CAP_AUTH_SHARED | \
CEPH_CAP_LINK_SHARED | \
CEPH_CAP_XATTR_SHARED | \
CEPH_CAP_FILE_SHARED)
#define CEPH_CAP_ANY_RD (CEPH_CAP_ANY_SHARED | CEPH_CAP_FILE_RD | \
CEPH_CAP_FILE_CACHE)
#define CEPH_CAP_ANY_EXCL (CEPH_CAP_AUTH_EXCL | \
CEPH_CAP_LINK_EXCL | \
CEPH_CAP_XATTR_EXCL | \
CEPH_CAP_FILE_EXCL)
#define CEPH_CAP_ANY_FILE_WR (CEPH_CAP_FILE_WR | CEPH_CAP_FILE_BUFFER | \
CEPH_CAP_FILE_EXCL)
#define CEPH_CAP_ANY_WR (CEPH_CAP_ANY_EXCL | CEPH_CAP_ANY_FILE_WR)
#define CEPH_CAP_ANY (CEPH_CAP_ANY_RD | CEPH_CAP_ANY_EXCL | \
CEPH_CAP_ANY_FILE_WR | CEPH_CAP_PIN)
#define CEPH_CAP_LOCKS (CEPH_LOCK_IFILE | CEPH_LOCK_IAUTH | CEPH_LOCK_ILINK | \
CEPH_LOCK_IXATTR)
int ceph_caps_for_mode(int mode);
enum {
CEPH_CAP_OP_GRANT, /* mds->client grant */
CEPH_CAP_OP_REVOKE, /* mds->client revoke */
CEPH_CAP_OP_TRUNC, /* mds->client trunc notify */
CEPH_CAP_OP_EXPORT, /* mds has exported the cap */
CEPH_CAP_OP_IMPORT, /* mds has imported the cap */
CEPH_CAP_OP_UPDATE, /* client->mds update */
CEPH_CAP_OP_DROP, /* client->mds drop cap bits */
CEPH_CAP_OP_FLUSH, /* client->mds cap writeback */
CEPH_CAP_OP_FLUSH_ACK, /* mds->client flushed */
CEPH_CAP_OP_FLUSHSNAP, /* client->mds flush snapped metadata */
CEPH_CAP_OP_FLUSHSNAP_ACK, /* mds->client flushed snapped metadata */
CEPH_CAP_OP_RELEASE, /* client->mds release (clean) cap */
CEPH_CAP_OP_RENEW, /* client->mds renewal request */
};
extern const char *ceph_cap_op_name(int op);
/*
* caps message, used for capability callbacks, acks, requests, etc.
*/
struct ceph_mds_caps {
__le32 op; /* CEPH_CAP_OP_* */
__le64 ino, realm;
__le64 cap_id;
__le32 seq, issue_seq;
__le32 caps, wanted, dirty; /* latest issued/wanted/dirty */
__le32 migrate_seq;
__le64 snap_follows;
__le32 snap_trace_len;
/* authlock */
__le32 uid, gid, mode;
/* linklock */
__le32 nlink;
/* xattrlock */
__le32 xattr_len;
__le64 xattr_version;
/* filelock */
__le64 size, max_size, truncate_size;
__le32 truncate_seq;
struct ceph_timespec mtime, atime, ctime;
struct ceph_file_layout layout;
__le32 time_warp_seq;
} __attribute__ ((packed));
/* cap release msg head */
struct ceph_mds_cap_release {
__le32 num; /* number of cap_items that follow */
} __attribute__ ((packed));
struct ceph_mds_cap_item {
__le64 ino;
__le64 cap_id;
__le32 migrate_seq, seq;
} __attribute__ ((packed));
#define CEPH_MDS_LEASE_REVOKE 1 /* mds -> client */
#define CEPH_MDS_LEASE_RELEASE 2 /* client -> mds */
#define CEPH_MDS_LEASE_RENEW 3 /* client <-> mds */
#define CEPH_MDS_LEASE_REVOKE_ACK 4 /* client -> mds */
extern const char *ceph_lease_op_name(int o);
/* lease msg header */
struct ceph_mds_lease {
__u8 action; /* CEPH_MDS_LEASE_* */
__le16 mask; /* which lease */
__le64 ino;
__le64 first, last; /* snap range */
__le32 seq;
__le32 duration_ms; /* duration of renewal */
} __attribute__ ((packed));
/* followed by a __le32+string for dname */
/* client reconnect */
struct ceph_mds_cap_reconnect {
__le64 cap_id;
__le32 wanted;
__le32 issued;
__le64 size;
struct ceph_timespec mtime, atime;
__le64 snaprealm;
__le64 pathbase; /* base ino for our path to this ino */
} __attribute__ ((packed));
/* followed by encoded string */
struct ceph_mds_snaprealm_reconnect {
__le64 ino; /* snap realm base */
__le64 seq; /* snap seq for this snap realm */
__le64 parent; /* parent realm */
} __attribute__ ((packed));
/*
* snaps
*/
enum {
CEPH_SNAP_OP_UPDATE, /* CREATE or DESTROY */
CEPH_SNAP_OP_CREATE,
CEPH_SNAP_OP_DESTROY,
CEPH_SNAP_OP_SPLIT,
};
extern const char *ceph_snap_op_name(int o);
/* snap msg header */
struct ceph_mds_snap_head {
__le32 op; /* CEPH_SNAP_OP_* */
__le64 split; /* ino to split off, if any */
__le32 num_split_inos; /* # inos belonging to new child realm */
__le32 num_split_realms; /* # child realms udner new child realm */
__le32 trace_len; /* size of snap trace blob */
} __attribute__ ((packed));
/* followed by split ino list, then split realms, then the trace blob */
/*
* encode info about a snaprealm, as viewed by a client
*/
struct ceph_mds_snap_realm {
__le64 ino; /* ino */
__le64 created; /* snap: when created */
__le64 parent; /* ino: parent realm */
__le64 parent_since; /* snap: same parent since */
__le64 seq; /* snap: version */
__le32 num_snaps;
__le32 num_prior_parent_snaps;
} __attribute__ ((packed));
/* followed by my snap list, then prior parent snap list */
#endif

118
fs/ceph/ceph_hash.c Normal file
View file

@ -0,0 +1,118 @@
#include "types.h"
/*
* Robert Jenkin's hash function.
* http://burtleburtle.net/bob/hash/evahash.html
* This is in the public domain.
*/
#define mix(a, b, c) \
do { \
a = a - b; a = a - c; a = a ^ (c >> 13); \
b = b - c; b = b - a; b = b ^ (a << 8); \
c = c - a; c = c - b; c = c ^ (b >> 13); \
a = a - b; a = a - c; a = a ^ (c >> 12); \
b = b - c; b = b - a; b = b ^ (a << 16); \
c = c - a; c = c - b; c = c ^ (b >> 5); \
a = a - b; a = a - c; a = a ^ (c >> 3); \
b = b - c; b = b - a; b = b ^ (a << 10); \
c = c - a; c = c - b; c = c ^ (b >> 15); \
} while (0)
unsigned ceph_str_hash_rjenkins(const char *str, unsigned length)
{
const unsigned char *k = (const unsigned char *)str;
__u32 a, b, c; /* the internal state */
__u32 len; /* how many key bytes still need mixing */
/* Set up the internal state */
len = length;
a = 0x9e3779b9; /* the golden ratio; an arbitrary value */
b = a;
c = 0; /* variable initialization of internal state */
/* handle most of the key */
while (len >= 12) {
a = a + (k[0] + ((__u32)k[1] << 8) + ((__u32)k[2] << 16) +
((__u32)k[3] << 24));
b = b + (k[4] + ((__u32)k[5] << 8) + ((__u32)k[6] << 16) +
((__u32)k[7] << 24));
c = c + (k[8] + ((__u32)k[9] << 8) + ((__u32)k[10] << 16) +
((__u32)k[11] << 24));
mix(a, b, c);
k = k + 12;
len = len - 12;
}
/* handle the last 11 bytes */
c = c + length;
switch (len) { /* all the case statements fall through */
case 11:
c = c + ((__u32)k[10] << 24);
case 10:
c = c + ((__u32)k[9] << 16);
case 9:
c = c + ((__u32)k[8] << 8);
/* the first byte of c is reserved for the length */
case 8:
b = b + ((__u32)k[7] << 24);
case 7:
b = b + ((__u32)k[6] << 16);
case 6:
b = b + ((__u32)k[5] << 8);
case 5:
b = b + k[4];
case 4:
a = a + ((__u32)k[3] << 24);
case 3:
a = a + ((__u32)k[2] << 16);
case 2:
a = a + ((__u32)k[1] << 8);
case 1:
a = a + k[0];
/* case 0: nothing left to add */
}
mix(a, b, c);
return c;
}
/*
* linux dcache hash
*/
unsigned ceph_str_hash_linux(const char *str, unsigned length)
{
unsigned long hash = 0;
unsigned char c;
while (length--) {
c = *str++;
hash = (hash + (c << 4) + (c >> 4)) * 11;
}
return hash;
}
unsigned ceph_str_hash(int type, const char *s, unsigned len)
{
switch (type) {
case CEPH_STR_HASH_LINUX:
return ceph_str_hash_linux(s, len);
case CEPH_STR_HASH_RJENKINS:
return ceph_str_hash_rjenkins(s, len);
default:
return -1;
}
}
const char *ceph_str_hash_name(int type)
{
switch (type) {
case CEPH_STR_HASH_LINUX:
return "linux";
case CEPH_STR_HASH_RJENKINS:
return "rjenkins";
default:
return "unknown";
}
}

13
fs/ceph/ceph_hash.h Normal file
View file

@ -0,0 +1,13 @@
#ifndef _FS_CEPH_HASH_H
#define _FS_CEPH_HASH_H
#define CEPH_STR_HASH_LINUX 0x1 /* linux dcache hash */
#define CEPH_STR_HASH_RJENKINS 0x2 /* robert jenkins' */
extern unsigned ceph_str_hash_linux(const char *s, unsigned len);
extern unsigned ceph_str_hash_rjenkins(const char *s, unsigned len);
extern unsigned ceph_str_hash(int type, const char *s, unsigned len);
extern const char *ceph_str_hash_name(int type);
#endif

176
fs/ceph/ceph_strings.c Normal file
View file

@ -0,0 +1,176 @@
/*
* Ceph string constants
*/
#include "types.h"
const char *ceph_entity_type_name(int type)
{
switch (type) {
case CEPH_ENTITY_TYPE_MDS: return "mds";
case CEPH_ENTITY_TYPE_OSD: return "osd";
case CEPH_ENTITY_TYPE_MON: return "mon";
case CEPH_ENTITY_TYPE_CLIENT: return "client";
case CEPH_ENTITY_TYPE_ADMIN: return "admin";
case CEPH_ENTITY_TYPE_AUTH: return "auth";
default: return "unknown";
}
}
const char *ceph_osd_op_name(int op)
{
switch (op) {
case CEPH_OSD_OP_READ: return "read";
case CEPH_OSD_OP_STAT: return "stat";
case CEPH_OSD_OP_MASKTRUNC: return "masktrunc";
case CEPH_OSD_OP_WRITE: return "write";
case CEPH_OSD_OP_DELETE: return "delete";
case CEPH_OSD_OP_TRUNCATE: return "truncate";
case CEPH_OSD_OP_ZERO: return "zero";
case CEPH_OSD_OP_WRITEFULL: return "writefull";
case CEPH_OSD_OP_APPEND: return "append";
case CEPH_OSD_OP_STARTSYNC: return "startsync";
case CEPH_OSD_OP_SETTRUNC: return "settrunc";
case CEPH_OSD_OP_TRIMTRUNC: return "trimtrunc";
case CEPH_OSD_OP_TMAPUP: return "tmapup";
case CEPH_OSD_OP_TMAPGET: return "tmapget";
case CEPH_OSD_OP_TMAPPUT: return "tmapput";
case CEPH_OSD_OP_GETXATTR: return "getxattr";
case CEPH_OSD_OP_GETXATTRS: return "getxattrs";
case CEPH_OSD_OP_SETXATTR: return "setxattr";
case CEPH_OSD_OP_SETXATTRS: return "setxattrs";
case CEPH_OSD_OP_RESETXATTRS: return "resetxattrs";
case CEPH_OSD_OP_RMXATTR: return "rmxattr";
case CEPH_OSD_OP_PULL: return "pull";
case CEPH_OSD_OP_PUSH: return "push";
case CEPH_OSD_OP_BALANCEREADS: return "balance-reads";
case CEPH_OSD_OP_UNBALANCEREADS: return "unbalance-reads";
case CEPH_OSD_OP_SCRUB: return "scrub";
case CEPH_OSD_OP_WRLOCK: return "wrlock";
case CEPH_OSD_OP_WRUNLOCK: return "wrunlock";
case CEPH_OSD_OP_RDLOCK: return "rdlock";
case CEPH_OSD_OP_RDUNLOCK: return "rdunlock";
case CEPH_OSD_OP_UPLOCK: return "uplock";
case CEPH_OSD_OP_DNLOCK: return "dnlock";
case CEPH_OSD_OP_CALL: return "call";
case CEPH_OSD_OP_PGLS: return "pgls";
}
return "???";
}
const char *ceph_mds_state_name(int s)
{
switch (s) {
/* down and out */
case CEPH_MDS_STATE_DNE: return "down:dne";
case CEPH_MDS_STATE_STOPPED: return "down:stopped";
/* up and out */
case CEPH_MDS_STATE_BOOT: return "up:boot";
case CEPH_MDS_STATE_STANDBY: return "up:standby";
case CEPH_MDS_STATE_STANDBY_REPLAY: return "up:standby-replay";
case CEPH_MDS_STATE_CREATING: return "up:creating";
case CEPH_MDS_STATE_STARTING: return "up:starting";
/* up and in */
case CEPH_MDS_STATE_REPLAY: return "up:replay";
case CEPH_MDS_STATE_RESOLVE: return "up:resolve";
case CEPH_MDS_STATE_RECONNECT: return "up:reconnect";
case CEPH_MDS_STATE_REJOIN: return "up:rejoin";
case CEPH_MDS_STATE_CLIENTREPLAY: return "up:clientreplay";
case CEPH_MDS_STATE_ACTIVE: return "up:active";
case CEPH_MDS_STATE_STOPPING: return "up:stopping";
}
return "???";
}
const char *ceph_session_op_name(int op)
{
switch (op) {
case CEPH_SESSION_REQUEST_OPEN: return "request_open";
case CEPH_SESSION_OPEN: return "open";
case CEPH_SESSION_REQUEST_CLOSE: return "request_close";
case CEPH_SESSION_CLOSE: return "close";
case CEPH_SESSION_REQUEST_RENEWCAPS: return "request_renewcaps";
case CEPH_SESSION_RENEWCAPS: return "renewcaps";
case CEPH_SESSION_STALE: return "stale";
case CEPH_SESSION_RECALL_STATE: return "recall_state";
}
return "???";
}
const char *ceph_mds_op_name(int op)
{
switch (op) {
case CEPH_MDS_OP_LOOKUP: return "lookup";
case CEPH_MDS_OP_LOOKUPHASH: return "lookuphash";
case CEPH_MDS_OP_LOOKUPPARENT: return "lookupparent";
case CEPH_MDS_OP_GETATTR: return "getattr";
case CEPH_MDS_OP_SETXATTR: return "setxattr";
case CEPH_MDS_OP_SETATTR: return "setattr";
case CEPH_MDS_OP_RMXATTR: return "rmxattr";
case CEPH_MDS_OP_READDIR: return "readdir";
case CEPH_MDS_OP_MKNOD: return "mknod";
case CEPH_MDS_OP_LINK: return "link";
case CEPH_MDS_OP_UNLINK: return "unlink";
case CEPH_MDS_OP_RENAME: return "rename";
case CEPH_MDS_OP_MKDIR: return "mkdir";
case CEPH_MDS_OP_RMDIR: return "rmdir";
case CEPH_MDS_OP_SYMLINK: return "symlink";
case CEPH_MDS_OP_CREATE: return "create";
case CEPH_MDS_OP_OPEN: return "open";
case CEPH_MDS_OP_LOOKUPSNAP: return "lookupsnap";
case CEPH_MDS_OP_LSSNAP: return "lssnap";
case CEPH_MDS_OP_MKSNAP: return "mksnap";
case CEPH_MDS_OP_RMSNAP: return "rmsnap";
}
return "???";
}
const char *ceph_cap_op_name(int op)
{
switch (op) {
case CEPH_CAP_OP_GRANT: return "grant";
case CEPH_CAP_OP_REVOKE: return "revoke";
case CEPH_CAP_OP_TRUNC: return "trunc";
case CEPH_CAP_OP_EXPORT: return "export";
case CEPH_CAP_OP_IMPORT: return "import";
case CEPH_CAP_OP_UPDATE: return "update";
case CEPH_CAP_OP_DROP: return "drop";
case CEPH_CAP_OP_FLUSH: return "flush";
case CEPH_CAP_OP_FLUSH_ACK: return "flush_ack";
case CEPH_CAP_OP_FLUSHSNAP: return "flushsnap";
case CEPH_CAP_OP_FLUSHSNAP_ACK: return "flushsnap_ack";
case CEPH_CAP_OP_RELEASE: return "release";
case CEPH_CAP_OP_RENEW: return "renew";
}
return "???";
}
const char *ceph_lease_op_name(int o)
{
switch (o) {
case CEPH_MDS_LEASE_REVOKE: return "revoke";
case CEPH_MDS_LEASE_RELEASE: return "release";
case CEPH_MDS_LEASE_RENEW: return "renew";
case CEPH_MDS_LEASE_REVOKE_ACK: return "revoke_ack";
}
return "???";
}
const char *ceph_snap_op_name(int o)
{
switch (o) {
case CEPH_SNAP_OP_UPDATE: return "update";
case CEPH_SNAP_OP_CREATE: return "create";
case CEPH_SNAP_OP_DESTROY: return "destroy";
case CEPH_SNAP_OP_SPLIT: return "split";
}
return "???";
}

151
fs/ceph/crush/crush.c Normal file
View file

@ -0,0 +1,151 @@
#ifdef __KERNEL__
# include <linux/slab.h>
#else
# include <stdlib.h>
# include <assert.h>
# define kfree(x) do { if (x) free(x); } while (0)
# define BUG_ON(x) assert(!(x))
#endif
#include "crush.h"
const char *crush_bucket_alg_name(int alg)
{
switch (alg) {
case CRUSH_BUCKET_UNIFORM: return "uniform";
case CRUSH_BUCKET_LIST: return "list";
case CRUSH_BUCKET_TREE: return "tree";
case CRUSH_BUCKET_STRAW: return "straw";
default: return "unknown";
}
}
/**
* crush_get_bucket_item_weight - Get weight of an item in given bucket
* @b: bucket pointer
* @p: item index in bucket
*/
int crush_get_bucket_item_weight(struct crush_bucket *b, int p)
{
if (p >= b->size)
return 0;
switch (b->alg) {
case CRUSH_BUCKET_UNIFORM:
return ((struct crush_bucket_uniform *)b)->item_weight;
case CRUSH_BUCKET_LIST:
return ((struct crush_bucket_list *)b)->item_weights[p];
case CRUSH_BUCKET_TREE:
if (p & 1)
return ((struct crush_bucket_tree *)b)->node_weights[p];
return 0;
case CRUSH_BUCKET_STRAW:
return ((struct crush_bucket_straw *)b)->item_weights[p];
}
return 0;
}
/**
* crush_calc_parents - Calculate parent vectors for the given crush map.
* @map: crush_map pointer
*/
void crush_calc_parents(struct crush_map *map)
{
int i, b, c;
for (b = 0; b < map->max_buckets; b++) {
if (map->buckets[b] == NULL)
continue;
for (i = 0; i < map->buckets[b]->size; i++) {
c = map->buckets[b]->items[i];
BUG_ON(c >= map->max_devices ||
c < -map->max_buckets);
if (c >= 0)
map->device_parents[c] = map->buckets[b]->id;
else
map->bucket_parents[-1-c] = map->buckets[b]->id;
}
}
}
void crush_destroy_bucket_uniform(struct crush_bucket_uniform *b)
{
kfree(b->h.perm);
kfree(b->h.items);
kfree(b);
}
void crush_destroy_bucket_list(struct crush_bucket_list *b)
{
kfree(b->item_weights);
kfree(b->sum_weights);
kfree(b->h.perm);
kfree(b->h.items);
kfree(b);
}
void crush_destroy_bucket_tree(struct crush_bucket_tree *b)
{
kfree(b->node_weights);
kfree(b);
}
void crush_destroy_bucket_straw(struct crush_bucket_straw *b)
{
kfree(b->straws);
kfree(b->item_weights);
kfree(b->h.perm);
kfree(b->h.items);
kfree(b);
}
void crush_destroy_bucket(struct crush_bucket *b)
{
switch (b->alg) {
case CRUSH_BUCKET_UNIFORM:
crush_destroy_bucket_uniform((struct crush_bucket_uniform *)b);
break;
case CRUSH_BUCKET_LIST:
crush_destroy_bucket_list((struct crush_bucket_list *)b);
break;
case CRUSH_BUCKET_TREE:
crush_destroy_bucket_tree((struct crush_bucket_tree *)b);
break;
case CRUSH_BUCKET_STRAW:
crush_destroy_bucket_straw((struct crush_bucket_straw *)b);
break;
}
}
/**
* crush_destroy - Destroy a crush_map
* @map: crush_map pointer
*/
void crush_destroy(struct crush_map *map)
{
int b;
/* buckets */
if (map->buckets) {
for (b = 0; b < map->max_buckets; b++) {
if (map->buckets[b] == NULL)
continue;
crush_destroy_bucket(map->buckets[b]);
}
kfree(map->buckets);
}
/* rules */
if (map->rules) {
for (b = 0; b < map->max_rules; b++)
kfree(map->rules[b]);
kfree(map->rules);
}
kfree(map->bucket_parents);
kfree(map->device_parents);
kfree(map);
}

180
fs/ceph/crush/crush.h Normal file
View file

@ -0,0 +1,180 @@
#ifndef _CRUSH_CRUSH_H
#define _CRUSH_CRUSH_H
#include <linux/types.h>
/*
* CRUSH is a pseudo-random data distribution algorithm that
* efficiently distributes input values (typically, data objects)
* across a heterogeneous, structured storage cluster.
*
* The algorithm was originally described in detail in this paper
* (although the algorithm has evolved somewhat since then):
*
* http://www.ssrc.ucsc.edu/Papers/weil-sc06.pdf
*
* LGPL2
*/
#define CRUSH_MAGIC 0x00010000ul /* for detecting algorithm revisions */
#define CRUSH_MAX_DEPTH 10 /* max crush hierarchy depth */
#define CRUSH_MAX_SET 10 /* max size of a mapping result */
/*
* CRUSH uses user-defined "rules" to describe how inputs should be
* mapped to devices. A rule consists of sequence of steps to perform
* to generate the set of output devices.
*/
struct crush_rule_step {
__u32 op;
__s32 arg1;
__s32 arg2;
};
/* step op codes */
enum {
CRUSH_RULE_NOOP = 0,
CRUSH_RULE_TAKE = 1, /* arg1 = value to start with */
CRUSH_RULE_CHOOSE_FIRSTN = 2, /* arg1 = num items to pick */
/* arg2 = type */
CRUSH_RULE_CHOOSE_INDEP = 3, /* same */
CRUSH_RULE_EMIT = 4, /* no args */
CRUSH_RULE_CHOOSE_LEAF_FIRSTN = 6,
CRUSH_RULE_CHOOSE_LEAF_INDEP = 7,
};
/*
* for specifying choose num (arg1) relative to the max parameter
* passed to do_rule
*/
#define CRUSH_CHOOSE_N 0
#define CRUSH_CHOOSE_N_MINUS(x) (-(x))
/*
* The rule mask is used to describe what the rule is intended for.
* Given a ruleset and size of output set, we search through the
* rule list for a matching rule_mask.
*/
struct crush_rule_mask {
__u8 ruleset;
__u8 type;
__u8 min_size;
__u8 max_size;
};
struct crush_rule {
__u32 len;
struct crush_rule_mask mask;
struct crush_rule_step steps[0];
};
#define crush_rule_size(len) (sizeof(struct crush_rule) + \
(len)*sizeof(struct crush_rule_step))
/*
* A bucket is a named container of other items (either devices or
* other buckets). Items within a bucket are chosen using one of a
* few different algorithms. The table summarizes how the speed of
* each option measures up against mapping stability when items are
* added or removed.
*
* Bucket Alg Speed Additions Removals
* ------------------------------------------------
* uniform O(1) poor poor
* list O(n) optimal poor
* tree O(log n) good good
* straw O(n) optimal optimal
*/
enum {
CRUSH_BUCKET_UNIFORM = 1,
CRUSH_BUCKET_LIST = 2,
CRUSH_BUCKET_TREE = 3,
CRUSH_BUCKET_STRAW = 4
};
extern const char *crush_bucket_alg_name(int alg);
struct crush_bucket {
__s32 id; /* this'll be negative */
__u16 type; /* non-zero; type=0 is reserved for devices */
__u8 alg; /* one of CRUSH_BUCKET_* */
__u8 hash; /* which hash function to use, CRUSH_HASH_* */
__u32 weight; /* 16-bit fixed point */
__u32 size; /* num items */
__s32 *items;
/*
* cached random permutation: used for uniform bucket and for
* the linear search fallback for the other bucket types.
*/
__u32 perm_x; /* @x for which *perm is defined */
__u32 perm_n; /* num elements of *perm that are permuted/defined */
__u32 *perm;
};
struct crush_bucket_uniform {
struct crush_bucket h;
__u32 item_weight; /* 16-bit fixed point; all items equally weighted */
};
struct crush_bucket_list {
struct crush_bucket h;
__u32 *item_weights; /* 16-bit fixed point */
__u32 *sum_weights; /* 16-bit fixed point. element i is sum
of weights 0..i, inclusive */
};
struct crush_bucket_tree {
struct crush_bucket h; /* note: h.size is _tree_ size, not number of
actual items */
__u8 num_nodes;
__u32 *node_weights;
};
struct crush_bucket_straw {
struct crush_bucket h;
__u32 *item_weights; /* 16-bit fixed point */
__u32 *straws; /* 16-bit fixed point */
};
/*
* CRUSH map includes all buckets, rules, etc.
*/
struct crush_map {
struct crush_bucket **buckets;
struct crush_rule **rules;
/*
* Parent pointers to identify the parent bucket a device or
* bucket in the hierarchy. If an item appears more than
* once, this is the _last_ time it appeared (where buckets
* are processed in bucket id order, from -1 on down to
* -max_buckets.
*/
__u32 *bucket_parents;
__u32 *device_parents;
__s32 max_buckets;
__u32 max_rules;
__s32 max_devices;
};
/* crush.c */
extern int crush_get_bucket_item_weight(struct crush_bucket *b, int pos);
extern void crush_calc_parents(struct crush_map *map);
extern void crush_destroy_bucket_uniform(struct crush_bucket_uniform *b);
extern void crush_destroy_bucket_list(struct crush_bucket_list *b);
extern void crush_destroy_bucket_tree(struct crush_bucket_tree *b);
extern void crush_destroy_bucket_straw(struct crush_bucket_straw *b);
extern void crush_destroy_bucket(struct crush_bucket *b);
extern void crush_destroy(struct crush_map *map);
#endif

149
fs/ceph/crush/hash.c Normal file
View file

@ -0,0 +1,149 @@
#include <linux/types.h>
#include "hash.h"
/*
* Robert Jenkins' function for mixing 32-bit values
* http://burtleburtle.net/bob/hash/evahash.html
* a, b = random bits, c = input and output
*/
#define crush_hashmix(a, b, c) do { \
a = a-b; a = a-c; a = a^(c>>13); \
b = b-c; b = b-a; b = b^(a<<8); \
c = c-a; c = c-b; c = c^(b>>13); \
a = a-b; a = a-c; a = a^(c>>12); \
b = b-c; b = b-a; b = b^(a<<16); \
c = c-a; c = c-b; c = c^(b>>5); \
a = a-b; a = a-c; a = a^(c>>3); \
b = b-c; b = b-a; b = b^(a<<10); \
c = c-a; c = c-b; c = c^(b>>15); \
} while (0)
#define crush_hash_seed 1315423911
static __u32 crush_hash32_rjenkins1(__u32 a)
{
__u32 hash = crush_hash_seed ^ a;
__u32 b = a;
__u32 x = 231232;
__u32 y = 1232;
crush_hashmix(b, x, hash);
crush_hashmix(y, a, hash);
return hash;
}
static __u32 crush_hash32_rjenkins1_2(__u32 a, __u32 b)
{
__u32 hash = crush_hash_seed ^ a ^ b;
__u32 x = 231232;
__u32 y = 1232;
crush_hashmix(a, b, hash);
crush_hashmix(x, a, hash);
crush_hashmix(b, y, hash);
return hash;
}
static __u32 crush_hash32_rjenkins1_3(__u32 a, __u32 b, __u32 c)
{
__u32 hash = crush_hash_seed ^ a ^ b ^ c;
__u32 x = 231232;
__u32 y = 1232;
crush_hashmix(a, b, hash);
crush_hashmix(c, x, hash);
crush_hashmix(y, a, hash);
crush_hashmix(b, x, hash);
crush_hashmix(y, c, hash);
return hash;
}
static __u32 crush_hash32_rjenkins1_4(__u32 a, __u32 b, __u32 c, __u32 d)
{
__u32 hash = crush_hash_seed ^ a ^ b ^ c ^ d;
__u32 x = 231232;
__u32 y = 1232;
crush_hashmix(a, b, hash);
crush_hashmix(c, d, hash);
crush_hashmix(a, x, hash);
crush_hashmix(y, b, hash);
crush_hashmix(c, x, hash);
crush_hashmix(y, d, hash);
return hash;
}
static __u32 crush_hash32_rjenkins1_5(__u32 a, __u32 b, __u32 c, __u32 d,
__u32 e)
{
__u32 hash = crush_hash_seed ^ a ^ b ^ c ^ d ^ e;
__u32 x = 231232;
__u32 y = 1232;
crush_hashmix(a, b, hash);
crush_hashmix(c, d, hash);
crush_hashmix(e, x, hash);
crush_hashmix(y, a, hash);
crush_hashmix(b, x, hash);
crush_hashmix(y, c, hash);
crush_hashmix(d, x, hash);
crush_hashmix(y, e, hash);
return hash;
}
__u32 crush_hash32(int type, __u32 a)
{
switch (type) {
case CRUSH_HASH_RJENKINS1:
return crush_hash32_rjenkins1(a);
default:
return 0;
}
}
__u32 crush_hash32_2(int type, __u32 a, __u32 b)
{
switch (type) {
case CRUSH_HASH_RJENKINS1:
return crush_hash32_rjenkins1_2(a, b);
default:
return 0;
}
}
__u32 crush_hash32_3(int type, __u32 a, __u32 b, __u32 c)
{
switch (type) {
case CRUSH_HASH_RJENKINS1:
return crush_hash32_rjenkins1_3(a, b, c);
default:
return 0;
}
}
__u32 crush_hash32_4(int type, __u32 a, __u32 b, __u32 c, __u32 d)
{
switch (type) {
case CRUSH_HASH_RJENKINS1:
return crush_hash32_rjenkins1_4(a, b, c, d);
default:
return 0;
}
}
__u32 crush_hash32_5(int type, __u32 a, __u32 b, __u32 c, __u32 d, __u32 e)
{
switch (type) {
case CRUSH_HASH_RJENKINS1:
return crush_hash32_rjenkins1_5(a, b, c, d, e);
default:
return 0;
}
}
const char *crush_hash_name(int type)
{
switch (type) {
case CRUSH_HASH_RJENKINS1:
return "rjenkins1";
default:
return "unknown";
}
}

17
fs/ceph/crush/hash.h Normal file
View file

@ -0,0 +1,17 @@
#ifndef _CRUSH_HASH_H
#define _CRUSH_HASH_H
#define CRUSH_HASH_RJENKINS1 0
#define CRUSH_HASH_DEFAULT CRUSH_HASH_RJENKINS1
extern const char *crush_hash_name(int type);
extern __u32 crush_hash32(int type, __u32 a);
extern __u32 crush_hash32_2(int type, __u32 a, __u32 b);
extern __u32 crush_hash32_3(int type, __u32 a, __u32 b, __u32 c);
extern __u32 crush_hash32_4(int type, __u32 a, __u32 b, __u32 c, __u32 d);
extern __u32 crush_hash32_5(int type, __u32 a, __u32 b, __u32 c, __u32 d,
__u32 e);
#endif

596
fs/ceph/crush/mapper.c Normal file
View file

@ -0,0 +1,596 @@
#ifdef __KERNEL__
# include <linux/string.h>
# include <linux/slab.h>
# include <linux/bug.h>
# include <linux/kernel.h>
# ifndef dprintk
# define dprintk(args...)
# endif
#else
# include <string.h>
# include <stdio.h>
# include <stdlib.h>
# include <assert.h>
# define BUG_ON(x) assert(!(x))
# define dprintk(args...) /* printf(args) */
# define kmalloc(x, f) malloc(x)
# define kfree(x) free(x)
#endif
#include "crush.h"
#include "hash.h"
/*
* Implement the core CRUSH mapping algorithm.
*/
/**
* crush_find_rule - find a crush_rule id for a given ruleset, type, and size.
* @map: the crush_map
* @ruleset: the storage ruleset id (user defined)
* @type: storage ruleset type (user defined)
* @size: output set size
*/
int crush_find_rule(struct crush_map *map, int ruleset, int type, int size)
{
int i;
for (i = 0; i < map->max_rules; i++) {
if (map->rules[i] &&
map->rules[i]->mask.ruleset == ruleset &&
map->rules[i]->mask.type == type &&
map->rules[i]->mask.min_size <= size &&
map->rules[i]->mask.max_size >= size)
return i;
}
return -1;
}
/*
* bucket choose methods
*
* For each bucket algorithm, we have a "choose" method that, given a
* crush input @x and replica position (usually, position in output set) @r,
* will produce an item in the bucket.
*/
/*
* Choose based on a random permutation of the bucket.
*
* We used to use some prime number arithmetic to do this, but it
* wasn't very random, and had some other bad behaviors. Instead, we
* calculate an actual random permutation of the bucket members.
* Since this is expensive, we optimize for the r=0 case, which
* captures the vast majority of calls.
*/
static int bucket_perm_choose(struct crush_bucket *bucket,
int x, int r)
{
unsigned pr = r % bucket->size;
unsigned i, s;
/* start a new permutation if @x has changed */
if (bucket->perm_x != x || bucket->perm_n == 0) {
dprintk("bucket %d new x=%d\n", bucket->id, x);
bucket->perm_x = x;
/* optimize common r=0 case */
if (pr == 0) {
s = crush_hash32_3(bucket->hash, x, bucket->id, 0) %
bucket->size;
bucket->perm[0] = s;
bucket->perm_n = 0xffff; /* magic value, see below */
goto out;
}
for (i = 0; i < bucket->size; i++)
bucket->perm[i] = i;
bucket->perm_n = 0;
} else if (bucket->perm_n == 0xffff) {
/* clean up after the r=0 case above */
for (i = 1; i < bucket->size; i++)
bucket->perm[i] = i;
bucket->perm[bucket->perm[0]] = 0;
bucket->perm_n = 1;
}
/* calculate permutation up to pr */
for (i = 0; i < bucket->perm_n; i++)
dprintk(" perm_choose have %d: %d\n", i, bucket->perm[i]);
while (bucket->perm_n <= pr) {
unsigned p = bucket->perm_n;
/* no point in swapping the final entry */
if (p < bucket->size - 1) {
i = crush_hash32_3(bucket->hash, x, bucket->id, p) %
(bucket->size - p);
if (i) {
unsigned t = bucket->perm[p + i];
bucket->perm[p + i] = bucket->perm[p];
bucket->perm[p] = t;
}
dprintk(" perm_choose swap %d with %d\n", p, p+i);
}
bucket->perm_n++;
}
for (i = 0; i < bucket->size; i++)
dprintk(" perm_choose %d: %d\n", i, bucket->perm[i]);
s = bucket->perm[pr];
out:
dprintk(" perm_choose %d sz=%d x=%d r=%d (%d) s=%d\n", bucket->id,
bucket->size, x, r, pr, s);
return bucket->items[s];
}
/* uniform */
static int bucket_uniform_choose(struct crush_bucket_uniform *bucket,
int x, int r)
{
return bucket_perm_choose(&bucket->h, x, r);
}
/* list */
static int bucket_list_choose(struct crush_bucket_list *bucket,
int x, int r)
{
int i;
for (i = bucket->h.size-1; i >= 0; i--) {
__u64 w = crush_hash32_4(bucket->h.hash,x, bucket->h.items[i],
r, bucket->h.id);
w &= 0xffff;
dprintk("list_choose i=%d x=%d r=%d item %d weight %x "
"sw %x rand %llx",
i, x, r, bucket->h.items[i], bucket->item_weights[i],
bucket->sum_weights[i], w);
w *= bucket->sum_weights[i];
w = w >> 16;
/*dprintk(" scaled %llx\n", w);*/
if (w < bucket->item_weights[i])
return bucket->h.items[i];
}
BUG_ON(1);
return 0;
}
/* (binary) tree */
static int height(int n)
{
int h = 0;
while ((n & 1) == 0) {
h++;
n = n >> 1;
}
return h;
}
static int left(int x)
{
int h = height(x);
return x - (1 << (h-1));
}
static int right(int x)
{
int h = height(x);
return x + (1 << (h-1));
}
static int terminal(int x)
{
return x & 1;
}
static int bucket_tree_choose(struct crush_bucket_tree *bucket,
int x, int r)
{
int n, l;
__u32 w;
__u64 t;
/* start at root */
n = bucket->num_nodes >> 1;
while (!terminal(n)) {
/* pick point in [0, w) */
w = bucket->node_weights[n];
t = (__u64)crush_hash32_4(bucket->h.hash, x, n, r,
bucket->h.id) * (__u64)w;
t = t >> 32;
/* descend to the left or right? */
l = left(n);
if (t < bucket->node_weights[l])
n = l;
else
n = right(n);
}
return bucket->h.items[n >> 1];
}
/* straw */
static int bucket_straw_choose(struct crush_bucket_straw *bucket,
int x, int r)
{
int i;
int high = 0;
__u64 high_draw = 0;
__u64 draw;
for (i = 0; i < bucket->h.size; i++) {
draw = crush_hash32_3(bucket->h.hash, x, bucket->h.items[i], r);
draw &= 0xffff;
draw *= bucket->straws[i];
if (i == 0 || draw > high_draw) {
high = i;
high_draw = draw;
}
}
return bucket->h.items[high];
}
static int crush_bucket_choose(struct crush_bucket *in, int x, int r)
{
dprintk("choose %d x=%d r=%d\n", in->id, x, r);
switch (in->alg) {
case CRUSH_BUCKET_UNIFORM:
return bucket_uniform_choose((struct crush_bucket_uniform *)in,
x, r);
case CRUSH_BUCKET_LIST:
return bucket_list_choose((struct crush_bucket_list *)in,
x, r);
case CRUSH_BUCKET_TREE:
return bucket_tree_choose((struct crush_bucket_tree *)in,
x, r);
case CRUSH_BUCKET_STRAW:
return bucket_straw_choose((struct crush_bucket_straw *)in,
x, r);
default:
BUG_ON(1);
return in->items[0];
}
}
/*
* true if device is marked "out" (failed, fully offloaded)
* of the cluster
*/
static int is_out(struct crush_map *map, __u32 *weight, int item, int x)
{
if (weight[item] >= 0x1000)
return 0;
if (weight[item] == 0)
return 1;
if ((crush_hash32_2(CRUSH_HASH_RJENKINS1, x, item) & 0xffff)
< weight[item])
return 0;
return 1;
}
/**
* crush_choose - choose numrep distinct items of given type
* @map: the crush_map
* @bucket: the bucket we are choose an item from
* @x: crush input value
* @numrep: the number of items to choose
* @type: the type of item to choose
* @out: pointer to output vector
* @outpos: our position in that vector
* @firstn: true if choosing "first n" items, false if choosing "indep"
* @recurse_to_leaf: true if we want one device under each item of given type
* @out2: second output vector for leaf items (if @recurse_to_leaf)
*/
static int crush_choose(struct crush_map *map,
struct crush_bucket *bucket,
__u32 *weight,
int x, int numrep, int type,
int *out, int outpos,
int firstn, int recurse_to_leaf,
int *out2)
{
int rep;
int ftotal, flocal;
int retry_descent, retry_bucket, skip_rep;
struct crush_bucket *in = bucket;
int r;
int i;
int item = 0;
int itemtype;
int collide, reject;
const int orig_tries = 5; /* attempts before we fall back to search */
dprintk("choose bucket %d x %d outpos %d\n", bucket->id, x, outpos);
for (rep = outpos; rep < numrep; rep++) {
/* keep trying until we get a non-out, non-colliding item */
ftotal = 0;
skip_rep = 0;
do {
retry_descent = 0;
in = bucket; /* initial bucket */
/* choose through intervening buckets */
flocal = 0;
do {
collide = 0;
retry_bucket = 0;
r = rep;
if (in->alg == CRUSH_BUCKET_UNIFORM) {
/* be careful */
if (firstn || numrep >= in->size)
/* r' = r + f_total */
r += ftotal;
else if (in->size % numrep == 0)
/* r'=r+(n+1)*f_local */
r += (numrep+1) *
(flocal+ftotal);
else
/* r' = r + n*f_local */
r += numrep * (flocal+ftotal);
} else {
if (firstn)
/* r' = r + f_total */
r += ftotal;
else
/* r' = r + n*f_local */
r += numrep * (flocal+ftotal);
}
/* bucket choose */
if (in->size == 0) {
reject = 1;
goto reject;
}
if (flocal >= (in->size>>1) &&
flocal > orig_tries)
item = bucket_perm_choose(in, x, r);
else
item = crush_bucket_choose(in, x, r);
BUG_ON(item >= map->max_devices);
/* desired type? */
if (item < 0)
itemtype = map->buckets[-1-item]->type;
else
itemtype = 0;
dprintk(" item %d type %d\n", item, itemtype);
/* keep going? */
if (itemtype != type) {
BUG_ON(item >= 0 ||
(-1-item) >= map->max_buckets);
in = map->buckets[-1-item];
continue;
}
/* collision? */
for (i = 0; i < outpos; i++) {
if (out[i] == item) {
collide = 1;
break;
}
}
if (recurse_to_leaf &&
item < 0 &&
crush_choose(map, map->buckets[-1-item],
weight,
x, outpos+1, 0,
out2, outpos,
firstn, 0, NULL) <= outpos) {
reject = 1;
} else {
/* out? */
if (itemtype == 0)
reject = is_out(map, weight,
item, x);
else
reject = 0;
}
reject:
if (reject || collide) {
ftotal++;
flocal++;
if (collide && flocal < 3)
/* retry locally a few times */
retry_bucket = 1;
else if (flocal < in->size + orig_tries)
/* exhaustive bucket search */
retry_bucket = 1;
else if (ftotal < 20)
/* then retry descent */
retry_descent = 1;
else
/* else give up */
skip_rep = 1;
dprintk(" reject %d collide %d "
"ftotal %d flocal %d\n",
reject, collide, ftotal,
flocal);
}
} while (retry_bucket);
} while (retry_descent);
if (skip_rep) {
dprintk("skip rep\n");
continue;
}
dprintk("choose got %d\n", item);
out[outpos] = item;
outpos++;
}
dprintk("choose returns %d\n", outpos);
return outpos;
}
/**
* crush_do_rule - calculate a mapping with the given input and rule
* @map: the crush_map
* @ruleno: the rule id
* @x: hash input
* @result: pointer to result vector
* @result_max: maximum result size
* @force: force initial replica choice; -1 for none
*/
int crush_do_rule(struct crush_map *map,
int ruleno, int x, int *result, int result_max,
int force, __u32 *weight)
{
int result_len;
int force_context[CRUSH_MAX_DEPTH];
int force_pos = -1;
int a[CRUSH_MAX_SET];
int b[CRUSH_MAX_SET];
int c[CRUSH_MAX_SET];
int recurse_to_leaf;
int *w;
int wsize = 0;
int *o;
int osize;
int *tmp;
struct crush_rule *rule;
int step;
int i, j;
int numrep;
int firstn;
int rc = -1;
BUG_ON(ruleno >= map->max_rules);
rule = map->rules[ruleno];
result_len = 0;
w = a;
o = b;
/*
* determine hierarchical context of force, if any. note
* that this may or may not correspond to the specific types
* referenced by the crush rule.
*/
if (force >= 0) {
if (force >= map->max_devices ||
map->device_parents[force] == 0) {
/*dprintk("CRUSH: forcefed device dne\n");*/
rc = -1; /* force fed device dne */
goto out;
}
if (!is_out(map, weight, force, x)) {
while (1) {
force_context[++force_pos] = force;
if (force >= 0)
force = map->device_parents[force];
else
force = map->bucket_parents[-1-force];
if (force == 0)
break;
}
}
}
for (step = 0; step < rule->len; step++) {
firstn = 0;
switch (rule->steps[step].op) {
case CRUSH_RULE_TAKE:
w[0] = rule->steps[step].arg1;
if (force_pos >= 0) {
BUG_ON(force_context[force_pos] != w[0]);
force_pos--;
}
wsize = 1;
break;
case CRUSH_RULE_CHOOSE_LEAF_FIRSTN:
case CRUSH_RULE_CHOOSE_FIRSTN:
firstn = 1;
case CRUSH_RULE_CHOOSE_LEAF_INDEP:
case CRUSH_RULE_CHOOSE_INDEP:
BUG_ON(wsize == 0);
recurse_to_leaf =
rule->steps[step].op ==
CRUSH_RULE_CHOOSE_LEAF_FIRSTN ||
rule->steps[step].op ==
CRUSH_RULE_CHOOSE_LEAF_INDEP;
/* reset output */
osize = 0;
for (i = 0; i < wsize; i++) {
/*
* see CRUSH_N, CRUSH_N_MINUS macros.
* basically, numrep <= 0 means relative to
* the provided result_max
*/
numrep = rule->steps[step].arg1;
if (numrep <= 0) {
numrep += result_max;
if (numrep <= 0)
continue;
}
j = 0;
if (osize == 0 && force_pos >= 0) {
/* skip any intermediate types */
while (force_pos &&
force_context[force_pos] < 0 &&
rule->steps[step].arg2 !=
map->buckets[-1 -
force_context[force_pos]]->type)
force_pos--;
o[osize] = force_context[force_pos];
if (recurse_to_leaf)
c[osize] = force_context[0];
j++;
force_pos--;
}
osize += crush_choose(map,
map->buckets[-1-w[i]],
weight,
x, numrep,
rule->steps[step].arg2,
o+osize, j,
firstn,
recurse_to_leaf, c+osize);
}
if (recurse_to_leaf)
/* copy final _leaf_ values to output set */
memcpy(o, c, osize*sizeof(*o));
/* swap t and w arrays */
tmp = o;
o = w;
w = tmp;
wsize = osize;
break;
case CRUSH_RULE_EMIT:
for (i = 0; i < wsize && result_len < result_max; i++) {
result[result_len] = w[i];
result_len++;
}
wsize = 0;
break;
default:
BUG_ON(1);
}
}
rc = result_len;
out:
return rc;
}

20
fs/ceph/crush/mapper.h Normal file
View file

@ -0,0 +1,20 @@
#ifndef _CRUSH_MAPPER_H
#define _CRUSH_MAPPER_H
/*
* CRUSH functions for find rules and then mapping an input to an
* output set.
*
* LGPL2
*/
#include "crush.h"
extern int crush_find_rule(struct crush_map *map, int pool, int type, int size);
extern int crush_do_rule(struct crush_map *map,
int ruleno,
int x, int *result, int result_max,
int forcefeed, /* -1 for none */
__u32 *weights);
#endif

408
fs/ceph/crypto.c Normal file
View file

@ -0,0 +1,408 @@
#include "ceph_debug.h"
#include <linux/err.h>
#include <linux/scatterlist.h>
#include <crypto/hash.h>
#include "crypto.h"
#include "decode.h"
int ceph_crypto_key_encode(struct ceph_crypto_key *key, void **p, void *end)
{
if (*p + sizeof(u16) + sizeof(key->created) +
sizeof(u16) + key->len > end)
return -ERANGE;
ceph_encode_16(p, key->type);
ceph_encode_copy(p, &key->created, sizeof(key->created));
ceph_encode_16(p, key->len);
ceph_encode_copy(p, key->key, key->len);
return 0;
}
int ceph_crypto_key_decode(struct ceph_crypto_key *key, void **p, void *end)
{
ceph_decode_need(p, end, 2*sizeof(u16) + sizeof(key->created), bad);
key->type = ceph_decode_16(p);
ceph_decode_copy(p, &key->created, sizeof(key->created));
key->len = ceph_decode_16(p);
ceph_decode_need(p, end, key->len, bad);
key->key = kmalloc(key->len, GFP_NOFS);
if (!key->key)
return -ENOMEM;
ceph_decode_copy(p, key->key, key->len);
return 0;
bad:
dout("failed to decode crypto key\n");
return -EINVAL;
}
int ceph_crypto_key_unarmor(struct ceph_crypto_key *key, const char *inkey)
{
int inlen = strlen(inkey);
int blen = inlen * 3 / 4;
void *buf, *p;
int ret;
dout("crypto_key_unarmor %s\n", inkey);
buf = kmalloc(blen, GFP_NOFS);
if (!buf)
return -ENOMEM;
blen = ceph_unarmor(buf, inkey, inkey+inlen);
if (blen < 0) {
kfree(buf);
return blen;
}
p = buf;
ret = ceph_crypto_key_decode(key, &p, p + blen);
kfree(buf);
if (ret)
return ret;
dout("crypto_key_unarmor key %p type %d len %d\n", key,
key->type, key->len);
return 0;
}
#define AES_KEY_SIZE 16
static struct crypto_blkcipher *ceph_crypto_alloc_cipher(void)
{
return crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
}
const u8 *aes_iv = "cephsageyudagreg";
int ceph_aes_encrypt(const void *key, int key_len, void *dst, size_t *dst_len,
const void *src, size_t src_len)
{
struct scatterlist sg_in[2], sg_out[1];
struct crypto_blkcipher *tfm = ceph_crypto_alloc_cipher();
struct blkcipher_desc desc = { .tfm = tfm, .flags = 0 };
int ret;
void *iv;
int ivsize;
size_t zero_padding = (0x10 - (src_len & 0x0f));
char pad[16];
if (IS_ERR(tfm))
return PTR_ERR(tfm);
memset(pad, zero_padding, zero_padding);
*dst_len = src_len + zero_padding;
crypto_blkcipher_setkey((void *)tfm, key, key_len);
sg_init_table(sg_in, 2);
sg_set_buf(&sg_in[0], src, src_len);
sg_set_buf(&sg_in[1], pad, zero_padding);
sg_init_table(sg_out, 1);
sg_set_buf(sg_out, dst, *dst_len);
iv = crypto_blkcipher_crt(tfm)->iv;
ivsize = crypto_blkcipher_ivsize(tfm);
memcpy(iv, aes_iv, ivsize);
/*
print_hex_dump(KERN_ERR, "enc key: ", DUMP_PREFIX_NONE, 16, 1,
key, key_len, 1);
print_hex_dump(KERN_ERR, "enc src: ", DUMP_PREFIX_NONE, 16, 1,
src, src_len, 1);
print_hex_dump(KERN_ERR, "enc pad: ", DUMP_PREFIX_NONE, 16, 1,
pad, zero_padding, 1);
*/
ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in,
src_len + zero_padding);
crypto_free_blkcipher(tfm);
if (ret < 0)
pr_err("ceph_aes_crypt failed %d\n", ret);
/*
print_hex_dump(KERN_ERR, "enc out: ", DUMP_PREFIX_NONE, 16, 1,
dst, *dst_len, 1);
*/
return 0;
}
int ceph_aes_encrypt2(const void *key, int key_len, void *dst, size_t *dst_len,
const void *src1, size_t src1_len,
const void *src2, size_t src2_len)
{
struct scatterlist sg_in[3], sg_out[1];
struct crypto_blkcipher *tfm = ceph_crypto_alloc_cipher();
struct blkcipher_desc desc = { .tfm = tfm, .flags = 0 };
int ret;
void *iv;
int ivsize;
size_t zero_padding = (0x10 - ((src1_len + src2_len) & 0x0f));
char pad[16];
if (IS_ERR(tfm))
return PTR_ERR(tfm);
memset(pad, zero_padding, zero_padding);
*dst_len = src1_len + src2_len + zero_padding;
crypto_blkcipher_setkey((void *)tfm, key, key_len);
sg_init_table(sg_in, 3);
sg_set_buf(&sg_in[0], src1, src1_len);
sg_set_buf(&sg_in[1], src2, src2_len);
sg_set_buf(&sg_in[2], pad, zero_padding);
sg_init_table(sg_out, 1);
sg_set_buf(sg_out, dst, *dst_len);
iv = crypto_blkcipher_crt(tfm)->iv;
ivsize = crypto_blkcipher_ivsize(tfm);
memcpy(iv, aes_iv, ivsize);
/*
print_hex_dump(KERN_ERR, "enc key: ", DUMP_PREFIX_NONE, 16, 1,
key, key_len, 1);
print_hex_dump(KERN_ERR, "enc src1: ", DUMP_PREFIX_NONE, 16, 1,
src1, src1_len, 1);
print_hex_dump(KERN_ERR, "enc src2: ", DUMP_PREFIX_NONE, 16, 1,
src2, src2_len, 1);
print_hex_dump(KERN_ERR, "enc pad: ", DUMP_PREFIX_NONE, 16, 1,
pad, zero_padding, 1);
*/
ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in,
src1_len + src2_len + zero_padding);
crypto_free_blkcipher(tfm);
if (ret < 0)
pr_err("ceph_aes_crypt2 failed %d\n", ret);
/*
print_hex_dump(KERN_ERR, "enc out: ", DUMP_PREFIX_NONE, 16, 1,
dst, *dst_len, 1);
*/
return 0;
}
int ceph_aes_decrypt(const void *key, int key_len, void *dst, size_t *dst_len,
const void *src, size_t src_len)
{
struct scatterlist sg_in[1], sg_out[2];
struct crypto_blkcipher *tfm = ceph_crypto_alloc_cipher();
struct blkcipher_desc desc = { .tfm = tfm };
char pad[16];
void *iv;
int ivsize;
int ret;
int last_byte;
if (IS_ERR(tfm))
return PTR_ERR(tfm);
crypto_blkcipher_setkey((void *)tfm, key, key_len);
sg_init_table(sg_in, 1);
sg_init_table(sg_out, 2);
sg_set_buf(sg_in, src, src_len);
sg_set_buf(&sg_out[0], dst, *dst_len);
sg_set_buf(&sg_out[1], pad, sizeof(pad));
iv = crypto_blkcipher_crt(tfm)->iv;
ivsize = crypto_blkcipher_ivsize(tfm);
memcpy(iv, aes_iv, ivsize);
/*
print_hex_dump(KERN_ERR, "dec key: ", DUMP_PREFIX_NONE, 16, 1,
key, key_len, 1);
print_hex_dump(KERN_ERR, "dec in: ", DUMP_PREFIX_NONE, 16, 1,
src, src_len, 1);
*/
ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, src_len);
crypto_free_blkcipher(tfm);
if (ret < 0) {
pr_err("ceph_aes_decrypt failed %d\n", ret);
return ret;
}
if (src_len <= *dst_len)
last_byte = ((char *)dst)[src_len - 1];
else
last_byte = pad[src_len - *dst_len - 1];
if (last_byte <= 16 && src_len >= last_byte) {
*dst_len = src_len - last_byte;
} else {
pr_err("ceph_aes_decrypt got bad padding %d on src len %d\n",
last_byte, (int)src_len);
return -EPERM; /* bad padding */
}
/*
print_hex_dump(KERN_ERR, "dec out: ", DUMP_PREFIX_NONE, 16, 1,
dst, *dst_len, 1);
*/
return 0;
}
int ceph_aes_decrypt2(const void *key, int key_len,
void *dst1, size_t *dst1_len,
void *dst2, size_t *dst2_len,
const void *src, size_t src_len)
{
struct scatterlist sg_in[1], sg_out[3];
struct crypto_blkcipher *tfm = ceph_crypto_alloc_cipher();
struct blkcipher_desc desc = { .tfm = tfm };
char pad[16];
void *iv;
int ivsize;
int ret;
int last_byte;
if (IS_ERR(tfm))
return PTR_ERR(tfm);
sg_init_table(sg_in, 1);
sg_set_buf(sg_in, src, src_len);
sg_init_table(sg_out, 3);
sg_set_buf(&sg_out[0], dst1, *dst1_len);
sg_set_buf(&sg_out[1], dst2, *dst2_len);
sg_set_buf(&sg_out[2], pad, sizeof(pad));
crypto_blkcipher_setkey((void *)tfm, key, key_len);
iv = crypto_blkcipher_crt(tfm)->iv;
ivsize = crypto_blkcipher_ivsize(tfm);
memcpy(iv, aes_iv, ivsize);
/*
print_hex_dump(KERN_ERR, "dec key: ", DUMP_PREFIX_NONE, 16, 1,
key, key_len, 1);
print_hex_dump(KERN_ERR, "dec in: ", DUMP_PREFIX_NONE, 16, 1,
src, src_len, 1);
*/
ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, src_len);
crypto_free_blkcipher(tfm);
if (ret < 0) {
pr_err("ceph_aes_decrypt failed %d\n", ret);
return ret;
}
if (src_len <= *dst1_len)
last_byte = ((char *)dst1)[src_len - 1];
else if (src_len <= *dst1_len + *dst2_len)
last_byte = ((char *)dst2)[src_len - *dst1_len - 1];
else
last_byte = pad[src_len - *dst1_len - *dst2_len - 1];
if (last_byte <= 16 && src_len >= last_byte) {
src_len -= last_byte;
} else {
pr_err("ceph_aes_decrypt got bad padding %d on src len %d\n",
last_byte, (int)src_len);
return -EPERM; /* bad padding */
}
if (src_len < *dst1_len) {
*dst1_len = src_len;
*dst2_len = 0;
} else {
*dst2_len = src_len - *dst1_len;
}
/*
print_hex_dump(KERN_ERR, "dec out1: ", DUMP_PREFIX_NONE, 16, 1,
dst1, *dst1_len, 1);
print_hex_dump(KERN_ERR, "dec out2: ", DUMP_PREFIX_NONE, 16, 1,
dst2, *dst2_len, 1);
*/
return 0;
}
int ceph_decrypt(struct ceph_crypto_key *secret, void *dst, size_t *dst_len,
const void *src, size_t src_len)
{
switch (secret->type) {
case CEPH_CRYPTO_NONE:
if (*dst_len < src_len)
return -ERANGE;
memcpy(dst, src, src_len);
*dst_len = src_len;
return 0;
case CEPH_CRYPTO_AES:
return ceph_aes_decrypt(secret->key, secret->len, dst,
dst_len, src, src_len);
default:
return -EINVAL;
}
}
int ceph_decrypt2(struct ceph_crypto_key *secret,
void *dst1, size_t *dst1_len,
void *dst2, size_t *dst2_len,
const void *src, size_t src_len)
{
size_t t;
switch (secret->type) {
case CEPH_CRYPTO_NONE:
if (*dst1_len + *dst2_len < src_len)
return -ERANGE;
t = min(*dst1_len, src_len);
memcpy(dst1, src, t);
*dst1_len = t;
src += t;
src_len -= t;
if (src_len) {
t = min(*dst2_len, src_len);
memcpy(dst2, src, t);
*dst2_len = t;
}
return 0;
case CEPH_CRYPTO_AES:
return ceph_aes_decrypt2(secret->key, secret->len,
dst1, dst1_len, dst2, dst2_len,
src, src_len);
default:
return -EINVAL;
}
}
int ceph_encrypt(struct ceph_crypto_key *secret, void *dst, size_t *dst_len,
const void *src, size_t src_len)
{
switch (secret->type) {
case CEPH_CRYPTO_NONE:
if (*dst_len < src_len)
return -ERANGE;
memcpy(dst, src, src_len);
*dst_len = src_len;
return 0;
case CEPH_CRYPTO_AES:
return ceph_aes_encrypt(secret->key, secret->len, dst,
dst_len, src, src_len);
default:
return -EINVAL;
}
}
int ceph_encrypt2(struct ceph_crypto_key *secret, void *dst, size_t *dst_len,
const void *src1, size_t src1_len,
const void *src2, size_t src2_len)
{
switch (secret->type) {
case CEPH_CRYPTO_NONE:
if (*dst_len < src1_len + src2_len)
return -ERANGE;
memcpy(dst, src1, src1_len);
memcpy(dst + src1_len, src2, src2_len);
*dst_len = src1_len + src2_len;
return 0;
case CEPH_CRYPTO_AES:
return ceph_aes_encrypt2(secret->key, secret->len, dst, dst_len,
src1, src1_len, src2, src2_len);
default:
return -EINVAL;
}
}

48
fs/ceph/crypto.h Normal file
View file

@ -0,0 +1,48 @@
#ifndef _FS_CEPH_CRYPTO_H
#define _FS_CEPH_CRYPTO_H
#include "types.h"
#include "buffer.h"
/*
* cryptographic secret
*/
struct ceph_crypto_key {
int type;
struct ceph_timespec created;
int len;
void *key;
};
static inline void ceph_crypto_key_destroy(struct ceph_crypto_key *key)
{
kfree(key->key);
}
extern int ceph_crypto_key_encode(struct ceph_crypto_key *key,
void **p, void *end);
extern int ceph_crypto_key_decode(struct ceph_crypto_key *key,
void **p, void *end);
extern int ceph_crypto_key_unarmor(struct ceph_crypto_key *key, const char *in);
/* crypto.c */
extern int ceph_decrypt(struct ceph_crypto_key *secret,
void *dst, size_t *dst_len,
const void *src, size_t src_len);
extern int ceph_encrypt(struct ceph_crypto_key *secret,
void *dst, size_t *dst_len,
const void *src, size_t src_len);
extern int ceph_decrypt2(struct ceph_crypto_key *secret,
void *dst1, size_t *dst1_len,
void *dst2, size_t *dst2_len,
const void *src, size_t src_len);
extern int ceph_encrypt2(struct ceph_crypto_key *secret,
void *dst, size_t *dst_len,
const void *src1, size_t src1_len,
const void *src2, size_t src2_len);
/* armor.c */
extern int ceph_armor(char *dst, const void *src, const void *end);
extern int ceph_unarmor(void *dst, const char *src, const char *end);
#endif

483
fs/ceph/debugfs.c Normal file
View file

@ -0,0 +1,483 @@
#include "ceph_debug.h"
#include <linux/device.h>
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include "super.h"
#include "mds_client.h"
#include "mon_client.h"
#include "auth.h"
#ifdef CONFIG_DEBUG_FS
/*
* Implement /sys/kernel/debug/ceph fun
*
* /sys/kernel/debug/ceph/client* - an instance of the ceph client
* .../osdmap - current osdmap
* .../mdsmap - current mdsmap
* .../monmap - current monmap
* .../osdc - active osd requests
* .../mdsc - active mds requests
* .../monc - mon client state
* .../dentry_lru - dump contents of dentry lru
* .../caps - expose cap (reservation) stats
* .../bdi - symlink to ../../bdi/something
*/
static struct dentry *ceph_debugfs_dir;
static int monmap_show(struct seq_file *s, void *p)
{
int i;
struct ceph_client *client = s->private;
if (client->monc.monmap == NULL)
return 0;
seq_printf(s, "epoch %d\n", client->monc.monmap->epoch);
for (i = 0; i < client->monc.monmap->num_mon; i++) {
struct ceph_entity_inst *inst =
&client->monc.monmap->mon_inst[i];
seq_printf(s, "\t%s%lld\t%s\n",
ENTITY_NAME(inst->name),
pr_addr(&inst->addr.in_addr));
}
return 0;
}
static int mdsmap_show(struct seq_file *s, void *p)
{
int i;
struct ceph_client *client = s->private;
if (client->mdsc.mdsmap == NULL)
return 0;
seq_printf(s, "epoch %d\n", client->mdsc.mdsmap->m_epoch);
seq_printf(s, "root %d\n", client->mdsc.mdsmap->m_root);
seq_printf(s, "session_timeout %d\n",
client->mdsc.mdsmap->m_session_timeout);
seq_printf(s, "session_autoclose %d\n",
client->mdsc.mdsmap->m_session_autoclose);
for (i = 0; i < client->mdsc.mdsmap->m_max_mds; i++) {
struct ceph_entity_addr *addr =
&client->mdsc.mdsmap->m_info[i].addr;
int state = client->mdsc.mdsmap->m_info[i].state;
seq_printf(s, "\tmds%d\t%s\t(%s)\n", i, pr_addr(&addr->in_addr),
ceph_mds_state_name(state));
}
return 0;
}
static int osdmap_show(struct seq_file *s, void *p)
{
int i;
struct ceph_client *client = s->private;
struct rb_node *n;
if (client->osdc.osdmap == NULL)
return 0;
seq_printf(s, "epoch %d\n", client->osdc.osdmap->epoch);
seq_printf(s, "flags%s%s\n",
(client->osdc.osdmap->flags & CEPH_OSDMAP_NEARFULL) ?
" NEARFULL" : "",
(client->osdc.osdmap->flags & CEPH_OSDMAP_FULL) ?
" FULL" : "");
for (n = rb_first(&client->osdc.osdmap->pg_pools); n; n = rb_next(n)) {
struct ceph_pg_pool_info *pool =
rb_entry(n, struct ceph_pg_pool_info, node);
seq_printf(s, "pg_pool %d pg_num %d / %d, lpg_num %d / %d\n",
pool->id, pool->v.pg_num, pool->pg_num_mask,
pool->v.lpg_num, pool->lpg_num_mask);
}
for (i = 0; i < client->osdc.osdmap->max_osd; i++) {
struct ceph_entity_addr *addr =
&client->osdc.osdmap->osd_addr[i];
int state = client->osdc.osdmap->osd_state[i];
char sb[64];
seq_printf(s, "\tosd%d\t%s\t%3d%%\t(%s)\n",
i, pr_addr(&addr->in_addr),
((client->osdc.osdmap->osd_weight[i]*100) >> 16),
ceph_osdmap_state_str(sb, sizeof(sb), state));
}
return 0;
}
static int monc_show(struct seq_file *s, void *p)
{
struct ceph_client *client = s->private;
struct ceph_mon_statfs_request *req;
struct ceph_mon_client *monc = &client->monc;
struct rb_node *rp;
mutex_lock(&monc->mutex);
if (monc->have_mdsmap)
seq_printf(s, "have mdsmap %u\n", (unsigned)monc->have_mdsmap);
if (monc->have_osdmap)
seq_printf(s, "have osdmap %u\n", (unsigned)monc->have_osdmap);
if (monc->want_next_osdmap)
seq_printf(s, "want next osdmap\n");
for (rp = rb_first(&monc->statfs_request_tree); rp; rp = rb_next(rp)) {
req = rb_entry(rp, struct ceph_mon_statfs_request, node);
seq_printf(s, "%lld statfs\n", req->tid);
}
mutex_unlock(&monc->mutex);
return 0;
}
static int mdsc_show(struct seq_file *s, void *p)
{
struct ceph_client *client = s->private;
struct ceph_mds_client *mdsc = &client->mdsc;
struct ceph_mds_request *req;
struct rb_node *rp;
int pathlen;
u64 pathbase;
char *path;
mutex_lock(&mdsc->mutex);
for (rp = rb_first(&mdsc->request_tree); rp; rp = rb_next(rp)) {
req = rb_entry(rp, struct ceph_mds_request, r_node);
if (req->r_request)
seq_printf(s, "%lld\tmds%d\t", req->r_tid, req->r_mds);
else
seq_printf(s, "%lld\t(no request)\t", req->r_tid);
seq_printf(s, "%s", ceph_mds_op_name(req->r_op));
if (req->r_got_unsafe)
seq_printf(s, "\t(unsafe)");
else
seq_printf(s, "\t");
if (req->r_inode) {
seq_printf(s, " #%llx", ceph_ino(req->r_inode));
} else if (req->r_dentry) {
path = ceph_mdsc_build_path(req->r_dentry, &pathlen,
&pathbase, 0);
spin_lock(&req->r_dentry->d_lock);
seq_printf(s, " #%llx/%.*s (%s)",
ceph_ino(req->r_dentry->d_parent->d_inode),
req->r_dentry->d_name.len,
req->r_dentry->d_name.name,
path ? path : "");
spin_unlock(&req->r_dentry->d_lock);
kfree(path);
} else if (req->r_path1) {
seq_printf(s, " #%llx/%s", req->r_ino1.ino,
req->r_path1);
}
if (req->r_old_dentry) {
path = ceph_mdsc_build_path(req->r_old_dentry, &pathlen,
&pathbase, 0);
spin_lock(&req->r_old_dentry->d_lock);
seq_printf(s, " #%llx/%.*s (%s)",
ceph_ino(req->r_old_dentry->d_parent->d_inode),
req->r_old_dentry->d_name.len,
req->r_old_dentry->d_name.name,
path ? path : "");
spin_unlock(&req->r_old_dentry->d_lock);
kfree(path);
} else if (req->r_path2) {
if (req->r_ino2.ino)
seq_printf(s, " #%llx/%s", req->r_ino2.ino,
req->r_path2);
else
seq_printf(s, " %s", req->r_path2);
}
seq_printf(s, "\n");
}
mutex_unlock(&mdsc->mutex);
return 0;
}
static int osdc_show(struct seq_file *s, void *pp)
{
struct ceph_client *client = s->private;
struct ceph_osd_client *osdc = &client->osdc;
struct rb_node *p;
mutex_lock(&osdc->request_mutex);
for (p = rb_first(&osdc->requests); p; p = rb_next(p)) {
struct ceph_osd_request *req;
struct ceph_osd_request_head *head;
struct ceph_osd_op *op;
int num_ops;
int opcode, olen;
int i;
req = rb_entry(p, struct ceph_osd_request, r_node);
seq_printf(s, "%lld\tosd%d\t%d.%x\t", req->r_tid,
req->r_osd ? req->r_osd->o_osd : -1,
le32_to_cpu(req->r_pgid.pool),
le16_to_cpu(req->r_pgid.ps));
head = req->r_request->front.iov_base;
op = (void *)(head + 1);
num_ops = le16_to_cpu(head->num_ops);
olen = le32_to_cpu(head->object_len);
seq_printf(s, "%.*s", olen,
(const char *)(head->ops + num_ops));
if (req->r_reassert_version.epoch)
seq_printf(s, "\t%u'%llu",
(unsigned)le32_to_cpu(req->r_reassert_version.epoch),
le64_to_cpu(req->r_reassert_version.version));
else
seq_printf(s, "\t");
for (i = 0; i < num_ops; i++) {
opcode = le16_to_cpu(op->op);
seq_printf(s, "\t%s", ceph_osd_op_name(opcode));
op++;
}
seq_printf(s, "\n");
}
mutex_unlock(&osdc->request_mutex);
return 0;
}
static int caps_show(struct seq_file *s, void *p)
{
struct ceph_client *client = p;
int total, avail, used, reserved, min;
ceph_reservation_status(client, &total, &avail, &used, &reserved, &min);
seq_printf(s, "total\t\t%d\n"
"avail\t\t%d\n"
"used\t\t%d\n"
"reserved\t%d\n"
"min\t%d\n",
total, avail, used, reserved, min);
return 0;
}
static int dentry_lru_show(struct seq_file *s, void *ptr)
{
struct ceph_client *client = s->private;
struct ceph_mds_client *mdsc = &client->mdsc;
struct ceph_dentry_info *di;
spin_lock(&mdsc->dentry_lru_lock);
list_for_each_entry(di, &mdsc->dentry_lru, lru) {
struct dentry *dentry = di->dentry;
seq_printf(s, "%p %p\t%.*s\n",
di, dentry, dentry->d_name.len, dentry->d_name.name);
}
spin_unlock(&mdsc->dentry_lru_lock);
return 0;
}
#define DEFINE_SHOW_FUNC(name) \
static int name##_open(struct inode *inode, struct file *file) \
{ \
struct seq_file *sf; \
int ret; \
\
ret = single_open(file, name, NULL); \
sf = file->private_data; \
sf->private = inode->i_private; \
return ret; \
} \
\
static const struct file_operations name##_fops = { \
.open = name##_open, \
.read = seq_read, \
.llseek = seq_lseek, \
.release = single_release, \
};
DEFINE_SHOW_FUNC(monmap_show)
DEFINE_SHOW_FUNC(mdsmap_show)
DEFINE_SHOW_FUNC(osdmap_show)
DEFINE_SHOW_FUNC(monc_show)
DEFINE_SHOW_FUNC(mdsc_show)
DEFINE_SHOW_FUNC(osdc_show)
DEFINE_SHOW_FUNC(dentry_lru_show)
DEFINE_SHOW_FUNC(caps_show)
static int congestion_kb_set(void *data, u64 val)
{
struct ceph_client *client = (struct ceph_client *)data;
if (client)
client->mount_args->congestion_kb = (int)val;
return 0;
}
static int congestion_kb_get(void *data, u64 *val)
{
struct ceph_client *client = (struct ceph_client *)data;
if (client)
*val = (u64)client->mount_args->congestion_kb;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(congestion_kb_fops, congestion_kb_get,
congestion_kb_set, "%llu\n");
int __init ceph_debugfs_init(void)
{
ceph_debugfs_dir = debugfs_create_dir("ceph", NULL);
if (!ceph_debugfs_dir)
return -ENOMEM;
return 0;
}
void ceph_debugfs_cleanup(void)
{
debugfs_remove(ceph_debugfs_dir);
}
int ceph_debugfs_client_init(struct ceph_client *client)
{
int ret = 0;
char name[80];
snprintf(name, sizeof(name), FSID_FORMAT ".client%lld",
PR_FSID(&client->fsid), client->monc.auth->global_id);
client->debugfs_dir = debugfs_create_dir(name, ceph_debugfs_dir);
if (!client->debugfs_dir)
goto out;
client->monc.debugfs_file = debugfs_create_file("monc",
0600,
client->debugfs_dir,
client,
&monc_show_fops);
if (!client->monc.debugfs_file)
goto out;
client->mdsc.debugfs_file = debugfs_create_file("mdsc",
0600,
client->debugfs_dir,
client,
&mdsc_show_fops);
if (!client->mdsc.debugfs_file)
goto out;
client->osdc.debugfs_file = debugfs_create_file("osdc",
0600,
client->debugfs_dir,
client,
&osdc_show_fops);
if (!client->osdc.debugfs_file)
goto out;
client->debugfs_monmap = debugfs_create_file("monmap",
0600,
client->debugfs_dir,
client,
&monmap_show_fops);
if (!client->debugfs_monmap)
goto out;
client->debugfs_mdsmap = debugfs_create_file("mdsmap",
0600,
client->debugfs_dir,
client,
&mdsmap_show_fops);
if (!client->debugfs_mdsmap)
goto out;
client->debugfs_osdmap = debugfs_create_file("osdmap",
0600,
client->debugfs_dir,
client,
&osdmap_show_fops);
if (!client->debugfs_osdmap)
goto out;
client->debugfs_dentry_lru = debugfs_create_file("dentry_lru",
0600,
client->debugfs_dir,
client,
&dentry_lru_show_fops);
if (!client->debugfs_dentry_lru)
goto out;
client->debugfs_caps = debugfs_create_file("caps",
0400,
client->debugfs_dir,
client,
&caps_show_fops);
if (!client->debugfs_caps)
goto out;
client->debugfs_congestion_kb = debugfs_create_file("writeback_congestion_kb",
0600,
client->debugfs_dir,
client,
&congestion_kb_fops);
if (!client->debugfs_congestion_kb)
goto out;
sprintf(name, "../../bdi/%s", dev_name(client->sb->s_bdi->dev));
client->debugfs_bdi = debugfs_create_symlink("bdi", client->debugfs_dir,
name);
return 0;
out:
ceph_debugfs_client_cleanup(client);
return ret;
}
void ceph_debugfs_client_cleanup(struct ceph_client *client)
{
debugfs_remove(client->debugfs_bdi);
debugfs_remove(client->debugfs_caps);
debugfs_remove(client->debugfs_dentry_lru);
debugfs_remove(client->debugfs_osdmap);
debugfs_remove(client->debugfs_mdsmap);
debugfs_remove(client->debugfs_monmap);
debugfs_remove(client->osdc.debugfs_file);
debugfs_remove(client->mdsc.debugfs_file);
debugfs_remove(client->monc.debugfs_file);
debugfs_remove(client->debugfs_congestion_kb);
debugfs_remove(client->debugfs_dir);
}
#else // CONFIG_DEBUG_FS
int __init ceph_debugfs_init(void)
{
return 0;
}
void ceph_debugfs_cleanup(void)
{
}
int ceph_debugfs_client_init(struct ceph_client *client)
{
return 0;
}
void ceph_debugfs_client_cleanup(struct ceph_client *client)
{
}
#endif // CONFIG_DEBUG_FS

194
fs/ceph/decode.h Normal file
View file

@ -0,0 +1,194 @@
#ifndef __CEPH_DECODE_H
#define __CEPH_DECODE_H
#include <asm/unaligned.h>
#include <linux/time.h>
#include "types.h"
/*
* in all cases,
* void **p pointer to position pointer
* void *end pointer to end of buffer (last byte + 1)
*/
static inline u64 ceph_decode_64(void **p)
{
u64 v = get_unaligned_le64(*p);
*p += sizeof(u64);
return v;
}
static inline u32 ceph_decode_32(void **p)
{
u32 v = get_unaligned_le32(*p);
*p += sizeof(u32);
return v;
}
static inline u16 ceph_decode_16(void **p)
{
u16 v = get_unaligned_le16(*p);
*p += sizeof(u16);
return v;
}
static inline u8 ceph_decode_8(void **p)
{
u8 v = *(u8 *)*p;
(*p)++;
return v;
}
static inline void ceph_decode_copy(void **p, void *pv, size_t n)
{
memcpy(pv, *p, n);
*p += n;
}
/*
* bounds check input.
*/
#define ceph_decode_need(p, end, n, bad) \
do { \
if (unlikely(*(p) + (n) > (end))) \
goto bad; \
} while (0)
#define ceph_decode_64_safe(p, end, v, bad) \
do { \
ceph_decode_need(p, end, sizeof(u64), bad); \
v = ceph_decode_64(p); \
} while (0)
#define ceph_decode_32_safe(p, end, v, bad) \
do { \
ceph_decode_need(p, end, sizeof(u32), bad); \
v = ceph_decode_32(p); \
} while (0)
#define ceph_decode_16_safe(p, end, v, bad) \
do { \
ceph_decode_need(p, end, sizeof(u16), bad); \
v = ceph_decode_16(p); \
} while (0)
#define ceph_decode_8_safe(p, end, v, bad) \
do { \
ceph_decode_need(p, end, sizeof(u8), bad); \
v = ceph_decode_8(p); \
} while (0)
#define ceph_decode_copy_safe(p, end, pv, n, bad) \
do { \
ceph_decode_need(p, end, n, bad); \
ceph_decode_copy(p, pv, n); \
} while (0)
/*
* struct ceph_timespec <-> struct timespec
*/
static inline void ceph_decode_timespec(struct timespec *ts,
const struct ceph_timespec *tv)
{
ts->tv_sec = le32_to_cpu(tv->tv_sec);
ts->tv_nsec = le32_to_cpu(tv->tv_nsec);
}
static inline void ceph_encode_timespec(struct ceph_timespec *tv,
const struct timespec *ts)
{
tv->tv_sec = cpu_to_le32(ts->tv_sec);
tv->tv_nsec = cpu_to_le32(ts->tv_nsec);
}
/*
* sockaddr_storage <-> ceph_sockaddr
*/
static inline void ceph_encode_addr(struct ceph_entity_addr *a)
{
a->in_addr.ss_family = htons(a->in_addr.ss_family);
}
static inline void ceph_decode_addr(struct ceph_entity_addr *a)
{
a->in_addr.ss_family = ntohs(a->in_addr.ss_family);
WARN_ON(a->in_addr.ss_family == 512);
}
/*
* encoders
*/
static inline void ceph_encode_64(void **p, u64 v)
{
put_unaligned_le64(v, (__le64 *)*p);
*p += sizeof(u64);
}
static inline void ceph_encode_32(void **p, u32 v)
{
put_unaligned_le32(v, (__le32 *)*p);
*p += sizeof(u32);
}
static inline void ceph_encode_16(void **p, u16 v)
{
put_unaligned_le16(v, (__le16 *)*p);
*p += sizeof(u16);
}
static inline void ceph_encode_8(void **p, u8 v)
{
*(u8 *)*p = v;
(*p)++;
}
static inline void ceph_encode_copy(void **p, const void *s, int len)
{
memcpy(*p, s, len);
*p += len;
}
/*
* filepath, string encoders
*/
static inline void ceph_encode_filepath(void **p, void *end,
u64 ino, const char *path)
{
u32 len = path ? strlen(path) : 0;
BUG_ON(*p + sizeof(ino) + sizeof(len) + len > end);
ceph_encode_8(p, 1);
ceph_encode_64(p, ino);
ceph_encode_32(p, len);
if (len)
memcpy(*p, path, len);
*p += len;
}
static inline void ceph_encode_string(void **p, void *end,
const char *s, u32 len)
{
BUG_ON(*p + sizeof(len) + len > end);
ceph_encode_32(p, len);
if (len)
memcpy(*p, s, len);
*p += len;
}
#define ceph_encode_need(p, end, n, bad) \
do { \
if (unlikely(*(p) + (n) > (end))) \
goto bad; \
} while (0)
#define ceph_encode_64_safe(p, end, v, bad) \
do { \
ceph_encode_need(p, end, sizeof(u64), bad); \
ceph_encode_64(p, v); \
} while (0)
#define ceph_encode_32_safe(p, end, v, bad) \
do { \
ceph_encode_need(p, end, sizeof(u32), bad); \
ceph_encode_32(p, v); \
} while (0)
#define ceph_encode_16_safe(p, end, v, bad) \
do { \
ceph_encode_need(p, end, sizeof(u16), bad); \
ceph_encode_16(p, v); \
} while (0)
#define ceph_encode_copy_safe(p, end, pv, n, bad) \
do { \
ceph_encode_need(p, end, n, bad); \
ceph_encode_copy(p, pv, n); \
} while (0)
#endif

1220
fs/ceph/dir.c Normal file

File diff suppressed because it is too large Load diff

223
fs/ceph/export.c Normal file
View file

@ -0,0 +1,223 @@
#include "ceph_debug.h"
#include <linux/exportfs.h>
#include <asm/unaligned.h>
#include "super.h"
/*
* NFS export support
*
* NFS re-export of a ceph mount is, at present, only semireliable.
* The basic issue is that the Ceph architectures doesn't lend itself
* well to generating filehandles that will remain valid forever.
*
* So, we do our best. If you're lucky, your inode will be in the
* client's cache. If it's not, and you have a connectable fh, then
* the MDS server may be able to find it for you. Otherwise, you get
* ESTALE.
*
* There are ways to this more reliable, but in the non-connectable fh
* case, we won't every work perfectly, and in the connectable case,
* some changes are needed on the MDS side to work better.
*/
/*
* Basic fh
*/
struct ceph_nfs_fh {
u64 ino;
} __attribute__ ((packed));
/*
* Larger 'connectable' fh that includes parent ino and name hash.
* Use this whenever possible, as it works more reliably.
*/
struct ceph_nfs_confh {
u64 ino, parent_ino;
u32 parent_name_hash;
} __attribute__ ((packed));
static int ceph_encode_fh(struct dentry *dentry, u32 *rawfh, int *max_len,
int connectable)
{
struct ceph_nfs_fh *fh = (void *)rawfh;
struct ceph_nfs_confh *cfh = (void *)rawfh;
struct dentry *parent = dentry->d_parent;
struct inode *inode = dentry->d_inode;
int type;
/* don't re-export snaps */
if (ceph_snap(inode) != CEPH_NOSNAP)
return -EINVAL;
if (*max_len >= sizeof(*cfh)) {
dout("encode_fh %p connectable\n", dentry);
cfh->ino = ceph_ino(dentry->d_inode);
cfh->parent_ino = ceph_ino(parent->d_inode);
cfh->parent_name_hash = parent->d_name.hash;
*max_len = sizeof(*cfh);
type = 2;
} else if (*max_len > sizeof(*fh)) {
if (connectable)
return -ENOSPC;
dout("encode_fh %p\n", dentry);
fh->ino = ceph_ino(dentry->d_inode);
*max_len = sizeof(*fh);
type = 1;
} else {
return -ENOSPC;
}
return type;
}
/*
* convert regular fh to dentry
*
* FIXME: we should try harder by querying the mds for the ino.
*/
static struct dentry *__fh_to_dentry(struct super_block *sb,
struct ceph_nfs_fh *fh)
{
struct inode *inode;
struct dentry *dentry;
struct ceph_vino vino;
int err;
dout("__fh_to_dentry %llx\n", fh->ino);
vino.ino = fh->ino;
vino.snap = CEPH_NOSNAP;
inode = ceph_find_inode(sb, vino);
if (!inode)
return ERR_PTR(-ESTALE);
dentry = d_obtain_alias(inode);
if (!dentry) {
pr_err("fh_to_dentry %llx -- inode %p but ENOMEM\n",
fh->ino, inode);
iput(inode);
return ERR_PTR(-ENOMEM);
}
err = ceph_init_dentry(dentry);
if (err < 0) {
iput(inode);
return ERR_PTR(err);
}
dout("__fh_to_dentry %llx %p dentry %p\n", fh->ino, inode, dentry);
return dentry;
}
/*
* convert connectable fh to dentry
*/
static struct dentry *__cfh_to_dentry(struct super_block *sb,
struct ceph_nfs_confh *cfh)
{
struct ceph_mds_client *mdsc = &ceph_client(sb)->mdsc;
struct inode *inode;
struct dentry *dentry;
struct ceph_vino vino;
int err;
dout("__cfh_to_dentry %llx (%llx/%x)\n",
cfh->ino, cfh->parent_ino, cfh->parent_name_hash);
vino.ino = cfh->ino;
vino.snap = CEPH_NOSNAP;
inode = ceph_find_inode(sb, vino);
if (!inode) {
struct ceph_mds_request *req;
req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_LOOKUPHASH,
USE_ANY_MDS);
if (IS_ERR(req))
return ERR_PTR(PTR_ERR(req));
req->r_ino1 = vino;
req->r_ino2.ino = cfh->parent_ino;
req->r_ino2.snap = CEPH_NOSNAP;
req->r_path2 = kmalloc(16, GFP_NOFS);
snprintf(req->r_path2, 16, "%d", cfh->parent_name_hash);
req->r_num_caps = 1;
err = ceph_mdsc_do_request(mdsc, NULL, req);
ceph_mdsc_put_request(req);
inode = ceph_find_inode(sb, vino);
if (!inode)
return ERR_PTR(err ? err : -ESTALE);
}
dentry = d_obtain_alias(inode);
if (!dentry) {
pr_err("cfh_to_dentry %llx -- inode %p but ENOMEM\n",
cfh->ino, inode);
iput(inode);
return ERR_PTR(-ENOMEM);
}
err = ceph_init_dentry(dentry);
if (err < 0) {
iput(inode);
return ERR_PTR(err);
}
dout("__cfh_to_dentry %llx %p dentry %p\n", cfh->ino, inode, dentry);
return dentry;
}
static struct dentry *ceph_fh_to_dentry(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
if (fh_type == 1)
return __fh_to_dentry(sb, (struct ceph_nfs_fh *)fid->raw);
else
return __cfh_to_dentry(sb, (struct ceph_nfs_confh *)fid->raw);
}
/*
* get parent, if possible.
*
* FIXME: we could do better by querying the mds to discover the
* parent.
*/
static struct dentry *ceph_fh_to_parent(struct super_block *sb,
struct fid *fid,
int fh_len, int fh_type)
{
struct ceph_nfs_confh *cfh = (void *)fid->raw;
struct ceph_vino vino;
struct inode *inode;
struct dentry *dentry;
int err;
if (fh_type == 1)
return ERR_PTR(-ESTALE);
pr_debug("fh_to_parent %llx/%d\n", cfh->parent_ino,
cfh->parent_name_hash);
vino.ino = cfh->ino;
vino.snap = CEPH_NOSNAP;
inode = ceph_find_inode(sb, vino);
if (!inode)
return ERR_PTR(-ESTALE);
dentry = d_obtain_alias(inode);
if (!dentry) {
pr_err("fh_to_parent %llx -- inode %p but ENOMEM\n",
cfh->ino, inode);
iput(inode);
return ERR_PTR(-ENOMEM);
}
err = ceph_init_dentry(dentry);
if (err < 0) {
iput(inode);
return ERR_PTR(err);
}
dout("fh_to_parent %llx %p dentry %p\n", cfh->ino, inode, dentry);
return dentry;
}
const struct export_operations ceph_export_ops = {
.encode_fh = ceph_encode_fh,
.fh_to_dentry = ceph_fh_to_dentry,
.fh_to_parent = ceph_fh_to_parent,
};

937
fs/ceph/file.c Normal file
View file

@ -0,0 +1,937 @@
#include "ceph_debug.h"
#include <linux/sched.h>
#include <linux/file.h>
#include <linux/namei.h>
#include <linux/writeback.h>
#include "super.h"
#include "mds_client.h"
/*
* Ceph file operations
*
* Implement basic open/close functionality, and implement
* read/write.
*
* We implement three modes of file I/O:
* - buffered uses the generic_file_aio_{read,write} helpers
*
* - synchronous is used when there is multi-client read/write
* sharing, avoids the page cache, and synchronously waits for an
* ack from the OSD.
*
* - direct io takes the variant of the sync path that references
* user pages directly.
*
* fsync() flushes and waits on dirty pages, but just queues metadata
* for writeback: since the MDS can recover size and mtime there is no
* need to wait for MDS acknowledgement.
*/
/*
* Prepare an open request. Preallocate ceph_cap to avoid an
* inopportune ENOMEM later.
*/
static struct ceph_mds_request *
prepare_open_request(struct super_block *sb, int flags, int create_mode)
{
struct ceph_client *client = ceph_sb_to_client(sb);
struct ceph_mds_client *mdsc = &client->mdsc;
struct ceph_mds_request *req;
int want_auth = USE_ANY_MDS;
int op = (flags & O_CREAT) ? CEPH_MDS_OP_CREATE : CEPH_MDS_OP_OPEN;
if (flags & (O_WRONLY|O_RDWR|O_CREAT|O_TRUNC))
want_auth = USE_AUTH_MDS;
req = ceph_mdsc_create_request(mdsc, op, want_auth);
if (IS_ERR(req))
goto out;
req->r_fmode = ceph_flags_to_mode(flags);
req->r_args.open.flags = cpu_to_le32(flags);
req->r_args.open.mode = cpu_to_le32(create_mode);
req->r_args.open.preferred = cpu_to_le32(-1);
out:
return req;
}
/*
* initialize private struct file data.
* if we fail, clean up by dropping fmode reference on the ceph_inode
*/
static int ceph_init_file(struct inode *inode, struct file *file, int fmode)
{
struct ceph_file_info *cf;
int ret = 0;
switch (inode->i_mode & S_IFMT) {
case S_IFREG:
case S_IFDIR:
dout("init_file %p %p 0%o (regular)\n", inode, file,
inode->i_mode);
cf = kmem_cache_alloc(ceph_file_cachep, GFP_NOFS | __GFP_ZERO);
if (cf == NULL) {
ceph_put_fmode(ceph_inode(inode), fmode); /* clean up */
return -ENOMEM;
}
cf->fmode = fmode;
cf->next_offset = 2;
file->private_data = cf;
BUG_ON(inode->i_fop->release != ceph_release);
break;
case S_IFLNK:
dout("init_file %p %p 0%o (symlink)\n", inode, file,
inode->i_mode);
ceph_put_fmode(ceph_inode(inode), fmode); /* clean up */
break;
default:
dout("init_file %p %p 0%o (special)\n", inode, file,
inode->i_mode);
/*
* we need to drop the open ref now, since we don't
* have .release set to ceph_release.
*/
ceph_put_fmode(ceph_inode(inode), fmode); /* clean up */
BUG_ON(inode->i_fop->release == ceph_release);
/* call the proper open fop */
ret = inode->i_fop->open(inode, file);
}
return ret;
}
/*
* If the filp already has private_data, that means the file was
* already opened by intent during lookup, and we do nothing.
*
* If we already have the requisite capabilities, we can satisfy
* the open request locally (no need to request new caps from the
* MDS). We do, however, need to inform the MDS (asynchronously)
* if our wanted caps set expands.
*/
int ceph_open(struct inode *inode, struct file *file)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_client *client = ceph_sb_to_client(inode->i_sb);
struct ceph_mds_client *mdsc = &client->mdsc;
struct ceph_mds_request *req;
struct ceph_file_info *cf = file->private_data;
struct inode *parent_inode = file->f_dentry->d_parent->d_inode;
int err;
int flags, fmode, wanted;
if (cf) {
dout("open file %p is already opened\n", file);
return 0;
}
/* filter out O_CREAT|O_EXCL; vfs did that already. yuck. */
flags = file->f_flags & ~(O_CREAT|O_EXCL);
if (S_ISDIR(inode->i_mode))
flags = O_DIRECTORY; /* mds likes to know */
dout("open inode %p ino %llx.%llx file %p flags %d (%d)\n", inode,
ceph_vinop(inode), file, flags, file->f_flags);
fmode = ceph_flags_to_mode(flags);
wanted = ceph_caps_for_mode(fmode);
/* snapped files are read-only */
if (ceph_snap(inode) != CEPH_NOSNAP && (file->f_mode & FMODE_WRITE))
return -EROFS;
/* trivially open snapdir */
if (ceph_snap(inode) == CEPH_SNAPDIR) {
spin_lock(&inode->i_lock);
__ceph_get_fmode(ci, fmode);
spin_unlock(&inode->i_lock);
return ceph_init_file(inode, file, fmode);
}
/*
* No need to block if we have any caps. Update wanted set
* asynchronously.
*/
spin_lock(&inode->i_lock);
if (__ceph_is_any_real_caps(ci)) {
int mds_wanted = __ceph_caps_mds_wanted(ci);
int issued = __ceph_caps_issued(ci, NULL);
dout("open %p fmode %d want %s issued %s using existing\n",
inode, fmode, ceph_cap_string(wanted),
ceph_cap_string(issued));
__ceph_get_fmode(ci, fmode);
spin_unlock(&inode->i_lock);
/* adjust wanted? */
if ((issued & wanted) != wanted &&
(mds_wanted & wanted) != wanted &&
ceph_snap(inode) != CEPH_SNAPDIR)
ceph_check_caps(ci, 0, NULL);
return ceph_init_file(inode, file, fmode);
} else if (ceph_snap(inode) != CEPH_NOSNAP &&
(ci->i_snap_caps & wanted) == wanted) {
__ceph_get_fmode(ci, fmode);
spin_unlock(&inode->i_lock);
return ceph_init_file(inode, file, fmode);
}
spin_unlock(&inode->i_lock);
dout("open fmode %d wants %s\n", fmode, ceph_cap_string(wanted));
req = prepare_open_request(inode->i_sb, flags, 0);
if (IS_ERR(req)) {
err = PTR_ERR(req);
goto out;
}
req->r_inode = igrab(inode);
req->r_num_caps = 1;
err = ceph_mdsc_do_request(mdsc, parent_inode, req);
if (!err)
err = ceph_init_file(inode, file, req->r_fmode);
ceph_mdsc_put_request(req);
dout("open result=%d on %llx.%llx\n", err, ceph_vinop(inode));
out:
return err;
}
/*
* Do a lookup + open with a single request.
*
* If this succeeds, but some subsequent check in the vfs
* may_open() fails, the struct *file gets cleaned up (i.e.
* ceph_release gets called). So fear not!
*/
/*
* flags
* path_lookup_open -> LOOKUP_OPEN
* path_lookup_create -> LOOKUP_OPEN|LOOKUP_CREATE
*/
struct dentry *ceph_lookup_open(struct inode *dir, struct dentry *dentry,
struct nameidata *nd, int mode,
int locked_dir)
{
struct ceph_client *client = ceph_sb_to_client(dir->i_sb);
struct ceph_mds_client *mdsc = &client->mdsc;
struct file *file = nd->intent.open.file;
struct inode *parent_inode = get_dentry_parent_inode(file->f_dentry);
struct ceph_mds_request *req;
int err;
int flags = nd->intent.open.flags - 1; /* silly vfs! */
dout("ceph_lookup_open dentry %p '%.*s' flags %d mode 0%o\n",
dentry, dentry->d_name.len, dentry->d_name.name, flags, mode);
/* do the open */
req = prepare_open_request(dir->i_sb, flags, mode);
if (IS_ERR(req))
return ERR_PTR(PTR_ERR(req));
req->r_dentry = dget(dentry);
req->r_num_caps = 2;
if (flags & O_CREAT) {
req->r_dentry_drop = CEPH_CAP_FILE_SHARED;
req->r_dentry_unless = CEPH_CAP_FILE_EXCL;
}
req->r_locked_dir = dir; /* caller holds dir->i_mutex */
err = ceph_mdsc_do_request(mdsc, parent_inode, req);
dentry = ceph_finish_lookup(req, dentry, err);
if (!err && (flags & O_CREAT) && !req->r_reply_info.head->is_dentry)
err = ceph_handle_notrace_create(dir, dentry);
if (!err)
err = ceph_init_file(req->r_dentry->d_inode, file,
req->r_fmode);
ceph_mdsc_put_request(req);
dout("ceph_lookup_open result=%p\n", dentry);
return dentry;
}
int ceph_release(struct inode *inode, struct file *file)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_file_info *cf = file->private_data;
dout("release inode %p file %p\n", inode, file);
ceph_put_fmode(ci, cf->fmode);
if (cf->last_readdir)
ceph_mdsc_put_request(cf->last_readdir);
kfree(cf->last_name);
kfree(cf->dir_info);
dput(cf->dentry);
kmem_cache_free(ceph_file_cachep, cf);
/* wake up anyone waiting for caps on this inode */
wake_up(&ci->i_cap_wq);
return 0;
}
/*
* build a vector of user pages
*/
static struct page **get_direct_page_vector(const char __user *data,
int num_pages,
loff_t off, size_t len)
{
struct page **pages;
int rc;
pages = kmalloc(sizeof(*pages) * num_pages, GFP_NOFS);
if (!pages)
return ERR_PTR(-ENOMEM);
down_read(&current->mm->mmap_sem);
rc = get_user_pages(current, current->mm, (unsigned long)data,
num_pages, 0, 0, pages, NULL);
up_read(&current->mm->mmap_sem);
if (rc < 0)
goto fail;
return pages;
fail:
kfree(pages);
return ERR_PTR(rc);
}
static void put_page_vector(struct page **pages, int num_pages)
{
int i;
for (i = 0; i < num_pages; i++)
put_page(pages[i]);
kfree(pages);
}
void ceph_release_page_vector(struct page **pages, int num_pages)
{
int i;
for (i = 0; i < num_pages; i++)
__free_pages(pages[i], 0);
kfree(pages);
}
/*
* allocate a vector new pages
*/
static struct page **alloc_page_vector(int num_pages)
{
struct page **pages;
int i;
pages = kmalloc(sizeof(*pages) * num_pages, GFP_NOFS);
if (!pages)
return ERR_PTR(-ENOMEM);
for (i = 0; i < num_pages; i++) {
pages[i] = alloc_page(GFP_NOFS);
if (pages[i] == NULL) {
ceph_release_page_vector(pages, i);
return ERR_PTR(-ENOMEM);
}
}
return pages;
}
/*
* copy user data into a page vector
*/
static int copy_user_to_page_vector(struct page **pages,
const char __user *data,
loff_t off, size_t len)
{
int i = 0;
int po = off & ~PAGE_CACHE_MASK;
int left = len;
int l, bad;
while (left > 0) {
l = min_t(int, PAGE_CACHE_SIZE-po, left);
bad = copy_from_user(page_address(pages[i]) + po, data, l);
if (bad == l)
return -EFAULT;
data += l - bad;
left -= l - bad;
po += l - bad;
if (po == PAGE_CACHE_SIZE) {
po = 0;
i++;
}
}
return len;
}
/*
* copy user data from a page vector into a user pointer
*/
static int copy_page_vector_to_user(struct page **pages, char __user *data,
loff_t off, size_t len)
{
int i = 0;
int po = off & ~PAGE_CACHE_MASK;
int left = len;
int l, bad;
while (left > 0) {
l = min_t(int, left, PAGE_CACHE_SIZE-po);
bad = copy_to_user(data, page_address(pages[i]) + po, l);
if (bad == l)
return -EFAULT;
data += l - bad;
left -= l - bad;
if (po) {
po += l - bad;
if (po == PAGE_CACHE_SIZE)
po = 0;
}
i++;
}
return len;
}
/*
* Zero an extent within a page vector. Offset is relative to the
* start of the first page.
*/
static void zero_page_vector_range(int off, int len, struct page **pages)
{
int i = off >> PAGE_CACHE_SHIFT;
off &= ~PAGE_CACHE_MASK;
dout("zero_page_vector_page %u~%u\n", off, len);
/* leading partial page? */
if (off) {
int end = min((int)PAGE_CACHE_SIZE, off + len);
dout("zeroing %d %p head from %d\n", i, pages[i],
(int)off);
zero_user_segment(pages[i], off, end);
len -= (end - off);
i++;
}
while (len >= PAGE_CACHE_SIZE) {
dout("zeroing %d %p len=%d\n", i, pages[i], len);
zero_user_segment(pages[i], 0, PAGE_CACHE_SIZE);
len -= PAGE_CACHE_SIZE;
i++;
}
/* trailing partial page? */
if (len) {
dout("zeroing %d %p tail to %d\n", i, pages[i], (int)len);
zero_user_segment(pages[i], 0, len);
}
}
/*
* Read a range of bytes striped over one or more objects. Iterate over
* objects we stripe over. (That's not atomic, but good enough for now.)
*
* If we get a short result from the OSD, check against i_size; we need to
* only return a short read to the caller if we hit EOF.
*/
static int striped_read(struct inode *inode,
u64 off, u64 len,
struct page **pages, int num_pages,
int *checkeof)
{
struct ceph_client *client = ceph_inode_to_client(inode);
struct ceph_inode_info *ci = ceph_inode(inode);
u64 pos, this_len;
int page_off = off & ~PAGE_CACHE_MASK; /* first byte's offset in page */
int left, pages_left;
int read;
struct page **page_pos;
int ret;
bool hit_stripe, was_short;
/*
* we may need to do multiple reads. not atomic, unfortunately.
*/
pos = off;
left = len;
page_pos = pages;
pages_left = num_pages;
read = 0;
more:
this_len = left;
ret = ceph_osdc_readpages(&client->osdc, ceph_vino(inode),
&ci->i_layout, pos, &this_len,
ci->i_truncate_seq,
ci->i_truncate_size,
page_pos, pages_left);
hit_stripe = this_len < left;
was_short = ret >= 0 && ret < this_len;
if (ret == -ENOENT)
ret = 0;
dout("striped_read %llu~%u (read %u) got %d%s%s\n", pos, left, read,
ret, hit_stripe ? " HITSTRIPE" : "", was_short ? " SHORT" : "");
if (ret > 0) {
int didpages =
((pos & ~PAGE_CACHE_MASK) + ret) >> PAGE_CACHE_SHIFT;
if (read < pos - off) {
dout(" zero gap %llu to %llu\n", off + read, pos);
zero_page_vector_range(page_off + read,
pos - off - read, pages);
}
pos += ret;
read = pos - off;
left -= ret;
page_pos += didpages;
pages_left -= didpages;
/* hit stripe? */
if (left && hit_stripe)
goto more;
}
if (was_short) {
/* was original extent fully inside i_size? */
if (pos + left <= inode->i_size) {
dout("zero tail\n");
zero_page_vector_range(page_off + read, len - read,
pages);
read = len;
goto out;
}
/* check i_size */
*checkeof = 1;
}
out:
if (ret >= 0)
ret = read;
dout("striped_read returns %d\n", ret);
return ret;
}
/*
* Completely synchronous read and write methods. Direct from __user
* buffer to osd, or directly to user pages (if O_DIRECT).
*
* If the read spans object boundary, just do multiple reads.
*/
static ssize_t ceph_sync_read(struct file *file, char __user *data,
unsigned len, loff_t *poff, int *checkeof)
{
struct inode *inode = file->f_dentry->d_inode;
struct page **pages;
u64 off = *poff;
int num_pages = calc_pages_for(off, len);
int ret;
dout("sync_read on file %p %llu~%u %s\n", file, off, len,
(file->f_flags & O_DIRECT) ? "O_DIRECT" : "");
if (file->f_flags & O_DIRECT) {
pages = get_direct_page_vector(data, num_pages, off, len);
/*
* flush any page cache pages in this range. this
* will make concurrent normal and O_DIRECT io slow,
* but it will at least behave sensibly when they are
* in sequence.
*/
} else {
pages = alloc_page_vector(num_pages);
}
if (IS_ERR(pages))
return PTR_ERR(pages);
ret = filemap_write_and_wait(inode->i_mapping);
if (ret < 0)
goto done;
ret = striped_read(inode, off, len, pages, num_pages, checkeof);
if (ret >= 0 && (file->f_flags & O_DIRECT) == 0)
ret = copy_page_vector_to_user(pages, data, off, ret);
if (ret >= 0)
*poff = off + ret;
done:
if (file->f_flags & O_DIRECT)
put_page_vector(pages, num_pages);
else
ceph_release_page_vector(pages, num_pages);
dout("sync_read result %d\n", ret);
return ret;
}
/*
* Write commit callback, called if we requested both an ACK and
* ONDISK commit reply from the OSD.
*/
static void sync_write_commit(struct ceph_osd_request *req,
struct ceph_msg *msg)
{
struct ceph_inode_info *ci = ceph_inode(req->r_inode);
dout("sync_write_commit %p tid %llu\n", req, req->r_tid);
spin_lock(&ci->i_unsafe_lock);
list_del_init(&req->r_unsafe_item);
spin_unlock(&ci->i_unsafe_lock);
ceph_put_cap_refs(ci, CEPH_CAP_FILE_WR);
}
/*
* Synchronous write, straight from __user pointer or user pages (if
* O_DIRECT).
*
* If write spans object boundary, just do multiple writes. (For a
* correct atomic write, we should e.g. take write locks on all
* objects, rollback on failure, etc.)
*/
static ssize_t ceph_sync_write(struct file *file, const char __user *data,
size_t left, loff_t *offset)
{
struct inode *inode = file->f_dentry->d_inode;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_client *client = ceph_inode_to_client(inode);
struct ceph_osd_request *req;
struct page **pages;
int num_pages;
long long unsigned pos;
u64 len;
int written = 0;
int flags;
int do_sync = 0;
int check_caps = 0;
int ret;
struct timespec mtime = CURRENT_TIME;
if (ceph_snap(file->f_dentry->d_inode) != CEPH_NOSNAP)
return -EROFS;
dout("sync_write on file %p %lld~%u %s\n", file, *offset,
(unsigned)left, (file->f_flags & O_DIRECT) ? "O_DIRECT" : "");
if (file->f_flags & O_APPEND)
pos = i_size_read(inode);
else
pos = *offset;
ret = filemap_write_and_wait_range(inode->i_mapping, pos, pos + left);
if (ret < 0)
return ret;
ret = invalidate_inode_pages2_range(inode->i_mapping,
pos >> PAGE_CACHE_SHIFT,
(pos + left) >> PAGE_CACHE_SHIFT);
if (ret < 0)
dout("invalidate_inode_pages2_range returned %d\n", ret);
flags = CEPH_OSD_FLAG_ORDERSNAP |
CEPH_OSD_FLAG_ONDISK |
CEPH_OSD_FLAG_WRITE;
if ((file->f_flags & (O_SYNC|O_DIRECT)) == 0)
flags |= CEPH_OSD_FLAG_ACK;
else
do_sync = 1;
/*
* we may need to do multiple writes here if we span an object
* boundary. this isn't atomic, unfortunately. :(
*/
more:
len = left;
req = ceph_osdc_new_request(&client->osdc, &ci->i_layout,
ceph_vino(inode), pos, &len,
CEPH_OSD_OP_WRITE, flags,
ci->i_snap_realm->cached_context,
do_sync,
ci->i_truncate_seq, ci->i_truncate_size,
&mtime, false, 2);
if (IS_ERR(req))
return PTR_ERR(req);
num_pages = calc_pages_for(pos, len);
if (file->f_flags & O_DIRECT) {
pages = get_direct_page_vector(data, num_pages, pos, len);
if (IS_ERR(pages)) {
ret = PTR_ERR(pages);
goto out;
}
/*
* throw out any page cache pages in this range. this
* may block.
*/
truncate_inode_pages_range(inode->i_mapping, pos, pos+len);
} else {
pages = alloc_page_vector(num_pages);
if (IS_ERR(pages)) {
ret = PTR_ERR(pages);
goto out;
}
ret = copy_user_to_page_vector(pages, data, pos, len);
if (ret < 0) {
ceph_release_page_vector(pages, num_pages);
goto out;
}
if ((file->f_flags & O_SYNC) == 0) {
/* get a second commit callback */
req->r_safe_callback = sync_write_commit;
req->r_own_pages = 1;
}
}
req->r_pages = pages;
req->r_num_pages = num_pages;
req->r_inode = inode;
ret = ceph_osdc_start_request(&client->osdc, req, false);
if (!ret) {
if (req->r_safe_callback) {
/*
* Add to inode unsafe list only after we
* start_request so that a tid has been assigned.
*/
spin_lock(&ci->i_unsafe_lock);
list_add(&ci->i_unsafe_writes, &req->r_unsafe_item);
spin_unlock(&ci->i_unsafe_lock);
ceph_get_cap_refs(ci, CEPH_CAP_FILE_WR);
}
ret = ceph_osdc_wait_request(&client->osdc, req);
}
if (file->f_flags & O_DIRECT)
put_page_vector(pages, num_pages);
else if (file->f_flags & O_SYNC)
ceph_release_page_vector(pages, num_pages);
out:
ceph_osdc_put_request(req);
if (ret == 0) {
pos += len;
written += len;
left -= len;
if (left)
goto more;
ret = written;
*offset = pos;
if (pos > i_size_read(inode))
check_caps = ceph_inode_set_size(inode, pos);
if (check_caps)
ceph_check_caps(ceph_inode(inode), CHECK_CAPS_AUTHONLY,
NULL);
}
return ret;
}
/*
* Wrap generic_file_aio_read with checks for cap bits on the inode.
* Atomically grab references, so that those bits are not released
* back to the MDS mid-read.
*
* Hmm, the sync read case isn't actually async... should it be?
*/
static ssize_t ceph_aio_read(struct kiocb *iocb, const struct iovec *iov,
unsigned long nr_segs, loff_t pos)
{
struct file *filp = iocb->ki_filp;
loff_t *ppos = &iocb->ki_pos;
size_t len = iov->iov_len;
struct inode *inode = filp->f_dentry->d_inode;
struct ceph_inode_info *ci = ceph_inode(inode);
void *base = iov->iov_base;
ssize_t ret;
int got = 0;
int checkeof = 0, read = 0;
dout("aio_read %p %llx.%llx %llu~%u trying to get caps on %p\n",
inode, ceph_vinop(inode), pos, (unsigned)len, inode);
again:
__ceph_do_pending_vmtruncate(inode);
ret = ceph_get_caps(ci, CEPH_CAP_FILE_RD, CEPH_CAP_FILE_CACHE,
&got, -1);
if (ret < 0)
goto out;
dout("aio_read %p %llx.%llx %llu~%u got cap refs on %s\n",
inode, ceph_vinop(inode), pos, (unsigned)len,
ceph_cap_string(got));
if ((got & CEPH_CAP_FILE_CACHE) == 0 ||
(iocb->ki_filp->f_flags & O_DIRECT) ||
(inode->i_sb->s_flags & MS_SYNCHRONOUS))
/* hmm, this isn't really async... */
ret = ceph_sync_read(filp, base, len, ppos, &checkeof);
else
ret = generic_file_aio_read(iocb, iov, nr_segs, pos);
out:
dout("aio_read %p %llx.%llx dropping cap refs on %s = %d\n",
inode, ceph_vinop(inode), ceph_cap_string(got), (int)ret);
ceph_put_cap_refs(ci, got);
if (checkeof && ret >= 0) {
int statret = ceph_do_getattr(inode, CEPH_STAT_CAP_SIZE);
/* hit EOF or hole? */
if (statret == 0 && *ppos < inode->i_size) {
dout("aio_read sync_read hit hole, reading more\n");
read += ret;
base += ret;
len -= ret;
checkeof = 0;
goto again;
}
}
if (ret >= 0)
ret += read;
return ret;
}
/*
* Take cap references to avoid releasing caps to MDS mid-write.
*
* If we are synchronous, and write with an old snap context, the OSD
* may return EOLDSNAPC. In that case, retry the write.. _after_
* dropping our cap refs and allowing the pending snap to logically
* complete _before_ this write occurs.
*
* If we are near ENOSPC, write synchronously.
*/
static ssize_t ceph_aio_write(struct kiocb *iocb, const struct iovec *iov,
unsigned long nr_segs, loff_t pos)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_dentry->d_inode;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_osd_client *osdc = &ceph_client(inode->i_sb)->osdc;
loff_t endoff = pos + iov->iov_len;
int got = 0;
int ret, err;
if (ceph_snap(inode) != CEPH_NOSNAP)
return -EROFS;
retry_snap:
if (ceph_osdmap_flag(osdc->osdmap, CEPH_OSDMAP_FULL))
return -ENOSPC;
__ceph_do_pending_vmtruncate(inode);
dout("aio_write %p %llx.%llx %llu~%u getting caps. i_size %llu\n",
inode, ceph_vinop(inode), pos, (unsigned)iov->iov_len,
inode->i_size);
ret = ceph_get_caps(ci, CEPH_CAP_FILE_WR, CEPH_CAP_FILE_BUFFER,
&got, endoff);
if (ret < 0)
goto out;
dout("aio_write %p %llx.%llx %llu~%u got cap refs on %s\n",
inode, ceph_vinop(inode), pos, (unsigned)iov->iov_len,
ceph_cap_string(got));
if ((got & CEPH_CAP_FILE_BUFFER) == 0 ||
(iocb->ki_filp->f_flags & O_DIRECT) ||
(inode->i_sb->s_flags & MS_SYNCHRONOUS)) {
ret = ceph_sync_write(file, iov->iov_base, iov->iov_len,
&iocb->ki_pos);
} else {
ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
if ((ret >= 0 || ret == -EIOCBQUEUED) &&
((file->f_flags & O_SYNC) || IS_SYNC(file->f_mapping->host)
|| ceph_osdmap_flag(osdc->osdmap, CEPH_OSDMAP_NEARFULL))) {
err = vfs_fsync_range(file, file->f_path.dentry,
pos, pos + ret - 1, 1);
if (err < 0)
ret = err;
}
}
if (ret >= 0) {
spin_lock(&inode->i_lock);
__ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR);
spin_unlock(&inode->i_lock);
}
out:
dout("aio_write %p %llx.%llx %llu~%u dropping cap refs on %s\n",
inode, ceph_vinop(inode), pos, (unsigned)iov->iov_len,
ceph_cap_string(got));
ceph_put_cap_refs(ci, got);
if (ret == -EOLDSNAPC) {
dout("aio_write %p %llx.%llx %llu~%u got EOLDSNAPC, retrying\n",
inode, ceph_vinop(inode), pos, (unsigned)iov->iov_len);
goto retry_snap;
}
return ret;
}
/*
* llseek. be sure to verify file size on SEEK_END.
*/
static loff_t ceph_llseek(struct file *file, loff_t offset, int origin)
{
struct inode *inode = file->f_mapping->host;
int ret;
mutex_lock(&inode->i_mutex);
__ceph_do_pending_vmtruncate(inode);
switch (origin) {
case SEEK_END:
ret = ceph_do_getattr(inode, CEPH_STAT_CAP_SIZE);
if (ret < 0) {
offset = ret;
goto out;
}
offset += inode->i_size;
break;
case SEEK_CUR:
/*
* Here we special-case the lseek(fd, 0, SEEK_CUR)
* position-querying operation. Avoid rewriting the "same"
* f_pos value back to the file because a concurrent read(),
* write() or lseek() might have altered it
*/
if (offset == 0) {
offset = file->f_pos;
goto out;
}
offset += file->f_pos;
break;
}
if (offset < 0 || offset > inode->i_sb->s_maxbytes) {
offset = -EINVAL;
goto out;
}
/* Special lock needed here? */
if (offset != file->f_pos) {
file->f_pos = offset;
file->f_version = 0;
}
out:
mutex_unlock(&inode->i_mutex);
return offset;
}
const struct file_operations ceph_file_fops = {
.open = ceph_open,
.release = ceph_release,
.llseek = ceph_llseek,
.read = do_sync_read,
.write = do_sync_write,
.aio_read = ceph_aio_read,
.aio_write = ceph_aio_write,
.mmap = ceph_mmap,
.fsync = ceph_fsync,
.splice_read = generic_file_splice_read,
.splice_write = generic_file_splice_write,
.unlocked_ioctl = ceph_ioctl,
.compat_ioctl = ceph_ioctl,
};

1750
fs/ceph/inode.c Normal file

File diff suppressed because it is too large Load diff

160
fs/ceph/ioctl.c Normal file
View file

@ -0,0 +1,160 @@
#include <linux/in.h>
#include "ioctl.h"
#include "super.h"
#include "ceph_debug.h"
/*
* ioctls
*/
/*
* get and set the file layout
*/
static long ceph_ioctl_get_layout(struct file *file, void __user *arg)
{
struct ceph_inode_info *ci = ceph_inode(file->f_dentry->d_inode);
struct ceph_ioctl_layout l;
int err;
err = ceph_do_getattr(file->f_dentry->d_inode, CEPH_STAT_CAP_LAYOUT);
if (!err) {
l.stripe_unit = ceph_file_layout_su(ci->i_layout);
l.stripe_count = ceph_file_layout_stripe_count(ci->i_layout);
l.object_size = ceph_file_layout_object_size(ci->i_layout);
l.data_pool = le32_to_cpu(ci->i_layout.fl_pg_pool);
l.preferred_osd =
(s32)le32_to_cpu(ci->i_layout.fl_pg_preferred);
if (copy_to_user(arg, &l, sizeof(l)))
return -EFAULT;
}
return err;
}
static long ceph_ioctl_set_layout(struct file *file, void __user *arg)
{
struct inode *inode = file->f_dentry->d_inode;
struct inode *parent_inode = file->f_dentry->d_parent->d_inode;
struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
struct ceph_mds_request *req;
struct ceph_ioctl_layout l;
int err, i;
/* copy and validate */
if (copy_from_user(&l, arg, sizeof(l)))
return -EFAULT;
if ((l.object_size & ~PAGE_MASK) ||
(l.stripe_unit & ~PAGE_MASK) ||
!l.stripe_unit ||
(l.object_size &&
(unsigned)l.object_size % (unsigned)l.stripe_unit))
return -EINVAL;
/* make sure it's a valid data pool */
if (l.data_pool > 0) {
mutex_lock(&mdsc->mutex);
err = -EINVAL;
for (i = 0; i < mdsc->mdsmap->m_num_data_pg_pools; i++)
if (mdsc->mdsmap->m_data_pg_pools[i] == l.data_pool) {
err = 0;
break;
}
mutex_unlock(&mdsc->mutex);
if (err)
return err;
}
req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_SETLAYOUT,
USE_AUTH_MDS);
if (IS_ERR(req))
return PTR_ERR(req);
req->r_inode = igrab(inode);
req->r_inode_drop = CEPH_CAP_FILE_SHARED | CEPH_CAP_FILE_EXCL;
req->r_args.setlayout.layout.fl_stripe_unit =
cpu_to_le32(l.stripe_unit);
req->r_args.setlayout.layout.fl_stripe_count =
cpu_to_le32(l.stripe_count);
req->r_args.setlayout.layout.fl_object_size =
cpu_to_le32(l.object_size);
req->r_args.setlayout.layout.fl_pg_pool = cpu_to_le32(l.data_pool);
req->r_args.setlayout.layout.fl_pg_preferred =
cpu_to_le32(l.preferred_osd);
err = ceph_mdsc_do_request(mdsc, parent_inode, req);
ceph_mdsc_put_request(req);
return err;
}
/*
* Return object name, size/offset information, and location (OSD
* number, network address) for a given file offset.
*/
static long ceph_ioctl_get_dataloc(struct file *file, void __user *arg)
{
struct ceph_ioctl_dataloc dl;
struct inode *inode = file->f_dentry->d_inode;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_osd_client *osdc = &ceph_client(inode->i_sb)->osdc;
u64 len = 1, olen;
u64 tmp;
struct ceph_object_layout ol;
struct ceph_pg pgid;
/* copy and validate */
if (copy_from_user(&dl, arg, sizeof(dl)))
return -EFAULT;
down_read(&osdc->map_sem);
ceph_calc_file_object_mapping(&ci->i_layout, dl.file_offset, &len,
&dl.object_no, &dl.object_offset, &olen);
dl.file_offset -= dl.object_offset;
dl.object_size = ceph_file_layout_object_size(ci->i_layout);
dl.block_size = ceph_file_layout_su(ci->i_layout);
/* block_offset = object_offset % block_size */
tmp = dl.object_offset;
dl.block_offset = do_div(tmp, dl.block_size);
snprintf(dl.object_name, sizeof(dl.object_name), "%llx.%08llx",
ceph_ino(inode), dl.object_no);
ceph_calc_object_layout(&ol, dl.object_name, &ci->i_layout,
osdc->osdmap);
pgid = ol.ol_pgid;
dl.osd = ceph_calc_pg_primary(osdc->osdmap, pgid);
if (dl.osd >= 0) {
struct ceph_entity_addr *a =
ceph_osd_addr(osdc->osdmap, dl.osd);
if (a)
memcpy(&dl.osd_addr, &a->in_addr, sizeof(dl.osd_addr));
} else {
memset(&dl.osd_addr, 0, sizeof(dl.osd_addr));
}
up_read(&osdc->map_sem);
/* send result back to user */
if (copy_to_user(arg, &dl, sizeof(dl)))
return -EFAULT;
return 0;
}
long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
dout("ioctl file %p cmd %u arg %lu\n", file, cmd, arg);
switch (cmd) {
case CEPH_IOC_GET_LAYOUT:
return ceph_ioctl_get_layout(file, (void __user *)arg);
case CEPH_IOC_SET_LAYOUT:
return ceph_ioctl_set_layout(file, (void __user *)arg);
case CEPH_IOC_GET_DATALOC:
return ceph_ioctl_get_dataloc(file, (void __user *)arg);
}
return -ENOTTY;
}

40
fs/ceph/ioctl.h Normal file
View file

@ -0,0 +1,40 @@
#ifndef FS_CEPH_IOCTL_H
#define FS_CEPH_IOCTL_H
#include <linux/ioctl.h>
#include <linux/types.h>
#define CEPH_IOCTL_MAGIC 0x97
/* just use u64 to align sanely on all archs */
struct ceph_ioctl_layout {
__u64 stripe_unit, stripe_count, object_size;
__u64 data_pool;
__s64 preferred_osd;
};
#define CEPH_IOC_GET_LAYOUT _IOR(CEPH_IOCTL_MAGIC, 1, \
struct ceph_ioctl_layout)
#define CEPH_IOC_SET_LAYOUT _IOW(CEPH_IOCTL_MAGIC, 2, \
struct ceph_ioctl_layout)
/*
* Extract identity, address of the OSD and object storing a given
* file offset.
*/
struct ceph_ioctl_dataloc {
__u64 file_offset; /* in+out: file offset */
__u64 object_offset; /* out: offset in object */
__u64 object_no; /* out: object # */
__u64 object_size; /* out: object size */
char object_name[64]; /* out: object name */
__u64 block_offset; /* out: offset in block */
__u64 block_size; /* out: block length */
__s64 osd; /* out: osd # */
struct sockaddr_storage osd_addr; /* out: osd address */
};
#define CEPH_IOC_GET_DATALOC _IOWR(CEPH_IOCTL_MAGIC, 3, \
struct ceph_ioctl_dataloc)
#endif

3021
fs/ceph/mds_client.c Normal file

File diff suppressed because it is too large Load diff

335
fs/ceph/mds_client.h Normal file
View file

@ -0,0 +1,335 @@
#ifndef _FS_CEPH_MDS_CLIENT_H
#define _FS_CEPH_MDS_CLIENT_H
#include <linux/completion.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/rbtree.h>
#include <linux/spinlock.h>
#include "types.h"
#include "messenger.h"
#include "mdsmap.h"
/*
* Some lock dependencies:
*
* session->s_mutex
* mdsc->mutex
*
* mdsc->snap_rwsem
*
* inode->i_lock
* mdsc->snap_flush_lock
* mdsc->cap_delay_lock
*
*/
struct ceph_client;
struct ceph_cap;
/*
* parsed info about a single inode. pointers are into the encoded
* on-wire structures within the mds reply message payload.
*/
struct ceph_mds_reply_info_in {
struct ceph_mds_reply_inode *in;
u32 symlink_len;
char *symlink;
u32 xattr_len;
char *xattr_data;
};
/*
* parsed info about an mds reply, including information about the
* target inode and/or its parent directory and dentry, and directory
* contents (for readdir results).
*/
struct ceph_mds_reply_info_parsed {
struct ceph_mds_reply_head *head;
struct ceph_mds_reply_info_in diri, targeti;
struct ceph_mds_reply_dirfrag *dirfrag;
char *dname;
u32 dname_len;
struct ceph_mds_reply_lease *dlease;
struct ceph_mds_reply_dirfrag *dir_dir;
int dir_nr;
char **dir_dname;
u32 *dir_dname_len;
struct ceph_mds_reply_lease **dir_dlease;
struct ceph_mds_reply_info_in *dir_in;
u8 dir_complete, dir_end;
/* encoded blob describing snapshot contexts for certain
operations (e.g., open) */
void *snapblob;
int snapblob_len;
};
/*
* cap releases are batched and sent to the MDS en masse.
*/
#define CEPH_CAPS_PER_RELEASE ((PAGE_CACHE_SIZE - \
sizeof(struct ceph_mds_cap_release)) / \
sizeof(struct ceph_mds_cap_item))
/*
* state associated with each MDS<->client session
*/
enum {
CEPH_MDS_SESSION_NEW = 1,
CEPH_MDS_SESSION_OPENING = 2,
CEPH_MDS_SESSION_OPEN = 3,
CEPH_MDS_SESSION_HUNG = 4,
CEPH_MDS_SESSION_CLOSING = 5,
CEPH_MDS_SESSION_RESTARTING = 6,
CEPH_MDS_SESSION_RECONNECTING = 7,
};
struct ceph_mds_session {
struct ceph_mds_client *s_mdsc;
int s_mds;
int s_state;
unsigned long s_ttl; /* time until mds kills us */
u64 s_seq; /* incoming msg seq # */
struct mutex s_mutex; /* serialize session messages */
struct ceph_connection s_con;
struct ceph_authorizer *s_authorizer;
void *s_authorizer_buf, *s_authorizer_reply_buf;
size_t s_authorizer_buf_len, s_authorizer_reply_buf_len;
/* protected by s_cap_lock */
spinlock_t s_cap_lock;
u32 s_cap_gen; /* inc each time we get mds stale msg */
unsigned long s_cap_ttl; /* when session caps expire */
struct list_head s_caps; /* all caps issued by this session */
int s_nr_caps, s_trim_caps;
int s_num_cap_releases;
struct list_head s_cap_releases; /* waiting cap_release messages */
struct list_head s_cap_releases_done; /* ready to send */
struct ceph_cap *s_cap_iterator;
/* protected by mutex */
struct list_head s_cap_flushing; /* inodes w/ flushing caps */
struct list_head s_cap_snaps_flushing;
unsigned long s_renew_requested; /* last time we sent a renew req */
u64 s_renew_seq;
atomic_t s_ref;
struct list_head s_waiting; /* waiting requests */
struct list_head s_unsafe; /* unsafe requests */
};
/*
* modes of choosing which MDS to send a request to
*/
enum {
USE_ANY_MDS,
USE_RANDOM_MDS,
USE_AUTH_MDS, /* prefer authoritative mds for this metadata item */
};
struct ceph_mds_request;
struct ceph_mds_client;
/*
* request completion callback
*/
typedef void (*ceph_mds_request_callback_t) (struct ceph_mds_client *mdsc,
struct ceph_mds_request *req);
/*
* an in-flight mds request
*/
struct ceph_mds_request {
u64 r_tid; /* transaction id */
struct rb_node r_node;
int r_op; /* mds op code */
int r_mds;
/* operation on what? */
struct inode *r_inode; /* arg1 */
struct dentry *r_dentry; /* arg1 */
struct dentry *r_old_dentry; /* arg2: rename from or link from */
char *r_path1, *r_path2;
struct ceph_vino r_ino1, r_ino2;
struct inode *r_locked_dir; /* dir (if any) i_mutex locked by vfs */
struct inode *r_target_inode; /* resulting inode */
union ceph_mds_request_args r_args;
int r_fmode; /* file mode, if expecting cap */
/* for choosing which mds to send this request to */
int r_direct_mode;
u32 r_direct_hash; /* choose dir frag based on this dentry hash */
bool r_direct_is_hash; /* true if r_direct_hash is valid */
/* data payload is used for xattr ops */
struct page **r_pages;
int r_num_pages;
int r_data_len;
/* what caps shall we drop? */
int r_inode_drop, r_inode_unless;
int r_dentry_drop, r_dentry_unless;
int r_old_dentry_drop, r_old_dentry_unless;
struct inode *r_old_inode;
int r_old_inode_drop, r_old_inode_unless;
struct ceph_msg *r_request; /* original request */
struct ceph_msg *r_reply;
struct ceph_mds_reply_info_parsed r_reply_info;
int r_err;
bool r_aborted;
unsigned long r_timeout; /* optional. jiffies */
unsigned long r_started; /* start time to measure timeout against */
unsigned long r_request_started; /* start time for mds request only,
used to measure lease durations */
/* link unsafe requests to parent directory, for fsync */
struct inode *r_unsafe_dir;
struct list_head r_unsafe_dir_item;
struct ceph_mds_session *r_session;
int r_attempts; /* resend attempts */
int r_num_fwd; /* number of forward attempts */
int r_num_stale;
int r_resend_mds; /* mds to resend to next, if any*/
struct kref r_kref;
struct list_head r_wait;
struct completion r_completion;
struct completion r_safe_completion;
ceph_mds_request_callback_t r_callback;
struct list_head r_unsafe_item; /* per-session unsafe list item */
bool r_got_unsafe, r_got_safe;
bool r_did_prepopulate;
u32 r_readdir_offset;
struct ceph_cap_reservation r_caps_reservation;
int r_num_caps;
};
/*
* mds client state
*/
struct ceph_mds_client {
struct ceph_client *client;
struct mutex mutex; /* all nested structures */
struct ceph_mdsmap *mdsmap;
struct completion safe_umount_waiters, session_close_waiters;
struct list_head waiting_for_map;
struct ceph_mds_session **sessions; /* NULL for mds if no session */
int max_sessions; /* len of s_mds_sessions */
int stopping; /* true if shutting down */
/*
* snap_rwsem will cover cap linkage into snaprealms, and
* realm snap contexts. (later, we can do per-realm snap
* contexts locks..) the empty list contains realms with no
* references (implying they contain no inodes with caps) that
* should be destroyed.
*/
struct rw_semaphore snap_rwsem;
struct rb_root snap_realms;
struct list_head snap_empty;
spinlock_t snap_empty_lock; /* protect snap_empty */
u64 last_tid; /* most recent mds request */
struct rb_root request_tree; /* pending mds requests */
struct delayed_work delayed_work; /* delayed work */
unsigned long last_renew_caps; /* last time we renewed our caps */
struct list_head cap_delay_list; /* caps with delayed release */
spinlock_t cap_delay_lock; /* protects cap_delay_list */
struct list_head snap_flush_list; /* cap_snaps ready to flush */
spinlock_t snap_flush_lock;
u64 cap_flush_seq;
struct list_head cap_dirty; /* inodes with dirty caps */
int num_cap_flushing; /* # caps we are flushing */
spinlock_t cap_dirty_lock; /* protects above items */
wait_queue_head_t cap_flushing_wq;
#ifdef CONFIG_DEBUG_FS
struct dentry *debugfs_file;
#endif
spinlock_t dentry_lru_lock;
struct list_head dentry_lru;
int num_dentry;
};
extern const char *ceph_mds_op_name(int op);
extern struct ceph_mds_session *
__ceph_lookup_mds_session(struct ceph_mds_client *, int mds);
static inline struct ceph_mds_session *
ceph_get_mds_session(struct ceph_mds_session *s)
{
atomic_inc(&s->s_ref);
return s;
}
extern void ceph_put_mds_session(struct ceph_mds_session *s);
extern int ceph_send_msg_mds(struct ceph_mds_client *mdsc,
struct ceph_msg *msg, int mds);
extern int ceph_mdsc_init(struct ceph_mds_client *mdsc,
struct ceph_client *client);
extern void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc);
extern void ceph_mdsc_stop(struct ceph_mds_client *mdsc);
extern void ceph_mdsc_sync(struct ceph_mds_client *mdsc);
extern void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc,
struct inode *inode,
struct dentry *dn, int mask);
extern struct ceph_mds_request *
ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode);
extern void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
struct ceph_mds_request *req);
extern int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
struct inode *dir,
struct ceph_mds_request *req);
static inline void ceph_mdsc_get_request(struct ceph_mds_request *req)
{
kref_get(&req->r_kref);
}
extern void ceph_mdsc_release_request(struct kref *kref);
static inline void ceph_mdsc_put_request(struct ceph_mds_request *req)
{
kref_put(&req->r_kref, ceph_mdsc_release_request);
}
extern void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc);
extern char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
int stop_on_nosnap);
extern void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry);
extern void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
struct inode *inode,
struct dentry *dentry, char action,
u32 seq);
extern void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc,
struct ceph_msg *msg);
#endif

174
fs/ceph/mdsmap.c Normal file
View file

@ -0,0 +1,174 @@
#include "ceph_debug.h"
#include <linux/bug.h>
#include <linux/err.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/types.h>
#include "mdsmap.h"
#include "messenger.h"
#include "decode.h"
#include "super.h"
/*
* choose a random mds that is "up" (i.e. has a state > 0), or -1.
*/
int ceph_mdsmap_get_random_mds(struct ceph_mdsmap *m)
{
int n = 0;
int i;
char r;
/* count */
for (i = 0; i < m->m_max_mds; i++)
if (m->m_info[i].state > 0)
n++;
if (n == 0)
return -1;
/* pick */
get_random_bytes(&r, 1);
n = r % n;
i = 0;
for (i = 0; n > 0; i++, n--)
while (m->m_info[i].state <= 0)
i++;
return i;
}
/*
* Decode an MDS map
*
* Ignore any fields we don't care about (there are quite a few of
* them).
*/
struct ceph_mdsmap *ceph_mdsmap_decode(void **p, void *end)
{
struct ceph_mdsmap *m;
const void *start = *p;
int i, j, n;
int err = -EINVAL;
u16 version;
m = kzalloc(sizeof(*m), GFP_NOFS);
if (m == NULL)
return ERR_PTR(-ENOMEM);
ceph_decode_16_safe(p, end, version, bad);
ceph_decode_need(p, end, 8*sizeof(u32) + sizeof(u64), bad);
m->m_epoch = ceph_decode_32(p);
m->m_client_epoch = ceph_decode_32(p);
m->m_last_failure = ceph_decode_32(p);
m->m_root = ceph_decode_32(p);
m->m_session_timeout = ceph_decode_32(p);
m->m_session_autoclose = ceph_decode_32(p);
m->m_max_file_size = ceph_decode_64(p);
m->m_max_mds = ceph_decode_32(p);
m->m_info = kcalloc(m->m_max_mds, sizeof(*m->m_info), GFP_NOFS);
if (m->m_info == NULL)
goto badmem;
/* pick out active nodes from mds_info (state > 0) */
n = ceph_decode_32(p);
for (i = 0; i < n; i++) {
u64 global_id;
u32 namelen;
s32 mds, inc, state;
u64 state_seq;
u8 infoversion;
struct ceph_entity_addr addr;
u32 num_export_targets;
void *pexport_targets = NULL;
ceph_decode_need(p, end, sizeof(u64)*2 + 1 + sizeof(u32), bad);
global_id = ceph_decode_64(p);
infoversion = ceph_decode_8(p);
*p += sizeof(u64);
namelen = ceph_decode_32(p); /* skip mds name */
*p += namelen;
ceph_decode_need(p, end,
4*sizeof(u32) + sizeof(u64) +
sizeof(addr) + sizeof(struct ceph_timespec),
bad);
mds = ceph_decode_32(p);
inc = ceph_decode_32(p);
state = ceph_decode_32(p);
state_seq = ceph_decode_64(p);
ceph_decode_copy(p, &addr, sizeof(addr));
ceph_decode_addr(&addr);
*p += sizeof(struct ceph_timespec);
*p += sizeof(u32);
ceph_decode_32_safe(p, end, namelen, bad);
*p += namelen;
if (infoversion >= 2) {
ceph_decode_32_safe(p, end, num_export_targets, bad);
pexport_targets = *p;
*p += num_export_targets * sizeof(u32);
} else {
num_export_targets = 0;
}
dout("mdsmap_decode %d/%d %lld mds%d.%d %s %s\n",
i+1, n, global_id, mds, inc, pr_addr(&addr.in_addr),
ceph_mds_state_name(state));
if (mds >= 0 && mds < m->m_max_mds && state > 0) {
m->m_info[mds].global_id = global_id;
m->m_info[mds].state = state;
m->m_info[mds].addr = addr;
m->m_info[mds].num_export_targets = num_export_targets;
if (num_export_targets) {
m->m_info[mds].export_targets =
kcalloc(num_export_targets, sizeof(u32),
GFP_NOFS);
for (j = 0; j < num_export_targets; j++)
m->m_info[mds].export_targets[j] =
ceph_decode_32(&pexport_targets);
} else {
m->m_info[mds].export_targets = NULL;
}
}
}
/* pg_pools */
ceph_decode_32_safe(p, end, n, bad);
m->m_num_data_pg_pools = n;
m->m_data_pg_pools = kcalloc(n, sizeof(u32), GFP_NOFS);
if (!m->m_data_pg_pools)
goto badmem;
ceph_decode_need(p, end, sizeof(u32)*(n+1), bad);
for (i = 0; i < n; i++)
m->m_data_pg_pools[i] = ceph_decode_32(p);
m->m_cas_pg_pool = ceph_decode_32(p);
/* ok, we don't care about the rest. */
dout("mdsmap_decode success epoch %u\n", m->m_epoch);
return m;
badmem:
err = -ENOMEM;
bad:
pr_err("corrupt mdsmap\n");
print_hex_dump(KERN_DEBUG, "mdsmap: ",
DUMP_PREFIX_OFFSET, 16, 1,
start, end - start, true);
ceph_mdsmap_destroy(m);
return ERR_PTR(-EINVAL);
}
void ceph_mdsmap_destroy(struct ceph_mdsmap *m)
{
int i;
for (i = 0; i < m->m_max_mds; i++)
kfree(m->m_info[i].export_targets);
kfree(m->m_info);
kfree(m->m_data_pg_pools);
kfree(m);
}

54
fs/ceph/mdsmap.h Normal file
View file

@ -0,0 +1,54 @@
#ifndef _FS_CEPH_MDSMAP_H
#define _FS_CEPH_MDSMAP_H
#include "types.h"
/*
* mds map - describe servers in the mds cluster.
*
* we limit fields to those the client actually xcares about
*/
struct ceph_mds_info {
u64 global_id;
struct ceph_entity_addr addr;
s32 state;
int num_export_targets;
u32 *export_targets;
};
struct ceph_mdsmap {
u32 m_epoch, m_client_epoch, m_last_failure;
u32 m_root;
u32 m_session_timeout; /* seconds */
u32 m_session_autoclose; /* seconds */
u64 m_max_file_size;
u32 m_max_mds; /* size of m_addr, m_state arrays */
struct ceph_mds_info *m_info;
/* which object pools file data can be stored in */
int m_num_data_pg_pools;
u32 *m_data_pg_pools;
u32 m_cas_pg_pool;
};
static inline struct ceph_entity_addr *
ceph_mdsmap_get_addr(struct ceph_mdsmap *m, int w)
{
if (w >= m->m_max_mds)
return NULL;
return &m->m_info[w].addr;
}
static inline int ceph_mdsmap_get_state(struct ceph_mdsmap *m, int w)
{
BUG_ON(w < 0);
if (w >= m->m_max_mds)
return CEPH_MDS_STATE_DNE;
return m->m_info[w].state;
}
extern int ceph_mdsmap_get_random_mds(struct ceph_mdsmap *m);
extern struct ceph_mdsmap *ceph_mdsmap_decode(void **p, void *end);
extern void ceph_mdsmap_destroy(struct ceph_mdsmap *m);
#endif

2240
fs/ceph/messenger.c Normal file

File diff suppressed because it is too large Load diff

254
fs/ceph/messenger.h Normal file
View file

@ -0,0 +1,254 @@
#ifndef __FS_CEPH_MESSENGER_H
#define __FS_CEPH_MESSENGER_H
#include <linux/kref.h>
#include <linux/mutex.h>
#include <linux/net.h>
#include <linux/radix-tree.h>
#include <linux/uio.h>
#include <linux/version.h>
#include <linux/workqueue.h>
#include "types.h"
#include "buffer.h"
struct ceph_msg;
struct ceph_connection;
extern struct workqueue_struct *ceph_msgr_wq; /* receive work queue */
/*
* Ceph defines these callbacks for handling connection events.
*/
struct ceph_connection_operations {
struct ceph_connection *(*get)(struct ceph_connection *);
void (*put)(struct ceph_connection *);
/* handle an incoming message. */
void (*dispatch) (struct ceph_connection *con, struct ceph_msg *m);
/* authorize an outgoing connection */
int (*get_authorizer) (struct ceph_connection *con,
void **buf, int *len, int *proto,
void **reply_buf, int *reply_len, int force_new);
int (*verify_authorizer_reply) (struct ceph_connection *con, int len);
int (*invalidate_authorizer)(struct ceph_connection *con);
/* protocol version mismatch */
void (*bad_proto) (struct ceph_connection *con);
/* there was some error on the socket (disconnect, whatever) */
void (*fault) (struct ceph_connection *con);
/* a remote host as terminated a message exchange session, and messages
* we sent (or they tried to send us) may be lost. */
void (*peer_reset) (struct ceph_connection *con);
struct ceph_msg * (*alloc_msg) (struct ceph_connection *con,
struct ceph_msg_header *hdr,
int *skip);
};
extern const char *ceph_name_type_str(int t);
/* use format string %s%d */
#define ENTITY_NAME(n) ceph_name_type_str((n).type), le64_to_cpu((n).num)
struct ceph_messenger {
struct ceph_entity_inst inst; /* my name+address */
struct ceph_entity_addr my_enc_addr;
struct page *zero_page; /* used in certain error cases */
bool nocrc;
/*
* the global_seq counts connections i (attempt to) initiate
* in order to disambiguate certain connect race conditions.
*/
u32 global_seq;
spinlock_t global_seq_lock;
};
/*
* a single message. it contains a header (src, dest, message type, etc.),
* footer (crc values, mainly), a "front" message body, and possibly a
* data payload (stored in some number of pages).
*/
struct ceph_msg {
struct ceph_msg_header hdr; /* header */
struct ceph_msg_footer footer; /* footer */
struct kvec front; /* unaligned blobs of message */
struct ceph_buffer *middle;
struct page **pages; /* data payload. NOT OWNER. */
unsigned nr_pages; /* size of page array */
struct ceph_pagelist *pagelist; /* instead of pages */
struct list_head list_head;
struct kref kref;
bool front_is_vmalloc;
bool more_to_follow;
int front_max;
struct ceph_msgpool *pool;
};
struct ceph_msg_pos {
int page, page_pos; /* which page; offset in page */
int data_pos; /* offset in data payload */
int did_page_crc; /* true if we've calculated crc for current page */
};
/* ceph connection fault delay defaults, for exponential backoff */
#define BASE_DELAY_INTERVAL (HZ/2)
#define MAX_DELAY_INTERVAL (5 * 60 * HZ)
/*
* ceph_connection state bit flags
*
* QUEUED and BUSY are used together to ensure that only a single
* thread is currently opening, reading or writing data to the socket.
*/
#define LOSSYTX 0 /* we can close channel or drop messages on errors */
#define CONNECTING 1
#define NEGOTIATING 2
#define KEEPALIVE_PENDING 3
#define WRITE_PENDING 4 /* we have data ready to send */
#define QUEUED 5 /* there is work queued on this connection */
#define BUSY 6 /* work is being done */
#define STANDBY 8 /* no outgoing messages, socket closed. we keep
* the ceph_connection around to maintain shared
* state with the peer. */
#define CLOSED 10 /* we've closed the connection */
#define SOCK_CLOSED 11 /* socket state changed to closed */
#define OPENING 13 /* open connection w/ (possibly new) peer */
#define DEAD 14 /* dead, about to kfree */
/*
* A single connection with another host.
*
* We maintain a queue of outgoing messages, and some session state to
* ensure that we can preserve the lossless, ordered delivery of
* messages in the case of a TCP disconnect.
*/
struct ceph_connection {
void *private;
atomic_t nref;
const struct ceph_connection_operations *ops;
struct ceph_messenger *msgr;
struct socket *sock;
unsigned long state; /* connection state (see flags above) */
const char *error_msg; /* error message, if any */
struct ceph_entity_addr peer_addr; /* peer address */
struct ceph_entity_name peer_name; /* peer name */
struct ceph_entity_addr peer_addr_for_me;
u32 connect_seq; /* identify the most recent connection
attempt for this connection, client */
u32 peer_global_seq; /* peer's global seq for this connection */
int auth_retry; /* true if we need a newer authorizer */
void *auth_reply_buf; /* where to put the authorizer reply */
int auth_reply_buf_len;
struct mutex mutex;
/* out queue */
struct list_head out_queue;
struct list_head out_sent; /* sending or sent but unacked */
u64 out_seq; /* last message queued for send */
u64 out_seq_sent; /* last message sent */
bool out_keepalive_pending;
u64 in_seq, in_seq_acked; /* last message received, acked */
/* connection negotiation temps */
char in_banner[CEPH_BANNER_MAX_LEN];
union {
struct { /* outgoing connection */
struct ceph_msg_connect out_connect;
struct ceph_msg_connect_reply in_reply;
};
struct { /* incoming */
struct ceph_msg_connect in_connect;
struct ceph_msg_connect_reply out_reply;
};
};
struct ceph_entity_addr actual_peer_addr;
/* message out temps */
struct ceph_msg *out_msg; /* sending message (== tail of
out_sent) */
bool out_msg_done;
struct ceph_msg_pos out_msg_pos;
struct kvec out_kvec[8], /* sending header/footer data */
*out_kvec_cur;
int out_kvec_left; /* kvec's left in out_kvec */
int out_skip; /* skip this many bytes */
int out_kvec_bytes; /* total bytes left */
bool out_kvec_is_msg; /* kvec refers to out_msg */
int out_more; /* there is more data after the kvecs */
__le64 out_temp_ack; /* for writing an ack */
/* message in temps */
struct ceph_msg_header in_hdr;
struct ceph_msg *in_msg;
struct ceph_msg_pos in_msg_pos;
u32 in_front_crc, in_middle_crc, in_data_crc; /* calculated crc */
char in_tag; /* protocol control byte */
int in_base_pos; /* bytes read */
__le64 in_temp_ack; /* for reading an ack */
struct delayed_work work; /* send|recv work */
unsigned long delay; /* current delay interval */
};
extern const char *pr_addr(const struct sockaddr_storage *ss);
extern int ceph_parse_ips(const char *c, const char *end,
struct ceph_entity_addr *addr,
int max_count, int *count);
extern int ceph_msgr_init(void);
extern void ceph_msgr_exit(void);
extern struct ceph_messenger *ceph_messenger_create(
struct ceph_entity_addr *myaddr);
extern void ceph_messenger_destroy(struct ceph_messenger *);
extern void ceph_con_init(struct ceph_messenger *msgr,
struct ceph_connection *con);
extern void ceph_con_open(struct ceph_connection *con,
struct ceph_entity_addr *addr);
extern void ceph_con_close(struct ceph_connection *con);
extern void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg);
extern void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg);
extern void ceph_con_revoke_message(struct ceph_connection *con,
struct ceph_msg *msg);
extern void ceph_con_keepalive(struct ceph_connection *con);
extern struct ceph_connection *ceph_con_get(struct ceph_connection *con);
extern void ceph_con_put(struct ceph_connection *con);
extern struct ceph_msg *ceph_msg_new(int type, int front_len,
int page_len, int page_off,
struct page **pages);
extern void ceph_msg_kfree(struct ceph_msg *m);
static inline struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
{
kref_get(&msg->kref);
return msg;
}
extern void ceph_msg_last_put(struct kref *kref);
static inline void ceph_msg_put(struct ceph_msg *msg)
{
kref_put(&msg->kref, ceph_msg_last_put);
}
extern void ceph_msg_dump(struct ceph_msg *msg);
#endif

834
fs/ceph/mon_client.c Normal file
View file

@ -0,0 +1,834 @@
#include "ceph_debug.h"
#include <linux/types.h>
#include <linux/random.h>
#include <linux/sched.h>
#include "mon_client.h"
#include "super.h"
#include "auth.h"
#include "decode.h"
/*
* Interact with Ceph monitor cluster. Handle requests for new map
* versions, and periodically resend as needed. Also implement
* statfs() and umount().
*
* A small cluster of Ceph "monitors" are responsible for managing critical
* cluster configuration and state information. An odd number (e.g., 3, 5)
* of cmon daemons use a modified version of the Paxos part-time parliament
* algorithm to manage the MDS map (mds cluster membership), OSD map, and
* list of clients who have mounted the file system.
*
* We maintain an open, active session with a monitor at all times in order to
* receive timely MDSMap updates. We periodically send a keepalive byte on the
* TCP socket to ensure we detect a failure. If the connection does break, we
* randomly hunt for a new monitor. Once the connection is reestablished, we
* resend any outstanding requests.
*/
const static struct ceph_connection_operations mon_con_ops;
static int __validate_auth(struct ceph_mon_client *monc);
/*
* Decode a monmap blob (e.g., during mount).
*/
struct ceph_monmap *ceph_monmap_decode(void *p, void *end)
{
struct ceph_monmap *m = NULL;
int i, err = -EINVAL;
struct ceph_fsid fsid;
u32 epoch, num_mon;
u16 version;
u32 len;
ceph_decode_32_safe(&p, end, len, bad);
ceph_decode_need(&p, end, len, bad);
dout("monmap_decode %p %p len %d\n", p, end, (int)(end-p));
ceph_decode_16_safe(&p, end, version, bad);
ceph_decode_need(&p, end, sizeof(fsid) + 2*sizeof(u32), bad);
ceph_decode_copy(&p, &fsid, sizeof(fsid));
epoch = ceph_decode_32(&p);
num_mon = ceph_decode_32(&p);
ceph_decode_need(&p, end, num_mon*sizeof(m->mon_inst[0]), bad);
if (num_mon >= CEPH_MAX_MON)
goto bad;
m = kmalloc(sizeof(*m) + sizeof(m->mon_inst[0])*num_mon, GFP_NOFS);
if (m == NULL)
return ERR_PTR(-ENOMEM);
m->fsid = fsid;
m->epoch = epoch;
m->num_mon = num_mon;
ceph_decode_copy(&p, m->mon_inst, num_mon*sizeof(m->mon_inst[0]));
for (i = 0; i < num_mon; i++)
ceph_decode_addr(&m->mon_inst[i].addr);
dout("monmap_decode epoch %d, num_mon %d\n", m->epoch,
m->num_mon);
for (i = 0; i < m->num_mon; i++)
dout("monmap_decode mon%d is %s\n", i,
pr_addr(&m->mon_inst[i].addr.in_addr));
return m;
bad:
dout("monmap_decode failed with %d\n", err);
kfree(m);
return ERR_PTR(err);
}
/*
* return true if *addr is included in the monmap.
*/
int ceph_monmap_contains(struct ceph_monmap *m, struct ceph_entity_addr *addr)
{
int i;
for (i = 0; i < m->num_mon; i++)
if (memcmp(addr, &m->mon_inst[i].addr, sizeof(*addr)) == 0)
return 1;
return 0;
}
/*
* Send an auth request.
*/
static void __send_prepared_auth_request(struct ceph_mon_client *monc, int len)
{
monc->pending_auth = 1;
monc->m_auth->front.iov_len = len;
monc->m_auth->hdr.front_len = cpu_to_le32(len);
ceph_msg_get(monc->m_auth); /* keep our ref */
ceph_con_send(monc->con, monc->m_auth);
}
/*
* Close monitor session, if any.
*/
static void __close_session(struct ceph_mon_client *monc)
{
if (monc->con) {
dout("__close_session closing mon%d\n", monc->cur_mon);
ceph_con_revoke(monc->con, monc->m_auth);
ceph_con_close(monc->con);
monc->cur_mon = -1;
monc->pending_auth = 0;
ceph_auth_reset(monc->auth);
}
}
/*
* Open a session with a (new) monitor.
*/
static int __open_session(struct ceph_mon_client *monc)
{
char r;
int ret;
if (monc->cur_mon < 0) {
get_random_bytes(&r, 1);
monc->cur_mon = r % monc->monmap->num_mon;
dout("open_session num=%d r=%d -> mon%d\n",
monc->monmap->num_mon, r, monc->cur_mon);
monc->sub_sent = 0;
monc->sub_renew_after = jiffies; /* i.e., expired */
monc->want_next_osdmap = !!monc->want_next_osdmap;
dout("open_session mon%d opening\n", monc->cur_mon);
monc->con->peer_name.type = CEPH_ENTITY_TYPE_MON;
monc->con->peer_name.num = cpu_to_le64(monc->cur_mon);
ceph_con_open(monc->con,
&monc->monmap->mon_inst[monc->cur_mon].addr);
/* initiatiate authentication handshake */
ret = ceph_auth_build_hello(monc->auth,
monc->m_auth->front.iov_base,
monc->m_auth->front_max);
__send_prepared_auth_request(monc, ret);
} else {
dout("open_session mon%d already open\n", monc->cur_mon);
}
return 0;
}
static bool __sub_expired(struct ceph_mon_client *monc)
{
return time_after_eq(jiffies, monc->sub_renew_after);
}
/*
* Reschedule delayed work timer.
*/
static void __schedule_delayed(struct ceph_mon_client *monc)
{
unsigned delay;
if (monc->cur_mon < 0 || __sub_expired(monc))
delay = 10 * HZ;
else
delay = 20 * HZ;
dout("__schedule_delayed after %u\n", delay);
schedule_delayed_work(&monc->delayed_work, delay);
}
/*
* Send subscribe request for mdsmap and/or osdmap.
*/
static void __send_subscribe(struct ceph_mon_client *monc)
{
dout("__send_subscribe sub_sent=%u exp=%u want_osd=%d\n",
(unsigned)monc->sub_sent, __sub_expired(monc),
monc->want_next_osdmap);
if ((__sub_expired(monc) && !monc->sub_sent) ||
monc->want_next_osdmap == 1) {
struct ceph_msg *msg;
struct ceph_mon_subscribe_item *i;
void *p, *end;
msg = ceph_msg_new(CEPH_MSG_MON_SUBSCRIBE, 96, 0, 0, NULL);
if (!msg)
return;
p = msg->front.iov_base;
end = p + msg->front.iov_len;
dout("__send_subscribe to 'mdsmap' %u+\n",
(unsigned)monc->have_mdsmap);
if (monc->want_next_osdmap) {
dout("__send_subscribe to 'osdmap' %u\n",
(unsigned)monc->have_osdmap);
ceph_encode_32(&p, 3);
ceph_encode_string(&p, end, "osdmap", 6);
i = p;
i->have = cpu_to_le64(monc->have_osdmap);
i->onetime = 1;
p += sizeof(*i);
monc->want_next_osdmap = 2; /* requested */
} else {
ceph_encode_32(&p, 2);
}
ceph_encode_string(&p, end, "mdsmap", 6);
i = p;
i->have = cpu_to_le64(monc->have_mdsmap);
i->onetime = 0;
p += sizeof(*i);
ceph_encode_string(&p, end, "monmap", 6);
i = p;
i->have = 0;
i->onetime = 0;
p += sizeof(*i);
msg->front.iov_len = p - msg->front.iov_base;
msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
ceph_con_send(monc->con, msg);
monc->sub_sent = jiffies | 1; /* never 0 */
}
}
static void handle_subscribe_ack(struct ceph_mon_client *monc,
struct ceph_msg *msg)
{
unsigned seconds;
struct ceph_mon_subscribe_ack *h = msg->front.iov_base;
if (msg->front.iov_len < sizeof(*h))
goto bad;
seconds = le32_to_cpu(h->duration);
mutex_lock(&monc->mutex);
if (monc->hunting) {
pr_info("mon%d %s session established\n",
monc->cur_mon, pr_addr(&monc->con->peer_addr.in_addr));
monc->hunting = false;
}
dout("handle_subscribe_ack after %d seconds\n", seconds);
monc->sub_renew_after = monc->sub_sent + (seconds >> 1)*HZ - 1;
monc->sub_sent = 0;
mutex_unlock(&monc->mutex);
return;
bad:
pr_err("got corrupt subscribe-ack msg\n");
ceph_msg_dump(msg);
}
/*
* Keep track of which maps we have
*/
int ceph_monc_got_mdsmap(struct ceph_mon_client *monc, u32 got)
{
mutex_lock(&monc->mutex);
monc->have_mdsmap = got;
mutex_unlock(&monc->mutex);
return 0;
}
int ceph_monc_got_osdmap(struct ceph_mon_client *monc, u32 got)
{
mutex_lock(&monc->mutex);
monc->have_osdmap = got;
monc->want_next_osdmap = 0;
mutex_unlock(&monc->mutex);
return 0;
}
/*
* Register interest in the next osdmap
*/
void ceph_monc_request_next_osdmap(struct ceph_mon_client *monc)
{
dout("request_next_osdmap have %u\n", monc->have_osdmap);
mutex_lock(&monc->mutex);
if (!monc->want_next_osdmap)
monc->want_next_osdmap = 1;
if (monc->want_next_osdmap < 2)
__send_subscribe(monc);
mutex_unlock(&monc->mutex);
}
/*
*
*/
int ceph_monc_open_session(struct ceph_mon_client *monc)
{
if (!monc->con) {
monc->con = kmalloc(sizeof(*monc->con), GFP_KERNEL);
if (!monc->con)
return -ENOMEM;
ceph_con_init(monc->client->msgr, monc->con);
monc->con->private = monc;
monc->con->ops = &mon_con_ops;
}
mutex_lock(&monc->mutex);
__open_session(monc);
__schedule_delayed(monc);
mutex_unlock(&monc->mutex);
return 0;
}
/*
* The monitor responds with mount ack indicate mount success. The
* included client ticket allows the client to talk to MDSs and OSDs.
*/
static void ceph_monc_handle_map(struct ceph_mon_client *monc,
struct ceph_msg *msg)
{
struct ceph_client *client = monc->client;
struct ceph_monmap *monmap = NULL, *old = monc->monmap;
void *p, *end;
mutex_lock(&monc->mutex);
dout("handle_monmap\n");
p = msg->front.iov_base;
end = p + msg->front.iov_len;
monmap = ceph_monmap_decode(p, end);
if (IS_ERR(monmap)) {
pr_err("problem decoding monmap, %d\n",
(int)PTR_ERR(monmap));
goto out;
}
if (ceph_check_fsid(monc->client, &monmap->fsid) < 0) {
kfree(monmap);
goto out;
}
client->monc.monmap = monmap;
kfree(old);
out:
mutex_unlock(&monc->mutex);
wake_up(&client->auth_wq);
}
/*
* statfs
*/
static struct ceph_mon_statfs_request *__lookup_statfs(
struct ceph_mon_client *monc, u64 tid)
{
struct ceph_mon_statfs_request *req;
struct rb_node *n = monc->statfs_request_tree.rb_node;
while (n) {
req = rb_entry(n, struct ceph_mon_statfs_request, node);
if (tid < req->tid)
n = n->rb_left;
else if (tid > req->tid)
n = n->rb_right;
else
return req;
}
return NULL;
}
static void __insert_statfs(struct ceph_mon_client *monc,
struct ceph_mon_statfs_request *new)
{
struct rb_node **p = &monc->statfs_request_tree.rb_node;
struct rb_node *parent = NULL;
struct ceph_mon_statfs_request *req = NULL;
while (*p) {
parent = *p;
req = rb_entry(parent, struct ceph_mon_statfs_request, node);
if (new->tid < req->tid)
p = &(*p)->rb_left;
else if (new->tid > req->tid)
p = &(*p)->rb_right;
else
BUG();
}
rb_link_node(&new->node, parent, p);
rb_insert_color(&new->node, &monc->statfs_request_tree);
}
static void handle_statfs_reply(struct ceph_mon_client *monc,
struct ceph_msg *msg)
{
struct ceph_mon_statfs_request *req;
struct ceph_mon_statfs_reply *reply = msg->front.iov_base;
u64 tid;
if (msg->front.iov_len != sizeof(*reply))
goto bad;
tid = le64_to_cpu(msg->hdr.tid);
dout("handle_statfs_reply %p tid %llu\n", msg, tid);
mutex_lock(&monc->mutex);
req = __lookup_statfs(monc, tid);
if (req) {
*req->buf = reply->st;
req->result = 0;
}
mutex_unlock(&monc->mutex);
if (req)
complete(&req->completion);
return;
bad:
pr_err("corrupt statfs reply, no tid\n");
ceph_msg_dump(msg);
}
/*
* (re)send a statfs request
*/
static int send_statfs(struct ceph_mon_client *monc,
struct ceph_mon_statfs_request *req)
{
struct ceph_msg *msg;
struct ceph_mon_statfs *h;
dout("send_statfs tid %llu\n", req->tid);
msg = ceph_msg_new(CEPH_MSG_STATFS, sizeof(*h), 0, 0, NULL);
if (IS_ERR(msg))
return PTR_ERR(msg);
req->request = msg;
msg->hdr.tid = cpu_to_le64(req->tid);
h = msg->front.iov_base;
h->monhdr.have_version = 0;
h->monhdr.session_mon = cpu_to_le16(-1);
h->monhdr.session_mon_tid = 0;
h->fsid = monc->monmap->fsid;
ceph_con_send(monc->con, msg);
return 0;
}
/*
* Do a synchronous statfs().
*/
int ceph_monc_do_statfs(struct ceph_mon_client *monc, struct ceph_statfs *buf)
{
struct ceph_mon_statfs_request req;
int err;
req.buf = buf;
init_completion(&req.completion);
/* allocate memory for reply */
err = ceph_msgpool_resv(&monc->msgpool_statfs_reply, 1);
if (err)
return err;
/* register request */
mutex_lock(&monc->mutex);
req.tid = ++monc->last_tid;
req.last_attempt = jiffies;
req.delay = BASE_DELAY_INTERVAL;
__insert_statfs(monc, &req);
monc->num_statfs_requests++;
mutex_unlock(&monc->mutex);
/* send request and wait */
err = send_statfs(monc, &req);
if (!err)
err = wait_for_completion_interruptible(&req.completion);
mutex_lock(&monc->mutex);
rb_erase(&req.node, &monc->statfs_request_tree);
monc->num_statfs_requests--;
ceph_msgpool_resv(&monc->msgpool_statfs_reply, -1);
mutex_unlock(&monc->mutex);
if (!err)
err = req.result;
return err;
}
/*
* Resend pending statfs requests.
*/
static void __resend_statfs(struct ceph_mon_client *monc)
{
struct ceph_mon_statfs_request *req;
struct rb_node *p;
for (p = rb_first(&monc->statfs_request_tree); p; p = rb_next(p)) {
req = rb_entry(p, struct ceph_mon_statfs_request, node);
send_statfs(monc, req);
}
}
/*
* Delayed work. If we haven't mounted yet, retry. Otherwise,
* renew/retry subscription as needed (in case it is timing out, or we
* got an ENOMEM). And keep the monitor connection alive.
*/
static void delayed_work(struct work_struct *work)
{
struct ceph_mon_client *monc =
container_of(work, struct ceph_mon_client, delayed_work.work);
dout("monc delayed_work\n");
mutex_lock(&monc->mutex);
if (monc->hunting) {
__close_session(monc);
__open_session(monc); /* continue hunting */
} else {
ceph_con_keepalive(monc->con);
__validate_auth(monc);
if (monc->auth->ops->is_authenticated(monc->auth))
__send_subscribe(monc);
}
__schedule_delayed(monc);
mutex_unlock(&monc->mutex);
}
/*
* On startup, we build a temporary monmap populated with the IPs
* provided by mount(2).
*/
static int build_initial_monmap(struct ceph_mon_client *monc)
{
struct ceph_mount_args *args = monc->client->mount_args;
struct ceph_entity_addr *mon_addr = args->mon_addr;
int num_mon = args->num_mon;
int i;
/* build initial monmap */
monc->monmap = kzalloc(sizeof(*monc->monmap) +
num_mon*sizeof(monc->monmap->mon_inst[0]),
GFP_KERNEL);
if (!monc->monmap)
return -ENOMEM;
for (i = 0; i < num_mon; i++) {
monc->monmap->mon_inst[i].addr = mon_addr[i];
monc->monmap->mon_inst[i].addr.nonce = 0;
monc->monmap->mon_inst[i].name.type =
CEPH_ENTITY_TYPE_MON;
monc->monmap->mon_inst[i].name.num = cpu_to_le64(i);
}
monc->monmap->num_mon = num_mon;
monc->have_fsid = false;
/* release addr memory */
kfree(args->mon_addr);
args->mon_addr = NULL;
args->num_mon = 0;
return 0;
}
int ceph_monc_init(struct ceph_mon_client *monc, struct ceph_client *cl)
{
int err = 0;
dout("init\n");
memset(monc, 0, sizeof(*monc));
monc->client = cl;
monc->monmap = NULL;
mutex_init(&monc->mutex);
err = build_initial_monmap(monc);
if (err)
goto out;
monc->con = NULL;
/* authentication */
monc->auth = ceph_auth_init(cl->mount_args->name,
cl->mount_args->secret);
if (IS_ERR(monc->auth))
return PTR_ERR(monc->auth);
monc->auth->want_keys =
CEPH_ENTITY_TYPE_AUTH | CEPH_ENTITY_TYPE_MON |
CEPH_ENTITY_TYPE_OSD | CEPH_ENTITY_TYPE_MDS;
/* msg pools */
err = ceph_msgpool_init(&monc->msgpool_subscribe_ack,
sizeof(struct ceph_mon_subscribe_ack), 1, false);
if (err < 0)
goto out_monmap;
err = ceph_msgpool_init(&monc->msgpool_statfs_reply,
sizeof(struct ceph_mon_statfs_reply), 0, false);
if (err < 0)
goto out_pool1;
err = ceph_msgpool_init(&monc->msgpool_auth_reply, 4096, 1, false);
if (err < 0)
goto out_pool2;
monc->m_auth = ceph_msg_new(CEPH_MSG_AUTH, 4096, 0, 0, NULL);
monc->pending_auth = 0;
if (IS_ERR(monc->m_auth)) {
err = PTR_ERR(monc->m_auth);
monc->m_auth = NULL;
goto out_pool3;
}
monc->cur_mon = -1;
monc->hunting = true;
monc->sub_renew_after = jiffies;
monc->sub_sent = 0;
INIT_DELAYED_WORK(&monc->delayed_work, delayed_work);
monc->statfs_request_tree = RB_ROOT;
monc->num_statfs_requests = 0;
monc->last_tid = 0;
monc->have_mdsmap = 0;
monc->have_osdmap = 0;
monc->want_next_osdmap = 1;
return 0;
out_pool3:
ceph_msgpool_destroy(&monc->msgpool_auth_reply);
out_pool2:
ceph_msgpool_destroy(&monc->msgpool_subscribe_ack);
out_pool1:
ceph_msgpool_destroy(&monc->msgpool_statfs_reply);
out_monmap:
kfree(monc->monmap);
out:
return err;
}
void ceph_monc_stop(struct ceph_mon_client *monc)
{
dout("stop\n");
cancel_delayed_work_sync(&monc->delayed_work);
mutex_lock(&monc->mutex);
__close_session(monc);
if (monc->con) {
monc->con->private = NULL;
monc->con->ops->put(monc->con);
monc->con = NULL;
}
mutex_unlock(&monc->mutex);
ceph_auth_destroy(monc->auth);
ceph_msg_put(monc->m_auth);
ceph_msgpool_destroy(&monc->msgpool_subscribe_ack);
ceph_msgpool_destroy(&monc->msgpool_statfs_reply);
ceph_msgpool_destroy(&monc->msgpool_auth_reply);
kfree(monc->monmap);
}
static void handle_auth_reply(struct ceph_mon_client *monc,
struct ceph_msg *msg)
{
int ret;
mutex_lock(&monc->mutex);
monc->pending_auth = 0;
ret = ceph_handle_auth_reply(monc->auth, msg->front.iov_base,
msg->front.iov_len,
monc->m_auth->front.iov_base,
monc->m_auth->front_max);
if (ret < 0) {
monc->client->auth_err = ret;
wake_up(&monc->client->auth_wq);
} else if (ret > 0) {
__send_prepared_auth_request(monc, ret);
} else if (monc->auth->ops->is_authenticated(monc->auth)) {
dout("authenticated, starting session\n");
monc->client->msgr->inst.name.type = CEPH_ENTITY_TYPE_CLIENT;
monc->client->msgr->inst.name.num = monc->auth->global_id;
__send_subscribe(monc);
__resend_statfs(monc);
}
mutex_unlock(&monc->mutex);
}
static int __validate_auth(struct ceph_mon_client *monc)
{
int ret;
if (monc->pending_auth)
return 0;
ret = ceph_build_auth(monc->auth, monc->m_auth->front.iov_base,
monc->m_auth->front_max);
if (ret <= 0)
return ret; /* either an error, or no need to authenticate */
__send_prepared_auth_request(monc, ret);
return 0;
}
int ceph_monc_validate_auth(struct ceph_mon_client *monc)
{
int ret;
mutex_lock(&monc->mutex);
ret = __validate_auth(monc);
mutex_unlock(&monc->mutex);
return ret;
}
/*
* handle incoming message
*/
static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
{
struct ceph_mon_client *monc = con->private;
int type = le16_to_cpu(msg->hdr.type);
if (!monc)
return;
switch (type) {
case CEPH_MSG_AUTH_REPLY:
handle_auth_reply(monc, msg);
break;
case CEPH_MSG_MON_SUBSCRIBE_ACK:
handle_subscribe_ack(monc, msg);
break;
case CEPH_MSG_STATFS_REPLY:
handle_statfs_reply(monc, msg);
break;
case CEPH_MSG_MON_MAP:
ceph_monc_handle_map(monc, msg);
break;
case CEPH_MSG_MDS_MAP:
ceph_mdsc_handle_map(&monc->client->mdsc, msg);
break;
case CEPH_MSG_OSD_MAP:
ceph_osdc_handle_map(&monc->client->osdc, msg);
break;
default:
pr_err("received unknown message type %d %s\n", type,
ceph_msg_type_name(type));
}
ceph_msg_put(msg);
}
/*
* Allocate memory for incoming message
*/
static struct ceph_msg *mon_alloc_msg(struct ceph_connection *con,
struct ceph_msg_header *hdr,
int *skip)
{
struct ceph_mon_client *monc = con->private;
int type = le16_to_cpu(hdr->type);
int front_len = le32_to_cpu(hdr->front_len);
struct ceph_msg *m = NULL;
*skip = 0;
switch (type) {
case CEPH_MSG_MON_SUBSCRIBE_ACK:
m = ceph_msgpool_get(&monc->msgpool_subscribe_ack, front_len);
break;
case CEPH_MSG_STATFS_REPLY:
m = ceph_msgpool_get(&monc->msgpool_statfs_reply, front_len);
break;
case CEPH_MSG_AUTH_REPLY:
m = ceph_msgpool_get(&monc->msgpool_auth_reply, front_len);
break;
case CEPH_MSG_MON_MAP:
case CEPH_MSG_MDS_MAP:
case CEPH_MSG_OSD_MAP:
m = ceph_msg_new(type, front_len, 0, 0, NULL);
break;
}
if (!m) {
pr_info("alloc_msg unknown type %d\n", type);
*skip = 1;
}
return m;
}
/*
* If the monitor connection resets, pick a new monitor and resubmit
* any pending requests.
*/
static void mon_fault(struct ceph_connection *con)
{
struct ceph_mon_client *monc = con->private;
if (!monc)
return;
dout("mon_fault\n");
mutex_lock(&monc->mutex);
if (!con->private)
goto out;
if (monc->con && !monc->hunting)
pr_info("mon%d %s session lost, "
"hunting for new mon\n", monc->cur_mon,
pr_addr(&monc->con->peer_addr.in_addr));
__close_session(monc);
if (!monc->hunting) {
/* start hunting */
monc->hunting = true;
__open_session(monc);
} else {
/* already hunting, let's wait a bit */
__schedule_delayed(monc);
}
out:
mutex_unlock(&monc->mutex);
}
const static struct ceph_connection_operations mon_con_ops = {
.get = ceph_con_get,
.put = ceph_con_put,
.dispatch = dispatch,
.fault = mon_fault,
.alloc_msg = mon_alloc_msg,
};

119
fs/ceph/mon_client.h Normal file
View file

@ -0,0 +1,119 @@
#ifndef _FS_CEPH_MON_CLIENT_H
#define _FS_CEPH_MON_CLIENT_H
#include <linux/completion.h>
#include <linux/rbtree.h>
#include "messenger.h"
#include "msgpool.h"
struct ceph_client;
struct ceph_mount_args;
struct ceph_auth_client;
/*
* The monitor map enumerates the set of all monitors.
*/
struct ceph_monmap {
struct ceph_fsid fsid;
u32 epoch;
u32 num_mon;
struct ceph_entity_inst mon_inst[0];
};
struct ceph_mon_client;
struct ceph_mon_statfs_request;
/*
* Generic mechanism for resending monitor requests.
*/
typedef void (*ceph_monc_request_func_t)(struct ceph_mon_client *monc,
int newmon);
/* a pending monitor request */
struct ceph_mon_request {
struct ceph_mon_client *monc;
struct delayed_work delayed_work;
unsigned long delay;
ceph_monc_request_func_t do_request;
};
/*
* statfs() is done a bit differently because we need to get data back
* to the caller
*/
struct ceph_mon_statfs_request {
u64 tid;
struct rb_node node;
int result;
struct ceph_statfs *buf;
struct completion completion;
unsigned long last_attempt, delay; /* jiffies */
struct ceph_msg *request; /* original request */
};
struct ceph_mon_client {
struct ceph_client *client;
struct ceph_monmap *monmap;
struct mutex mutex;
struct delayed_work delayed_work;
struct ceph_auth_client *auth;
struct ceph_msg *m_auth;
int pending_auth;
bool hunting;
int cur_mon; /* last monitor i contacted */
unsigned long sub_sent, sub_renew_after;
struct ceph_connection *con;
bool have_fsid;
/* msg pools */
struct ceph_msgpool msgpool_subscribe_ack;
struct ceph_msgpool msgpool_statfs_reply;
struct ceph_msgpool msgpool_auth_reply;
/* pending statfs requests */
struct rb_root statfs_request_tree;
int num_statfs_requests;
u64 last_tid;
/* mds/osd map */
int want_next_osdmap; /* 1 = want, 2 = want+asked */
u32 have_osdmap, have_mdsmap;
#ifdef CONFIG_DEBUG_FS
struct dentry *debugfs_file;
#endif
};
extern struct ceph_monmap *ceph_monmap_decode(void *p, void *end);
extern int ceph_monmap_contains(struct ceph_monmap *m,
struct ceph_entity_addr *addr);
extern int ceph_monc_init(struct ceph_mon_client *monc, struct ceph_client *cl);
extern void ceph_monc_stop(struct ceph_mon_client *monc);
/*
* The model here is to indicate that we need a new map of at least
* epoch @want, and also call in when we receive a map. We will
* periodically rerequest the map from the monitor cluster until we
* get what we want.
*/
extern int ceph_monc_got_mdsmap(struct ceph_mon_client *monc, u32 have);
extern int ceph_monc_got_osdmap(struct ceph_mon_client *monc, u32 have);
extern void ceph_monc_request_next_osdmap(struct ceph_mon_client *monc);
extern int ceph_monc_do_statfs(struct ceph_mon_client *monc,
struct ceph_statfs *buf);
extern int ceph_monc_open_session(struct ceph_mon_client *monc);
extern int ceph_monc_validate_auth(struct ceph_mon_client *monc);
#endif

186
fs/ceph/msgpool.c Normal file
View file

@ -0,0 +1,186 @@
#include "ceph_debug.h"
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include "msgpool.h"
/*
* We use msg pools to preallocate memory for messages we expect to
* receive over the wire, to avoid getting ourselves into OOM
* conditions at unexpected times. We take use a few different
* strategies:
*
* - for request/response type interactions, we preallocate the
* memory needed for the response when we generate the request.
*
* - for messages we can receive at any time from the MDS, we preallocate
* a pool of messages we can re-use.
*
* - for writeback, we preallocate some number of messages to use for
* requests and their replies, so that we always make forward
* progress.
*
* The msgpool behaves like a mempool_t, but keeps preallocated
* ceph_msgs strung together on a list_head instead of using a pointer
* vector. This avoids vector reallocation when we adjust the number
* of preallocated items (which happens frequently).
*/
/*
* Allocate or release as necessary to meet our target pool size.
*/
static int __fill_msgpool(struct ceph_msgpool *pool)
{
struct ceph_msg *msg;
while (pool->num < pool->min) {
dout("fill_msgpool %p %d/%d allocating\n", pool, pool->num,
pool->min);
spin_unlock(&pool->lock);
msg = ceph_msg_new(0, pool->front_len, 0, 0, NULL);
spin_lock(&pool->lock);
if (IS_ERR(msg))
return PTR_ERR(msg);
msg->pool = pool;
list_add(&msg->list_head, &pool->msgs);
pool->num++;
}
while (pool->num > pool->min) {
msg = list_first_entry(&pool->msgs, struct ceph_msg, list_head);
dout("fill_msgpool %p %d/%d releasing %p\n", pool, pool->num,
pool->min, msg);
list_del_init(&msg->list_head);
pool->num--;
ceph_msg_kfree(msg);
}
return 0;
}
int ceph_msgpool_init(struct ceph_msgpool *pool,
int front_len, int min, bool blocking)
{
int ret;
dout("msgpool_init %p front_len %d min %d\n", pool, front_len, min);
spin_lock_init(&pool->lock);
pool->front_len = front_len;
INIT_LIST_HEAD(&pool->msgs);
pool->num = 0;
pool->min = min;
pool->blocking = blocking;
init_waitqueue_head(&pool->wait);
spin_lock(&pool->lock);
ret = __fill_msgpool(pool);
spin_unlock(&pool->lock);
return ret;
}
void ceph_msgpool_destroy(struct ceph_msgpool *pool)
{
dout("msgpool_destroy %p\n", pool);
spin_lock(&pool->lock);
pool->min = 0;
__fill_msgpool(pool);
spin_unlock(&pool->lock);
}
int ceph_msgpool_resv(struct ceph_msgpool *pool, int delta)
{
int ret;
spin_lock(&pool->lock);
dout("msgpool_resv %p delta %d\n", pool, delta);
pool->min += delta;
ret = __fill_msgpool(pool);
spin_unlock(&pool->lock);
return ret;
}
struct ceph_msg *ceph_msgpool_get(struct ceph_msgpool *pool, int front_len)
{
wait_queue_t wait;
struct ceph_msg *msg;
if (front_len && front_len > pool->front_len) {
pr_err("msgpool_get pool %p need front %d, pool size is %d\n",
pool, front_len, pool->front_len);
WARN_ON(1);
/* try to alloc a fresh message */
msg = ceph_msg_new(0, front_len, 0, 0, NULL);
if (!IS_ERR(msg))
return msg;
}
if (!front_len)
front_len = pool->front_len;
if (pool->blocking) {
/* mempool_t behavior; first try to alloc */
msg = ceph_msg_new(0, front_len, 0, 0, NULL);
if (!IS_ERR(msg))
return msg;
}
while (1) {
spin_lock(&pool->lock);
if (likely(pool->num)) {
msg = list_entry(pool->msgs.next, struct ceph_msg,
list_head);
list_del_init(&msg->list_head);
pool->num--;
dout("msgpool_get %p got %p, now %d/%d\n", pool, msg,
pool->num, pool->min);
spin_unlock(&pool->lock);
return msg;
}
pr_err("msgpool_get %p now %d/%d, %s\n", pool, pool->num,
pool->min, pool->blocking ? "waiting" : "may fail");
spin_unlock(&pool->lock);
if (!pool->blocking) {
WARN_ON(1);
/* maybe we can allocate it now? */
msg = ceph_msg_new(0, front_len, 0, 0, NULL);
if (!IS_ERR(msg))
return msg;
pr_err("msgpool_get %p empty + alloc failed\n", pool);
return ERR_PTR(-ENOMEM);
}
init_wait(&wait);
prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
schedule();
finish_wait(&pool->wait, &wait);
}
}
void ceph_msgpool_put(struct ceph_msgpool *pool, struct ceph_msg *msg)
{
spin_lock(&pool->lock);
if (pool->num < pool->min) {
/* reset msg front_len; user may have changed it */
msg->front.iov_len = pool->front_len;
msg->hdr.front_len = cpu_to_le32(pool->front_len);
kref_set(&msg->kref, 1); /* retake a single ref */
list_add(&msg->list_head, &pool->msgs);
pool->num++;
dout("msgpool_put %p reclaim %p, now %d/%d\n", pool, msg,
pool->num, pool->min);
spin_unlock(&pool->lock);
wake_up(&pool->wait);
} else {
dout("msgpool_put %p drop %p, at %d/%d\n", pool, msg,
pool->num, pool->min);
spin_unlock(&pool->lock);
ceph_msg_kfree(msg);
}
}

27
fs/ceph/msgpool.h Normal file
View file

@ -0,0 +1,27 @@
#ifndef _FS_CEPH_MSGPOOL
#define _FS_CEPH_MSGPOOL
#include "messenger.h"
/*
* we use memory pools for preallocating messages we may receive, to
* avoid unexpected OOM conditions.
*/
struct ceph_msgpool {
spinlock_t lock;
int front_len; /* preallocated payload size */
struct list_head msgs; /* msgs in the pool; each has 1 ref */
int num, min; /* cur, min # msgs in the pool */
bool blocking;
wait_queue_head_t wait;
};
extern int ceph_msgpool_init(struct ceph_msgpool *pool,
int front_len, int size, bool blocking);
extern void ceph_msgpool_destroy(struct ceph_msgpool *pool);
extern int ceph_msgpool_resv(struct ceph_msgpool *, int delta);
extern struct ceph_msg *ceph_msgpool_get(struct ceph_msgpool *,
int front_len);
extern void ceph_msgpool_put(struct ceph_msgpool *, struct ceph_msg *);
#endif

158
fs/ceph/msgr.h Normal file
View file

@ -0,0 +1,158 @@
#ifndef __MSGR_H
#define __MSGR_H
/*
* Data types for message passing layer used by Ceph.
*/
#define CEPH_MON_PORT 6789 /* default monitor port */
/*
* client-side processes will try to bind to ports in this
* range, simply for the benefit of tools like nmap or wireshark
* that would like to identify the protocol.
*/
#define CEPH_PORT_FIRST 6789
#define CEPH_PORT_START 6800 /* non-monitors start here */
#define CEPH_PORT_LAST 6900
/*
* tcp connection banner. include a protocol version. and adjust
* whenever the wire protocol changes. try to keep this string length
* constant.
*/
#define CEPH_BANNER "ceph v027"
#define CEPH_BANNER_MAX_LEN 30
/*
* Rollover-safe type and comparator for 32-bit sequence numbers.
* Comparator returns -1, 0, or 1.
*/
typedef __u32 ceph_seq_t;
static inline __s32 ceph_seq_cmp(__u32 a, __u32 b)
{
return (__s32)a - (__s32)b;
}
/*
* entity_name -- logical name for a process participating in the
* network, e.g. 'mds0' or 'osd3'.
*/
struct ceph_entity_name {
__u8 type; /* CEPH_ENTITY_TYPE_* */
__le64 num;
} __attribute__ ((packed));
#define CEPH_ENTITY_TYPE_MON 0x01
#define CEPH_ENTITY_TYPE_MDS 0x02
#define CEPH_ENTITY_TYPE_OSD 0x04
#define CEPH_ENTITY_TYPE_CLIENT 0x08
#define CEPH_ENTITY_TYPE_ADMIN 0x10
#define CEPH_ENTITY_TYPE_AUTH 0x20
#define CEPH_ENTITY_TYPE_ANY 0xFF
extern const char *ceph_entity_type_name(int type);
/*
* entity_addr -- network address
*/
struct ceph_entity_addr {
__le32 type;
__le32 nonce; /* unique id for process (e.g. pid) */
struct sockaddr_storage in_addr;
} __attribute__ ((packed));
struct ceph_entity_inst {
struct ceph_entity_name name;
struct ceph_entity_addr addr;
} __attribute__ ((packed));
/* used by message exchange protocol */
#define CEPH_MSGR_TAG_READY 1 /* server->client: ready for messages */
#define CEPH_MSGR_TAG_RESETSESSION 2 /* server->client: reset, try again */
#define CEPH_MSGR_TAG_WAIT 3 /* server->client: wait for racing
incoming connection */
#define CEPH_MSGR_TAG_RETRY_SESSION 4 /* server->client + cseq: try again
with higher cseq */
#define CEPH_MSGR_TAG_RETRY_GLOBAL 5 /* server->client + gseq: try again
with higher gseq */
#define CEPH_MSGR_TAG_CLOSE 6 /* closing pipe */
#define CEPH_MSGR_TAG_MSG 7 /* message */
#define CEPH_MSGR_TAG_ACK 8 /* message ack */
#define CEPH_MSGR_TAG_KEEPALIVE 9 /* just a keepalive byte! */
#define CEPH_MSGR_TAG_BADPROTOVER 10 /* bad protocol version */
#define CEPH_MSGR_TAG_BADAUTHORIZER 11 /* bad authorizer */
#define CEPH_MSGR_TAG_FEATURES 12 /* insufficient features */
/*
* connection negotiation
*/
struct ceph_msg_connect {
__le64 features; /* supported feature bits */
__le32 host_type; /* CEPH_ENTITY_TYPE_* */
__le32 global_seq; /* count connections initiated by this host */
__le32 connect_seq; /* count connections initiated in this session */
__le32 protocol_version;
__le32 authorizer_protocol;
__le32 authorizer_len;
__u8 flags; /* CEPH_MSG_CONNECT_* */
} __attribute__ ((packed));
struct ceph_msg_connect_reply {
__u8 tag;
__le64 features; /* feature bits for this session */
__le32 global_seq;
__le32 connect_seq;
__le32 protocol_version;
__le32 authorizer_len;
__u8 flags;
} __attribute__ ((packed));
#define CEPH_MSG_CONNECT_LOSSY 1 /* messages i send may be safely dropped */
/*
* message header
*/
struct ceph_msg_header {
__le64 seq; /* message seq# for this session */
__le64 tid; /* transaction id */
__le16 type; /* message type */
__le16 priority; /* priority. higher value == higher priority */
__le16 version; /* version of message encoding */
__le32 front_len; /* bytes in main payload */
__le32 middle_len;/* bytes in middle payload */
__le32 data_len; /* bytes of data payload */
__le16 data_off; /* sender: include full offset;
receiver: mask against ~PAGE_MASK */
struct ceph_entity_inst src, orig_src;
__le32 reserved;
__le32 crc; /* header crc32c */
} __attribute__ ((packed));
#define CEPH_MSG_PRIO_LOW 64
#define CEPH_MSG_PRIO_DEFAULT 127
#define CEPH_MSG_PRIO_HIGH 196
#define CEPH_MSG_PRIO_HIGHEST 255
/*
* follows data payload
*/
struct ceph_msg_footer {
__le32 front_crc, middle_crc, data_crc;
__u8 flags;
} __attribute__ ((packed));
#define CEPH_MSG_FOOTER_COMPLETE (1<<0) /* msg wasn't aborted */
#define CEPH_MSG_FOOTER_NOCRC (1<<1) /* no data crc */
#endif

1537
fs/ceph/osd_client.c Normal file

File diff suppressed because it is too large Load diff

166
fs/ceph/osd_client.h Normal file
View file

@ -0,0 +1,166 @@
#ifndef _FS_CEPH_OSD_CLIENT_H
#define _FS_CEPH_OSD_CLIENT_H
#include <linux/completion.h>
#include <linux/kref.h>
#include <linux/mempool.h>
#include <linux/rbtree.h>
#include "types.h"
#include "osdmap.h"
#include "messenger.h"
struct ceph_msg;
struct ceph_snap_context;
struct ceph_osd_request;
struct ceph_osd_client;
struct ceph_authorizer;
/*
* completion callback for async writepages
*/
typedef void (*ceph_osdc_callback_t)(struct ceph_osd_request *,
struct ceph_msg *);
/* a given osd we're communicating with */
struct ceph_osd {
atomic_t o_ref;
struct ceph_osd_client *o_osdc;
int o_osd;
int o_incarnation;
struct rb_node o_node;
struct ceph_connection o_con;
struct list_head o_requests;
struct list_head o_osd_lru;
struct ceph_authorizer *o_authorizer;
void *o_authorizer_buf, *o_authorizer_reply_buf;
size_t o_authorizer_buf_len, o_authorizer_reply_buf_len;
unsigned long lru_ttl;
int o_marked_for_keepalive;
struct list_head o_keepalive_item;
};
/* an in-flight request */
struct ceph_osd_request {
u64 r_tid; /* unique for this client */
struct rb_node r_node;
struct list_head r_req_lru_item;
struct list_head r_osd_item;
struct ceph_osd *r_osd;
struct ceph_pg r_pgid;
struct ceph_connection *r_con_filling_msg;
struct ceph_msg *r_request, *r_reply;
int r_result;
int r_flags; /* any additional flags for the osd */
u32 r_sent; /* >0 if r_request is sending/sent */
int r_got_reply;
struct ceph_osd_client *r_osdc;
struct kref r_kref;
bool r_mempool;
struct completion r_completion, r_safe_completion;
ceph_osdc_callback_t r_callback, r_safe_callback;
struct ceph_eversion r_reassert_version;
struct list_head r_unsafe_item;
struct inode *r_inode; /* for use by callbacks */
struct writeback_control *r_wbc; /* ditto */
char r_oid[40]; /* object name */
int r_oid_len;
unsigned long r_sent_stamp;
bool r_resend; /* msg send failed, needs retry */
struct ceph_file_layout r_file_layout;
struct ceph_snap_context *r_snapc; /* snap context for writes */
unsigned r_num_pages; /* size of page array (follows) */
struct page **r_pages; /* pages for data payload */
int r_pages_from_pool;
int r_own_pages; /* if true, i own page list */
};
struct ceph_osd_client {
struct ceph_client *client;
struct ceph_osdmap *osdmap; /* current map */
struct rw_semaphore map_sem;
struct completion map_waiters;
u64 last_requested_map;
struct mutex request_mutex;
struct rb_root osds; /* osds */
struct list_head osd_lru; /* idle osds */
u64 timeout_tid; /* tid of timeout triggering rq */
u64 last_tid; /* tid of last request */
struct rb_root requests; /* pending requests */
struct list_head req_lru; /* pending requests lru */
int num_requests;
struct delayed_work timeout_work;
struct delayed_work osds_timeout_work;
#ifdef CONFIG_DEBUG_FS
struct dentry *debugfs_file;
#endif
mempool_t *req_mempool;
struct ceph_msgpool msgpool_op;
struct ceph_msgpool msgpool_op_reply;
};
extern int ceph_osdc_init(struct ceph_osd_client *osdc,
struct ceph_client *client);
extern void ceph_osdc_stop(struct ceph_osd_client *osdc);
extern void ceph_osdc_handle_reply(struct ceph_osd_client *osdc,
struct ceph_msg *msg);
extern void ceph_osdc_handle_map(struct ceph_osd_client *osdc,
struct ceph_msg *msg);
extern struct ceph_osd_request *ceph_osdc_new_request(struct ceph_osd_client *,
struct ceph_file_layout *layout,
struct ceph_vino vino,
u64 offset, u64 *len, int op, int flags,
struct ceph_snap_context *snapc,
int do_sync, u32 truncate_seq,
u64 truncate_size,
struct timespec *mtime,
bool use_mempool, int num_reply);
static inline void ceph_osdc_get_request(struct ceph_osd_request *req)
{
kref_get(&req->r_kref);
}
extern void ceph_osdc_release_request(struct kref *kref);
static inline void ceph_osdc_put_request(struct ceph_osd_request *req)
{
kref_put(&req->r_kref, ceph_osdc_release_request);
}
extern int ceph_osdc_start_request(struct ceph_osd_client *osdc,
struct ceph_osd_request *req,
bool nofail);
extern int ceph_osdc_wait_request(struct ceph_osd_client *osdc,
struct ceph_osd_request *req);
extern void ceph_osdc_sync(struct ceph_osd_client *osdc);
extern int ceph_osdc_readpages(struct ceph_osd_client *osdc,
struct ceph_vino vino,
struct ceph_file_layout *layout,
u64 off, u64 *plen,
u32 truncate_seq, u64 truncate_size,
struct page **pages, int nr_pages);
extern int ceph_osdc_writepages(struct ceph_osd_client *osdc,
struct ceph_vino vino,
struct ceph_file_layout *layout,
struct ceph_snap_context *sc,
u64 off, u64 len,
u32 truncate_seq, u64 truncate_size,
struct timespec *mtime,
struct page **pages, int nr_pages,
int flags, int do_sync, bool nofail);
#endif

1019
fs/ceph/osdmap.c Normal file

File diff suppressed because it is too large Load diff

125
fs/ceph/osdmap.h Normal file
View file

@ -0,0 +1,125 @@
#ifndef _FS_CEPH_OSDMAP_H
#define _FS_CEPH_OSDMAP_H
#include <linux/rbtree.h>
#include "types.h"
#include "ceph_fs.h"
#include "crush/crush.h"
/*
* The osd map describes the current membership of the osd cluster and
* specifies the mapping of objects to placement groups and placement
* groups to (sets of) osds. That is, it completely specifies the
* (desired) distribution of all data objects in the system at some
* point in time.
*
* Each map version is identified by an epoch, which increases monotonically.
*
* The map can be updated either via an incremental map (diff) describing
* the change between two successive epochs, or as a fully encoded map.
*/
struct ceph_pg_pool_info {
struct rb_node node;
int id;
struct ceph_pg_pool v;
int pg_num_mask, pgp_num_mask, lpg_num_mask, lpgp_num_mask;
};
struct ceph_pg_mapping {
struct rb_node node;
struct ceph_pg pgid;
int len;
int osds[];
};
struct ceph_osdmap {
struct ceph_fsid fsid;
u32 epoch;
u32 mkfs_epoch;
struct ceph_timespec created, modified;
u32 flags; /* CEPH_OSDMAP_* */
u32 max_osd; /* size of osd_state, _offload, _addr arrays */
u8 *osd_state; /* CEPH_OSD_* */
u32 *osd_weight; /* 0 = failed, 0x10000 = 100% normal */
struct ceph_entity_addr *osd_addr;
struct rb_root pg_temp;
struct rb_root pg_pools;
u32 pool_max;
/* the CRUSH map specifies the mapping of placement groups to
* the list of osds that store+replicate them. */
struct crush_map *crush;
};
/*
* file layout helpers
*/
#define ceph_file_layout_su(l) ((__s32)le32_to_cpu((l).fl_stripe_unit))
#define ceph_file_layout_stripe_count(l) \
((__s32)le32_to_cpu((l).fl_stripe_count))
#define ceph_file_layout_object_size(l) ((__s32)le32_to_cpu((l).fl_object_size))
#define ceph_file_layout_cas_hash(l) ((__s32)le32_to_cpu((l).fl_cas_hash))
#define ceph_file_layout_object_su(l) \
((__s32)le32_to_cpu((l).fl_object_stripe_unit))
#define ceph_file_layout_pg_preferred(l) \
((__s32)le32_to_cpu((l).fl_pg_preferred))
#define ceph_file_layout_pg_pool(l) \
((__s32)le32_to_cpu((l).fl_pg_pool))
static inline unsigned ceph_file_layout_stripe_width(struct ceph_file_layout *l)
{
return le32_to_cpu(l->fl_stripe_unit) *
le32_to_cpu(l->fl_stripe_count);
}
/* "period" == bytes before i start on a new set of objects */
static inline unsigned ceph_file_layout_period(struct ceph_file_layout *l)
{
return le32_to_cpu(l->fl_object_size) *
le32_to_cpu(l->fl_stripe_count);
}
static inline int ceph_osd_is_up(struct ceph_osdmap *map, int osd)
{
return (osd < map->max_osd) && (map->osd_state[osd] & CEPH_OSD_UP);
}
static inline bool ceph_osdmap_flag(struct ceph_osdmap *map, int flag)
{
return map && (map->flags & flag);
}
extern char *ceph_osdmap_state_str(char *str, int len, int state);
static inline struct ceph_entity_addr *ceph_osd_addr(struct ceph_osdmap *map,
int osd)
{
if (osd >= map->max_osd)
return NULL;
return &map->osd_addr[osd];
}
extern struct ceph_osdmap *osdmap_decode(void **p, void *end);
extern struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end,
struct ceph_osdmap *map,
struct ceph_messenger *msgr);
extern void ceph_osdmap_destroy(struct ceph_osdmap *map);
/* calculate mapping of a file extent to an object */
extern void ceph_calc_file_object_mapping(struct ceph_file_layout *layout,
u64 off, u64 *plen,
u64 *bno, u64 *oxoff, u64 *oxlen);
/* calculate mapping of object to a placement group */
extern int ceph_calc_object_layout(struct ceph_object_layout *ol,
const char *oid,
struct ceph_file_layout *fl,
struct ceph_osdmap *osdmap);
extern int ceph_calc_pg_primary(struct ceph_osdmap *osdmap,
struct ceph_pg pgid);
#endif

54
fs/ceph/pagelist.c Normal file
View file

@ -0,0 +1,54 @@
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include "pagelist.h"
int ceph_pagelist_release(struct ceph_pagelist *pl)
{
if (pl->mapped_tail)
kunmap(pl->mapped_tail);
while (!list_empty(&pl->head)) {
struct page *page = list_first_entry(&pl->head, struct page,
lru);
list_del(&page->lru);
__free_page(page);
}
return 0;
}
static int ceph_pagelist_addpage(struct ceph_pagelist *pl)
{
struct page *page = alloc_page(GFP_NOFS);
if (!page)
return -ENOMEM;
pl->room += PAGE_SIZE;
list_add_tail(&page->lru, &pl->head);
if (pl->mapped_tail)
kunmap(pl->mapped_tail);
pl->mapped_tail = kmap(page);
return 0;
}
int ceph_pagelist_append(struct ceph_pagelist *pl, void *buf, size_t len)
{
while (pl->room < len) {
size_t bit = pl->room;
int ret;
memcpy(pl->mapped_tail + (pl->length & ~PAGE_CACHE_MASK),
buf, bit);
pl->length += bit;
pl->room -= bit;
buf += bit;
len -= bit;
ret = ceph_pagelist_addpage(pl);
if (ret)
return ret;
}
memcpy(pl->mapped_tail + (pl->length & ~PAGE_CACHE_MASK), buf, len);
pl->length += len;
pl->room -= len;
return 0;
}

54
fs/ceph/pagelist.h Normal file
View file

@ -0,0 +1,54 @@
#ifndef __FS_CEPH_PAGELIST_H
#define __FS_CEPH_PAGELIST_H
#include <linux/list.h>
struct ceph_pagelist {
struct list_head head;
void *mapped_tail;
size_t length;
size_t room;
};
static inline void ceph_pagelist_init(struct ceph_pagelist *pl)
{
INIT_LIST_HEAD(&pl->head);
pl->mapped_tail = NULL;
pl->length = 0;
pl->room = 0;
}
extern int ceph_pagelist_release(struct ceph_pagelist *pl);
extern int ceph_pagelist_append(struct ceph_pagelist *pl, void *d, size_t l);
static inline int ceph_pagelist_encode_64(struct ceph_pagelist *pl, u64 v)
{
__le64 ev = cpu_to_le64(v);
return ceph_pagelist_append(pl, &ev, sizeof(ev));
}
static inline int ceph_pagelist_encode_32(struct ceph_pagelist *pl, u32 v)
{
__le32 ev = cpu_to_le32(v);
return ceph_pagelist_append(pl, &ev, sizeof(ev));
}
static inline int ceph_pagelist_encode_16(struct ceph_pagelist *pl, u16 v)
{
__le16 ev = cpu_to_le16(v);
return ceph_pagelist_append(pl, &ev, sizeof(ev));
}
static inline int ceph_pagelist_encode_8(struct ceph_pagelist *pl, u8 v)
{
return ceph_pagelist_append(pl, &v, 1);
}
static inline int ceph_pagelist_encode_string(struct ceph_pagelist *pl,
char *s, size_t len)
{
int ret = ceph_pagelist_encode_32(pl, len);
if (ret)
return ret;
if (len)
return ceph_pagelist_append(pl, s, len);
return 0;
}
#endif

374
fs/ceph/rados.h Normal file
View file

@ -0,0 +1,374 @@
#ifndef __RADOS_H
#define __RADOS_H
/*
* Data types for the Ceph distributed object storage layer RADOS
* (Reliable Autonomic Distributed Object Store).
*/
#include "msgr.h"
/*
* osdmap encoding versions
*/
#define CEPH_OSDMAP_INC_VERSION 4
#define CEPH_OSDMAP_VERSION 4
/*
* fs id
*/
struct ceph_fsid {
unsigned char fsid[16];
};
static inline int ceph_fsid_compare(const struct ceph_fsid *a,
const struct ceph_fsid *b)
{
return memcmp(a, b, sizeof(*a));
}
/*
* ino, object, etc.
*/
typedef __le64 ceph_snapid_t;
#define CEPH_SNAPDIR ((__u64)(-1)) /* reserved for hidden .snap dir */
#define CEPH_NOSNAP ((__u64)(-2)) /* "head", "live" revision */
#define CEPH_MAXSNAP ((__u64)(-3)) /* largest valid snapid */
struct ceph_timespec {
__le32 tv_sec;
__le32 tv_nsec;
} __attribute__ ((packed));
/*
* object layout - how objects are mapped into PGs
*/
#define CEPH_OBJECT_LAYOUT_HASH 1
#define CEPH_OBJECT_LAYOUT_LINEAR 2
#define CEPH_OBJECT_LAYOUT_HASHINO 3
/*
* pg layout -- how PGs are mapped onto (sets of) OSDs
*/
#define CEPH_PG_LAYOUT_CRUSH 0
#define CEPH_PG_LAYOUT_HASH 1
#define CEPH_PG_LAYOUT_LINEAR 2
#define CEPH_PG_LAYOUT_HYBRID 3
/*
* placement group.
* we encode this into one __le64.
*/
struct ceph_pg {
__le16 preferred; /* preferred primary osd */
__le16 ps; /* placement seed */
__le32 pool; /* object pool */
} __attribute__ ((packed));
/*
* pg_pool is a set of pgs storing a pool of objects
*
* pg_num -- base number of pseudorandomly placed pgs
*
* pgp_num -- effective number when calculating pg placement. this
* is used for pg_num increases. new pgs result in data being "split"
* into new pgs. for this to proceed smoothly, new pgs are intiially
* colocated with their parents; that is, pgp_num doesn't increase
* until the new pgs have successfully split. only _then_ are the new
* pgs placed independently.
*
* lpg_num -- localized pg count (per device). replicas are randomly
* selected.
*
* lpgp_num -- as above.
*/
#define CEPH_PG_TYPE_REP 1
#define CEPH_PG_TYPE_RAID4 2
#define CEPH_PG_POOL_VERSION 2
struct ceph_pg_pool {
__u8 type; /* CEPH_PG_TYPE_* */
__u8 size; /* number of osds in each pg */
__u8 crush_ruleset; /* crush placement rule */
__u8 object_hash; /* hash mapping object name to ps */
__le32 pg_num, pgp_num; /* number of pg's */
__le32 lpg_num, lpgp_num; /* number of localized pg's */
__le32 last_change; /* most recent epoch changed */
__le64 snap_seq; /* seq for per-pool snapshot */
__le32 snap_epoch; /* epoch of last snap */
__le32 num_snaps;
__le32 num_removed_snap_intervals;
__le64 uid;
} __attribute__ ((packed));
/*
* stable_mod func is used to control number of placement groups.
* similar to straight-up modulo, but produces a stable mapping as b
* increases over time. b is the number of bins, and bmask is the
* containing power of 2 minus 1.
*
* b <= bmask and bmask=(2**n)-1
* e.g., b=12 -> bmask=15, b=123 -> bmask=127
*/
static inline int ceph_stable_mod(int x, int b, int bmask)
{
if ((x & bmask) < b)
return x & bmask;
else
return x & (bmask >> 1);
}
/*
* object layout - how a given object should be stored.
*/
struct ceph_object_layout {
struct ceph_pg ol_pgid; /* raw pg, with _full_ ps precision. */
__le32 ol_stripe_unit; /* for per-object parity, if any */
} __attribute__ ((packed));
/*
* compound epoch+version, used by storage layer to serialize mutations
*/
struct ceph_eversion {
__le32 epoch;
__le64 version;
} __attribute__ ((packed));
/*
* osd map bits
*/
/* status bits */
#define CEPH_OSD_EXISTS 1
#define CEPH_OSD_UP 2
/* osd weights. fixed point value: 0x10000 == 1.0 ("in"), 0 == "out" */
#define CEPH_OSD_IN 0x10000
#define CEPH_OSD_OUT 0
/*
* osd map flag bits
*/
#define CEPH_OSDMAP_NEARFULL (1<<0) /* sync writes (near ENOSPC) */
#define CEPH_OSDMAP_FULL (1<<1) /* no data writes (ENOSPC) */
#define CEPH_OSDMAP_PAUSERD (1<<2) /* pause all reads */
#define CEPH_OSDMAP_PAUSEWR (1<<3) /* pause all writes */
#define CEPH_OSDMAP_PAUSEREC (1<<4) /* pause recovery */
/*
* osd ops
*/
#define CEPH_OSD_OP_MODE 0xf000
#define CEPH_OSD_OP_MODE_RD 0x1000
#define CEPH_OSD_OP_MODE_WR 0x2000
#define CEPH_OSD_OP_MODE_RMW 0x3000
#define CEPH_OSD_OP_MODE_SUB 0x4000
#define CEPH_OSD_OP_TYPE 0x0f00
#define CEPH_OSD_OP_TYPE_LOCK 0x0100
#define CEPH_OSD_OP_TYPE_DATA 0x0200
#define CEPH_OSD_OP_TYPE_ATTR 0x0300
#define CEPH_OSD_OP_TYPE_EXEC 0x0400
#define CEPH_OSD_OP_TYPE_PG 0x0500
enum {
/** data **/
/* read */
CEPH_OSD_OP_READ = CEPH_OSD_OP_MODE_RD | CEPH_OSD_OP_TYPE_DATA | 1,
CEPH_OSD_OP_STAT = CEPH_OSD_OP_MODE_RD | CEPH_OSD_OP_TYPE_DATA | 2,
/* fancy read */
CEPH_OSD_OP_MASKTRUNC = CEPH_OSD_OP_MODE_RD | CEPH_OSD_OP_TYPE_DATA | 4,
/* write */
CEPH_OSD_OP_WRITE = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_DATA | 1,
CEPH_OSD_OP_WRITEFULL = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_DATA | 2,
CEPH_OSD_OP_TRUNCATE = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_DATA | 3,
CEPH_OSD_OP_ZERO = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_DATA | 4,
CEPH_OSD_OP_DELETE = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_DATA | 5,
/* fancy write */
CEPH_OSD_OP_APPEND = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_DATA | 6,
CEPH_OSD_OP_STARTSYNC = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_DATA | 7,
CEPH_OSD_OP_SETTRUNC = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_DATA | 8,
CEPH_OSD_OP_TRIMTRUNC = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_DATA | 9,
CEPH_OSD_OP_TMAPUP = CEPH_OSD_OP_MODE_RMW | CEPH_OSD_OP_TYPE_DATA | 10,
CEPH_OSD_OP_TMAPPUT = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_DATA | 11,
CEPH_OSD_OP_TMAPGET = CEPH_OSD_OP_MODE_RD | CEPH_OSD_OP_TYPE_DATA | 12,
CEPH_OSD_OP_CREATE = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_DATA | 13,
/** attrs **/
/* read */
CEPH_OSD_OP_GETXATTR = CEPH_OSD_OP_MODE_RD | CEPH_OSD_OP_TYPE_ATTR | 1,
CEPH_OSD_OP_GETXATTRS = CEPH_OSD_OP_MODE_RD | CEPH_OSD_OP_TYPE_ATTR | 2,
/* write */
CEPH_OSD_OP_SETXATTR = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_ATTR | 1,
CEPH_OSD_OP_SETXATTRS = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_ATTR | 2,
CEPH_OSD_OP_RESETXATTRS = CEPH_OSD_OP_MODE_WR|CEPH_OSD_OP_TYPE_ATTR | 3,
CEPH_OSD_OP_RMXATTR = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_ATTR | 4,
/** subop **/
CEPH_OSD_OP_PULL = CEPH_OSD_OP_MODE_SUB | 1,
CEPH_OSD_OP_PUSH = CEPH_OSD_OP_MODE_SUB | 2,
CEPH_OSD_OP_BALANCEREADS = CEPH_OSD_OP_MODE_SUB | 3,
CEPH_OSD_OP_UNBALANCEREADS = CEPH_OSD_OP_MODE_SUB | 4,
CEPH_OSD_OP_SCRUB = CEPH_OSD_OP_MODE_SUB | 5,
/** lock **/
CEPH_OSD_OP_WRLOCK = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_LOCK | 1,
CEPH_OSD_OP_WRUNLOCK = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_LOCK | 2,
CEPH_OSD_OP_RDLOCK = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_LOCK | 3,
CEPH_OSD_OP_RDUNLOCK = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_LOCK | 4,
CEPH_OSD_OP_UPLOCK = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_LOCK | 5,
CEPH_OSD_OP_DNLOCK = CEPH_OSD_OP_MODE_WR | CEPH_OSD_OP_TYPE_LOCK | 6,
/** exec **/
CEPH_OSD_OP_CALL = CEPH_OSD_OP_MODE_RD | CEPH_OSD_OP_TYPE_EXEC | 1,
/** pg **/
CEPH_OSD_OP_PGLS = CEPH_OSD_OP_MODE_RD | CEPH_OSD_OP_TYPE_PG | 1,
};
static inline int ceph_osd_op_type_lock(int op)
{
return (op & CEPH_OSD_OP_TYPE) == CEPH_OSD_OP_TYPE_LOCK;
}
static inline int ceph_osd_op_type_data(int op)
{
return (op & CEPH_OSD_OP_TYPE) == CEPH_OSD_OP_TYPE_DATA;
}
static inline int ceph_osd_op_type_attr(int op)
{
return (op & CEPH_OSD_OP_TYPE) == CEPH_OSD_OP_TYPE_ATTR;
}
static inline int ceph_osd_op_type_exec(int op)
{
return (op & CEPH_OSD_OP_TYPE) == CEPH_OSD_OP_TYPE_EXEC;
}
static inline int ceph_osd_op_type_pg(int op)
{
return (op & CEPH_OSD_OP_TYPE) == CEPH_OSD_OP_TYPE_PG;
}
static inline int ceph_osd_op_mode_subop(int op)
{
return (op & CEPH_OSD_OP_MODE) == CEPH_OSD_OP_MODE_SUB;
}
static inline int ceph_osd_op_mode_read(int op)
{
return (op & CEPH_OSD_OP_MODE) == CEPH_OSD_OP_MODE_RD;
}
static inline int ceph_osd_op_mode_modify(int op)
{
return (op & CEPH_OSD_OP_MODE) == CEPH_OSD_OP_MODE_WR;
}
#define CEPH_OSD_TMAP_HDR 'h'
#define CEPH_OSD_TMAP_SET 's'
#define CEPH_OSD_TMAP_RM 'r'
extern const char *ceph_osd_op_name(int op);
/*
* osd op flags
*
* An op may be READ, WRITE, or READ|WRITE.
*/
enum {
CEPH_OSD_FLAG_ACK = 1, /* want (or is) "ack" ack */
CEPH_OSD_FLAG_ONNVRAM = 2, /* want (or is) "onnvram" ack */
CEPH_OSD_FLAG_ONDISK = 4, /* want (or is) "ondisk" ack */
CEPH_OSD_FLAG_RETRY = 8, /* resend attempt */
CEPH_OSD_FLAG_READ = 16, /* op may read */
CEPH_OSD_FLAG_WRITE = 32, /* op may write */
CEPH_OSD_FLAG_ORDERSNAP = 64, /* EOLDSNAP if snapc is out of order */
CEPH_OSD_FLAG_PEERSTAT = 128, /* msg includes osd_peer_stat */
CEPH_OSD_FLAG_BALANCE_READS = 256,
CEPH_OSD_FLAG_PARALLELEXEC = 512, /* execute op in parallel */
CEPH_OSD_FLAG_PGOP = 1024, /* pg op, no object */
CEPH_OSD_FLAG_EXEC = 2048, /* op may exec */
};
enum {
CEPH_OSD_OP_FLAG_EXCL = 1, /* EXCL object create */
};
#define EOLDSNAPC ERESTART /* ORDERSNAP flag set; writer has old snapc*/
#define EBLACKLISTED ESHUTDOWN /* blacklisted */
/*
* an individual object operation. each may be accompanied by some data
* payload
*/
struct ceph_osd_op {
__le16 op; /* CEPH_OSD_OP_* */
__le32 flags; /* CEPH_OSD_FLAG_* */
union {
struct {
__le64 offset, length;
__le64 truncate_size;
__le32 truncate_seq;
} __attribute__ ((packed)) extent;
struct {
__le32 name_len;
__le32 value_len;
} __attribute__ ((packed)) xattr;
struct {
__u8 class_len;
__u8 method_len;
__u8 argc;
__le32 indata_len;
} __attribute__ ((packed)) cls;
struct {
__le64 cookie, count;
} __attribute__ ((packed)) pgls;
};
__le32 payload_len;
} __attribute__ ((packed));
/*
* osd request message header. each request may include multiple
* ceph_osd_op object operations.
*/
struct ceph_osd_request_head {
__le32 client_inc; /* client incarnation */
struct ceph_object_layout layout; /* pgid */
__le32 osdmap_epoch; /* client's osdmap epoch */
__le32 flags;
struct ceph_timespec mtime; /* for mutations only */
struct ceph_eversion reassert_version; /* if we are replaying op */
__le32 object_len; /* length of object name */
__le64 snapid; /* snapid to read */
__le64 snap_seq; /* writer's snap context */
__le32 num_snaps;
__le16 num_ops;
struct ceph_osd_op ops[]; /* followed by ops[], obj, ticket, snaps */
} __attribute__ ((packed));
struct ceph_osd_reply_head {
__le32 client_inc; /* client incarnation */
__le32 flags;
struct ceph_object_layout layout;
__le32 osdmap_epoch;
struct ceph_eversion reassert_version; /* for replaying uncommitted */
__le32 result; /* result code */
__le32 object_len; /* length of object name */
__le32 num_ops;
struct ceph_osd_op ops[0]; /* ops[], object */
} __attribute__ ((packed));
#endif

904
fs/ceph/snap.c Normal file
View file

@ -0,0 +1,904 @@
#include "ceph_debug.h"
#include <linux/sort.h>
#include "super.h"
#include "decode.h"
/*
* Snapshots in ceph are driven in large part by cooperation from the
* client. In contrast to local file systems or file servers that
* implement snapshots at a single point in the system, ceph's
* distributed access to storage requires clients to help decide
* whether a write logically occurs before or after a recently created
* snapshot.
*
* This provides a perfect instantanous client-wide snapshot. Between
* clients, however, snapshots may appear to be applied at slightly
* different points in time, depending on delays in delivering the
* snapshot notification.
*
* Snapshots are _not_ file system-wide. Instead, each snapshot
* applies to the subdirectory nested beneath some directory. This
* effectively divides the hierarchy into multiple "realms," where all
* of the files contained by each realm share the same set of
* snapshots. An individual realm's snap set contains snapshots
* explicitly created on that realm, as well as any snaps in its
* parent's snap set _after_ the point at which the parent became it's
* parent (due to, say, a rename). Similarly, snaps from prior parents
* during the time intervals during which they were the parent are included.
*
* The client is spared most of this detail, fortunately... it must only
* maintains a hierarchy of realms reflecting the current parent/child
* realm relationship, and for each realm has an explicit list of snaps
* inherited from prior parents.
*
* A snap_realm struct is maintained for realms containing every inode
* with an open cap in the system. (The needed snap realm information is
* provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq'
* version number is used to ensure that as realm parameters change (new
* snapshot, new parent, etc.) the client's realm hierarchy is updated.
*
* The realm hierarchy drives the generation of a 'snap context' for each
* realm, which simply lists the resulting set of snaps for the realm. This
* is attached to any writes sent to OSDs.
*/
/*
* Unfortunately error handling is a bit mixed here. If we get a snap
* update, but don't have enough memory to update our realm hierarchy,
* it's not clear what we can do about it (besides complaining to the
* console).
*/
/*
* increase ref count for the realm
*
* caller must hold snap_rwsem for write.
*/
void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm)
{
dout("get_realm %p %d -> %d\n", realm,
atomic_read(&realm->nref), atomic_read(&realm->nref)+1);
/*
* since we _only_ increment realm refs or empty the empty
* list with snap_rwsem held, adjusting the empty list here is
* safe. we do need to protect against concurrent empty list
* additions, however.
*/
if (atomic_read(&realm->nref) == 0) {
spin_lock(&mdsc->snap_empty_lock);
list_del_init(&realm->empty_item);
spin_unlock(&mdsc->snap_empty_lock);
}
atomic_inc(&realm->nref);
}
static void __insert_snap_realm(struct rb_root *root,
struct ceph_snap_realm *new)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct ceph_snap_realm *r = NULL;
while (*p) {
parent = *p;
r = rb_entry(parent, struct ceph_snap_realm, node);
if (new->ino < r->ino)
p = &(*p)->rb_left;
else if (new->ino > r->ino)
p = &(*p)->rb_right;
else
BUG();
}
rb_link_node(&new->node, parent, p);
rb_insert_color(&new->node, root);
}
/*
* create and get the realm rooted at @ino and bump its ref count.
*
* caller must hold snap_rwsem for write.
*/
static struct ceph_snap_realm *ceph_create_snap_realm(
struct ceph_mds_client *mdsc,
u64 ino)
{
struct ceph_snap_realm *realm;
realm = kzalloc(sizeof(*realm), GFP_NOFS);
if (!realm)
return ERR_PTR(-ENOMEM);
atomic_set(&realm->nref, 0); /* tree does not take a ref */
realm->ino = ino;
INIT_LIST_HEAD(&realm->children);
INIT_LIST_HEAD(&realm->child_item);
INIT_LIST_HEAD(&realm->empty_item);
INIT_LIST_HEAD(&realm->inodes_with_caps);
spin_lock_init(&realm->inodes_with_caps_lock);
__insert_snap_realm(&mdsc->snap_realms, realm);
dout("create_snap_realm %llx %p\n", realm->ino, realm);
return realm;
}
/*
* lookup the realm rooted at @ino.
*
* caller must hold snap_rwsem for write.
*/
struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
u64 ino)
{
struct rb_node *n = mdsc->snap_realms.rb_node;
struct ceph_snap_realm *r;
while (n) {
r = rb_entry(n, struct ceph_snap_realm, node);
if (ino < r->ino)
n = n->rb_left;
else if (ino > r->ino)
n = n->rb_right;
else {
dout("lookup_snap_realm %llx %p\n", r->ino, r);
return r;
}
}
return NULL;
}
static void __put_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm);
/*
* called with snap_rwsem (write)
*/
static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm)
{
dout("__destroy_snap_realm %p %llx\n", realm, realm->ino);
rb_erase(&realm->node, &mdsc->snap_realms);
if (realm->parent) {
list_del_init(&realm->child_item);
__put_snap_realm(mdsc, realm->parent);
}
kfree(realm->prior_parent_snaps);
kfree(realm->snaps);
ceph_put_snap_context(realm->cached_context);
kfree(realm);
}
/*
* caller holds snap_rwsem (write)
*/
static void __put_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm)
{
dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
if (atomic_dec_and_test(&realm->nref))
__destroy_snap_realm(mdsc, realm);
}
/*
* caller needn't hold any locks
*/
void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm)
{
dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
if (!atomic_dec_and_test(&realm->nref))
return;
if (down_write_trylock(&mdsc->snap_rwsem)) {
__destroy_snap_realm(mdsc, realm);
up_write(&mdsc->snap_rwsem);
} else {
spin_lock(&mdsc->snap_empty_lock);
list_add(&mdsc->snap_empty, &realm->empty_item);
spin_unlock(&mdsc->snap_empty_lock);
}
}
/*
* Clean up any realms whose ref counts have dropped to zero. Note
* that this does not include realms who were created but not yet
* used.
*
* Called under snap_rwsem (write)
*/
static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
{
struct ceph_snap_realm *realm;
spin_lock(&mdsc->snap_empty_lock);
while (!list_empty(&mdsc->snap_empty)) {
realm = list_first_entry(&mdsc->snap_empty,
struct ceph_snap_realm, empty_item);
list_del(&realm->empty_item);
spin_unlock(&mdsc->snap_empty_lock);
__destroy_snap_realm(mdsc, realm);
spin_lock(&mdsc->snap_empty_lock);
}
spin_unlock(&mdsc->snap_empty_lock);
}
void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc)
{
down_write(&mdsc->snap_rwsem);
__cleanup_empty_realms(mdsc);
up_write(&mdsc->snap_rwsem);
}
/*
* adjust the parent realm of a given @realm. adjust child list, and parent
* pointers, and ref counts appropriately.
*
* return true if parent was changed, 0 if unchanged, <0 on error.
*
* caller must hold snap_rwsem for write.
*/
static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm,
u64 parentino)
{
struct ceph_snap_realm *parent;
if (realm->parent_ino == parentino)
return 0;
parent = ceph_lookup_snap_realm(mdsc, parentino);
if (!parent) {
parent = ceph_create_snap_realm(mdsc, parentino);
if (IS_ERR(parent))
return PTR_ERR(parent);
}
dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
realm->ino, realm, realm->parent_ino, realm->parent,
parentino, parent);
if (realm->parent) {
list_del_init(&realm->child_item);
ceph_put_snap_realm(mdsc, realm->parent);
}
realm->parent_ino = parentino;
realm->parent = parent;
ceph_get_snap_realm(mdsc, parent);
list_add(&realm->child_item, &parent->children);
return 1;
}
static int cmpu64_rev(const void *a, const void *b)
{
if (*(u64 *)a < *(u64 *)b)
return 1;
if (*(u64 *)a > *(u64 *)b)
return -1;
return 0;
}
/*
* build the snap context for a given realm.
*/
static int build_snap_context(struct ceph_snap_realm *realm)
{
struct ceph_snap_realm *parent = realm->parent;
struct ceph_snap_context *snapc;
int err = 0;
int i;
int num = realm->num_prior_parent_snaps + realm->num_snaps;
/*
* build parent context, if it hasn't been built.
* conservatively estimate that all parent snaps might be
* included by us.
*/
if (parent) {
if (!parent->cached_context) {
err = build_snap_context(parent);
if (err)
goto fail;
}
num += parent->cached_context->num_snaps;
}
/* do i actually need to update? not if my context seq
matches realm seq, and my parents' does to. (this works
because we rebuild_snap_realms() works _downward_ in
hierarchy after each update.) */
if (realm->cached_context &&
realm->cached_context->seq <= realm->seq &&
(!parent ||
realm->cached_context->seq <= parent->cached_context->seq)) {
dout("build_snap_context %llx %p: %p seq %lld (%d snaps)"
" (unchanged)\n",
realm->ino, realm, realm->cached_context,
realm->cached_context->seq,
realm->cached_context->num_snaps);
return 0;
}
/* alloc new snap context */
err = -ENOMEM;
if (num > ULONG_MAX / sizeof(u64) - sizeof(*snapc))
goto fail;
snapc = kzalloc(sizeof(*snapc) + num*sizeof(u64), GFP_NOFS);
if (!snapc)
goto fail;
atomic_set(&snapc->nref, 1);
/* build (reverse sorted) snap vector */
num = 0;
snapc->seq = realm->seq;
if (parent) {
/* include any of parent's snaps occuring _after_ my
parent became my parent */
for (i = 0; i < parent->cached_context->num_snaps; i++)
if (parent->cached_context->snaps[i] >=
realm->parent_since)
snapc->snaps[num++] =
parent->cached_context->snaps[i];
if (parent->cached_context->seq > snapc->seq)
snapc->seq = parent->cached_context->seq;
}
memcpy(snapc->snaps + num, realm->snaps,
sizeof(u64)*realm->num_snaps);
num += realm->num_snaps;
memcpy(snapc->snaps + num, realm->prior_parent_snaps,
sizeof(u64)*realm->num_prior_parent_snaps);
num += realm->num_prior_parent_snaps;
sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
snapc->num_snaps = num;
dout("build_snap_context %llx %p: %p seq %lld (%d snaps)\n",
realm->ino, realm, snapc, snapc->seq, snapc->num_snaps);
if (realm->cached_context)
ceph_put_snap_context(realm->cached_context);
realm->cached_context = snapc;
return 0;
fail:
/*
* if we fail, clear old (incorrect) cached_context... hopefully
* we'll have better luck building it later
*/
if (realm->cached_context) {
ceph_put_snap_context(realm->cached_context);
realm->cached_context = NULL;
}
pr_err("build_snap_context %llx %p fail %d\n", realm->ino,
realm, err);
return err;
}
/*
* rebuild snap context for the given realm and all of its children.
*/
static void rebuild_snap_realms(struct ceph_snap_realm *realm)
{
struct ceph_snap_realm *child;
dout("rebuild_snap_realms %llx %p\n", realm->ino, realm);
build_snap_context(realm);
list_for_each_entry(child, &realm->children, child_item)
rebuild_snap_realms(child);
}
/*
* helper to allocate and decode an array of snapids. free prior
* instance, if any.
*/
static int dup_array(u64 **dst, __le64 *src, int num)
{
int i;
kfree(*dst);
if (num) {
*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
if (!*dst)
return -ENOMEM;
for (i = 0; i < num; i++)
(*dst)[i] = get_unaligned_le64(src + i);
} else {
*dst = NULL;
}
return 0;
}
/*
* When a snapshot is applied, the size/mtime inode metadata is queued
* in a ceph_cap_snap (one for each snapshot) until writeback
* completes and the metadata can be flushed back to the MDS.
*
* However, if a (sync) write is currently in-progress when we apply
* the snapshot, we have to wait until the write succeeds or fails
* (and a final size/mtime is known). In this case the
* cap_snap->writing = 1, and is said to be "pending." When the write
* finishes, we __ceph_finish_cap_snap().
*
* Caller must hold snap_rwsem for read (i.e., the realm topology won't
* change).
*/
void ceph_queue_cap_snap(struct ceph_inode_info *ci,
struct ceph_snap_context *snapc)
{
struct inode *inode = &ci->vfs_inode;
struct ceph_cap_snap *capsnap;
int used;
capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS);
if (!capsnap) {
pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode);
return;
}
spin_lock(&inode->i_lock);
used = __ceph_caps_used(ci);
if (__ceph_have_pending_cap_snap(ci)) {
/* there is no point in queuing multiple "pending" cap_snaps,
as no new writes are allowed to start when pending, so any
writes in progress now were started before the previous
cap_snap. lucky us. */
dout("queue_cap_snap %p snapc %p seq %llu used %d"
" already pending\n", inode, snapc, snapc->seq, used);
kfree(capsnap);
} else if (ci->i_wrbuffer_ref_head || (used & CEPH_CAP_FILE_WR)) {
igrab(inode);
atomic_set(&capsnap->nref, 1);
capsnap->ci = ci;
INIT_LIST_HEAD(&capsnap->ci_item);
INIT_LIST_HEAD(&capsnap->flushing_item);
capsnap->follows = snapc->seq - 1;
capsnap->context = ceph_get_snap_context(snapc);
capsnap->issued = __ceph_caps_issued(ci, NULL);
capsnap->dirty = __ceph_caps_dirty(ci);
capsnap->mode = inode->i_mode;
capsnap->uid = inode->i_uid;
capsnap->gid = inode->i_gid;
/* fixme? */
capsnap->xattr_blob = NULL;
capsnap->xattr_len = 0;
/* dirty page count moved from _head to this cap_snap;
all subsequent writes page dirties occur _after_ this
snapshot. */
capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
ci->i_wrbuffer_ref_head = 0;
ceph_put_snap_context(ci->i_head_snapc);
ci->i_head_snapc = NULL;
list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
if (used & CEPH_CAP_FILE_WR) {
dout("queue_cap_snap %p cap_snap %p snapc %p"
" seq %llu used WR, now pending\n", inode,
capsnap, snapc, snapc->seq);
capsnap->writing = 1;
} else {
/* note mtime, size NOW. */
__ceph_finish_cap_snap(ci, capsnap);
}
} else {
dout("queue_cap_snap %p nothing dirty|writing\n", inode);
kfree(capsnap);
}
spin_unlock(&inode->i_lock);
}
/*
* Finalize the size, mtime for a cap_snap.. that is, settle on final values
* to be used for the snapshot, to be flushed back to the mds.
*
* If capsnap can now be flushed, add to snap_flush list, and return 1.
*
* Caller must hold i_lock.
*/
int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
struct ceph_cap_snap *capsnap)
{
struct inode *inode = &ci->vfs_inode;
struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
BUG_ON(capsnap->writing);
capsnap->size = inode->i_size;
capsnap->mtime = inode->i_mtime;
capsnap->atime = inode->i_atime;
capsnap->ctime = inode->i_ctime;
capsnap->time_warp_seq = ci->i_time_warp_seq;
if (capsnap->dirty_pages) {
dout("finish_cap_snap %p cap_snap %p snapc %p %llu s=%llu "
"still has %d dirty pages\n", inode, capsnap,
capsnap->context, capsnap->context->seq,
capsnap->size, capsnap->dirty_pages);
return 0;
}
dout("finish_cap_snap %p cap_snap %p snapc %p %llu s=%llu clean\n",
inode, capsnap, capsnap->context,
capsnap->context->seq, capsnap->size);
spin_lock(&mdsc->snap_flush_lock);
list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
spin_unlock(&mdsc->snap_flush_lock);
return 1; /* caller may want to ceph_flush_snaps */
}
/*
* Parse and apply a snapblob "snap trace" from the MDS. This specifies
* the snap realm parameters from a given realm and all of its ancestors,
* up to the root.
*
* Caller must hold snap_rwsem for write.
*/
int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
void *p, void *e, bool deletion)
{
struct ceph_mds_snap_realm *ri; /* encoded */
__le64 *snaps; /* encoded */
__le64 *prior_parent_snaps; /* encoded */
struct ceph_snap_realm *realm;
int invalidate = 0;
int err = -ENOMEM;
dout("update_snap_trace deletion=%d\n", deletion);
more:
ceph_decode_need(&p, e, sizeof(*ri), bad);
ri = p;
p += sizeof(*ri);
ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
le32_to_cpu(ri->num_prior_parent_snaps)), bad);
snaps = p;
p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
prior_parent_snaps = p;
p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
if (!realm) {
realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
if (IS_ERR(realm)) {
err = PTR_ERR(realm);
goto fail;
}
}
if (le64_to_cpu(ri->seq) > realm->seq) {
dout("update_snap_trace updating %llx %p %lld -> %lld\n",
realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
/*
* if the realm seq has changed, queue a cap_snap for every
* inode with open caps. we do this _before_ we update
* the realm info so that we prepare for writeback under the
* _previous_ snap context.
*
* ...unless it's a snap deletion!
*/
if (!deletion) {
struct ceph_inode_info *ci;
struct inode *lastinode = NULL;
spin_lock(&realm->inodes_with_caps_lock);
list_for_each_entry(ci, &realm->inodes_with_caps,
i_snap_realm_item) {
struct inode *inode = igrab(&ci->vfs_inode);
if (!inode)
continue;
spin_unlock(&realm->inodes_with_caps_lock);
if (lastinode)
iput(lastinode);
lastinode = inode;
ceph_queue_cap_snap(ci, realm->cached_context);
spin_lock(&realm->inodes_with_caps_lock);
}
spin_unlock(&realm->inodes_with_caps_lock);
if (lastinode)
iput(lastinode);
dout("update_snap_trace cap_snaps queued\n");
}
} else {
dout("update_snap_trace %llx %p seq %lld unchanged\n",
realm->ino, realm, realm->seq);
}
/* ensure the parent is correct */
err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
if (err < 0)
goto fail;
invalidate += err;
if (le64_to_cpu(ri->seq) > realm->seq) {
/* update realm parameters, snap lists */
realm->seq = le64_to_cpu(ri->seq);
realm->created = le64_to_cpu(ri->created);
realm->parent_since = le64_to_cpu(ri->parent_since);
realm->num_snaps = le32_to_cpu(ri->num_snaps);
err = dup_array(&realm->snaps, snaps, realm->num_snaps);
if (err < 0)
goto fail;
realm->num_prior_parent_snaps =
le32_to_cpu(ri->num_prior_parent_snaps);
err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
realm->num_prior_parent_snaps);
if (err < 0)
goto fail;
invalidate = 1;
} else if (!realm->cached_context) {
invalidate = 1;
}
dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino,
realm, invalidate, p, e);
if (p < e)
goto more;
/* invalidate when we reach the _end_ (root) of the trace */
if (invalidate)
rebuild_snap_realms(realm);
__cleanup_empty_realms(mdsc);
return 0;
bad:
err = -EINVAL;
fail:
pr_err("update_snap_trace error %d\n", err);
return err;
}
/*
* Send any cap_snaps that are queued for flush. Try to carry
* s_mutex across multiple snap flushes to avoid locking overhead.
*
* Caller holds no locks.
*/
static void flush_snaps(struct ceph_mds_client *mdsc)
{
struct ceph_inode_info *ci;
struct inode *inode;
struct ceph_mds_session *session = NULL;
dout("flush_snaps\n");
spin_lock(&mdsc->snap_flush_lock);
while (!list_empty(&mdsc->snap_flush_list)) {
ci = list_first_entry(&mdsc->snap_flush_list,
struct ceph_inode_info, i_snap_flush_item);
inode = &ci->vfs_inode;
igrab(inode);
spin_unlock(&mdsc->snap_flush_lock);
spin_lock(&inode->i_lock);
__ceph_flush_snaps(ci, &session);
spin_unlock(&inode->i_lock);
iput(inode);
spin_lock(&mdsc->snap_flush_lock);
}
spin_unlock(&mdsc->snap_flush_lock);
if (session) {
mutex_unlock(&session->s_mutex);
ceph_put_mds_session(session);
}
dout("flush_snaps done\n");
}
/*
* Handle a snap notification from the MDS.
*
* This can take two basic forms: the simplest is just a snap creation
* or deletion notification on an existing realm. This should update the
* realm and its children.
*
* The more difficult case is realm creation, due to snap creation at a
* new point in the file hierarchy, or due to a rename that moves a file or
* directory into another realm.
*/
void ceph_handle_snap(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session,
struct ceph_msg *msg)
{
struct super_block *sb = mdsc->client->sb;
int mds = session->s_mds;
u64 split;
int op;
int trace_len;
struct ceph_snap_realm *realm = NULL;
void *p = msg->front.iov_base;
void *e = p + msg->front.iov_len;
struct ceph_mds_snap_head *h;
int num_split_inos, num_split_realms;
__le64 *split_inos = NULL, *split_realms = NULL;
int i;
int locked_rwsem = 0;
/* decode */
if (msg->front.iov_len < sizeof(*h))
goto bad;
h = p;
op = le32_to_cpu(h->op);
split = le64_to_cpu(h->split); /* non-zero if we are splitting an
* existing realm */
num_split_inos = le32_to_cpu(h->num_split_inos);
num_split_realms = le32_to_cpu(h->num_split_realms);
trace_len = le32_to_cpu(h->trace_len);
p += sizeof(*h);
dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds,
ceph_snap_op_name(op), split, trace_len);
mutex_lock(&session->s_mutex);
session->s_seq++;
mutex_unlock(&session->s_mutex);
down_write(&mdsc->snap_rwsem);
locked_rwsem = 1;
if (op == CEPH_SNAP_OP_SPLIT) {
struct ceph_mds_snap_realm *ri;
/*
* A "split" breaks part of an existing realm off into
* a new realm. The MDS provides a list of inodes
* (with caps) and child realms that belong to the new
* child.
*/
split_inos = p;
p += sizeof(u64) * num_split_inos;
split_realms = p;
p += sizeof(u64) * num_split_realms;
ceph_decode_need(&p, e, sizeof(*ri), bad);
/* we will peek at realm info here, but will _not_
* advance p, as the realm update will occur below in
* ceph_update_snap_trace. */
ri = p;
realm = ceph_lookup_snap_realm(mdsc, split);
if (!realm) {
realm = ceph_create_snap_realm(mdsc, split);
if (IS_ERR(realm))
goto out;
}
ceph_get_snap_realm(mdsc, realm);
dout("splitting snap_realm %llx %p\n", realm->ino, realm);
for (i = 0; i < num_split_inos; i++) {
struct ceph_vino vino = {
.ino = le64_to_cpu(split_inos[i]),
.snap = CEPH_NOSNAP,
};
struct inode *inode = ceph_find_inode(sb, vino);
struct ceph_inode_info *ci;
if (!inode)
continue;
ci = ceph_inode(inode);
spin_lock(&inode->i_lock);
if (!ci->i_snap_realm)
goto skip_inode;
/*
* If this inode belongs to a realm that was
* created after our new realm, we experienced
* a race (due to another split notifications
* arriving from a different MDS). So skip
* this inode.
*/
if (ci->i_snap_realm->created >
le64_to_cpu(ri->created)) {
dout(" leaving %p in newer realm %llx %p\n",
inode, ci->i_snap_realm->ino,
ci->i_snap_realm);
goto skip_inode;
}
dout(" will move %p to split realm %llx %p\n",
inode, realm->ino, realm);
/*
* Remove the inode from the realm's inode
* list, but don't add it to the new realm
* yet. We don't want the cap_snap to be
* queued (again) by ceph_update_snap_trace()
* below. Queue it _now_, under the old context.
*/
list_del_init(&ci->i_snap_realm_item);
spin_unlock(&inode->i_lock);
ceph_queue_cap_snap(ci,
ci->i_snap_realm->cached_context);
iput(inode);
continue;
skip_inode:
spin_unlock(&inode->i_lock);
iput(inode);
}
/* we may have taken some of the old realm's children. */
for (i = 0; i < num_split_realms; i++) {
struct ceph_snap_realm *child =
ceph_lookup_snap_realm(mdsc,
le64_to_cpu(split_realms[i]));
if (!child)
continue;
adjust_snap_realm_parent(mdsc, child, realm->ino);
}
}
/*
* update using the provided snap trace. if we are deleting a
* snap, we can avoid queueing cap_snaps.
*/
ceph_update_snap_trace(mdsc, p, e,
op == CEPH_SNAP_OP_DESTROY);
if (op == CEPH_SNAP_OP_SPLIT) {
/*
* ok, _now_ add the inodes into the new realm.
*/
for (i = 0; i < num_split_inos; i++) {
struct ceph_vino vino = {
.ino = le64_to_cpu(split_inos[i]),
.snap = CEPH_NOSNAP,
};
struct inode *inode = ceph_find_inode(sb, vino);
struct ceph_inode_info *ci;
if (!inode)
continue;
ci = ceph_inode(inode);
spin_lock(&inode->i_lock);
if (!ci->i_snap_realm)
goto split_skip_inode;
ceph_put_snap_realm(mdsc, ci->i_snap_realm);
spin_lock(&realm->inodes_with_caps_lock);
list_add(&ci->i_snap_realm_item,
&realm->inodes_with_caps);
ci->i_snap_realm = realm;
spin_unlock(&realm->inodes_with_caps_lock);
ceph_get_snap_realm(mdsc, realm);
split_skip_inode:
spin_unlock(&inode->i_lock);
iput(inode);
}
/* we took a reference when we created the realm, above */
ceph_put_snap_realm(mdsc, realm);
}
__cleanup_empty_realms(mdsc);
up_write(&mdsc->snap_rwsem);
flush_snaps(mdsc);
return;
bad:
pr_err("corrupt snap message from mds%d\n", mds);
ceph_msg_dump(msg);
out:
if (locked_rwsem)
up_write(&mdsc->snap_rwsem);
return;
}

1030
fs/ceph/super.c Normal file

File diff suppressed because it is too large Load diff

901
fs/ceph/super.h Normal file
View file

@ -0,0 +1,901 @@
#ifndef _FS_CEPH_SUPER_H
#define _FS_CEPH_SUPER_H
#include "ceph_debug.h"
#include <asm/unaligned.h>
#include <linux/backing-dev.h>
#include <linux/completion.h>
#include <linux/exportfs.h>
#include <linux/fs.h>
#include <linux/mempool.h>
#include <linux/pagemap.h>
#include <linux/wait.h>
#include <linux/writeback.h>
#include "types.h"
#include "messenger.h"
#include "msgpool.h"
#include "mon_client.h"
#include "mds_client.h"
#include "osd_client.h"
#include "ceph_fs.h"
/* f_type in struct statfs */
#define CEPH_SUPER_MAGIC 0x00c36400
/* large granularity for statfs utilization stats to facilitate
* large volume sizes on 32-bit machines. */
#define CEPH_BLOCK_SHIFT 20 /* 1 MB */
#define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT)
/*
* mount options
*/
#define CEPH_OPT_FSID (1<<0)
#define CEPH_OPT_NOSHARE (1<<1) /* don't share client with other sbs */
#define CEPH_OPT_MYIP (1<<2) /* specified my ip */
#define CEPH_OPT_DIRSTAT (1<<4) /* funky `cat dirname` for stats */
#define CEPH_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */
#define CEPH_OPT_NOCRC (1<<6) /* no data crc on writes */
#define CEPH_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */
#define CEPH_OPT_DEFAULT (CEPH_OPT_RBYTES)
#define ceph_set_opt(client, opt) \
(client)->mount_args->flags |= CEPH_OPT_##opt;
#define ceph_test_opt(client, opt) \
(!!((client)->mount_args->flags & CEPH_OPT_##opt))
struct ceph_mount_args {
int sb_flags;
int num_mon;
struct ceph_entity_addr *mon_addr;
int flags;
int mount_timeout;
int osd_idle_ttl;
int caps_wanted_delay_min, caps_wanted_delay_max;
struct ceph_fsid fsid;
struct ceph_entity_addr my_addr;
int wsize;
int rsize; /* max readahead */
int max_readdir; /* max readdir size */
int congestion_kb; /* max readdir size */
int osd_timeout;
int osd_keepalive_timeout;
char *snapdir_name; /* default ".snap" */
char *name;
char *secret;
int cap_release_safety;
};
/*
* defaults
*/
#define CEPH_MOUNT_TIMEOUT_DEFAULT 60
#define CEPH_OSD_TIMEOUT_DEFAULT 60 /* seconds */
#define CEPH_OSD_KEEPALIVE_DEFAULT 5
#define CEPH_OSD_IDLE_TTL_DEFAULT 60
#define CEPH_MOUNT_RSIZE_DEFAULT (512*1024) /* readahead */
#define CEPH_MSG_MAX_FRONT_LEN (16*1024*1024)
#define CEPH_MSG_MAX_DATA_LEN (16*1024*1024)
#define CEPH_SNAPDIRNAME_DEFAULT ".snap"
#define CEPH_AUTH_NAME_DEFAULT "guest"
/*
* Delay telling the MDS we no longer want caps, in case we reopen
* the file. Delay a minimum amount of time, even if we send a cap
* message for some other reason. Otherwise, take the oppotunity to
* update the mds to avoid sending another message later.
*/
#define CEPH_CAPS_WANTED_DELAY_MIN_DEFAULT 5 /* cap release delay */
#define CEPH_CAPS_WANTED_DELAY_MAX_DEFAULT 60 /* cap release delay */
/* mount state */
enum {
CEPH_MOUNT_MOUNTING,
CEPH_MOUNT_MOUNTED,
CEPH_MOUNT_UNMOUNTING,
CEPH_MOUNT_UNMOUNTED,
CEPH_MOUNT_SHUTDOWN,
};
/*
* subtract jiffies
*/
static inline unsigned long time_sub(unsigned long a, unsigned long b)
{
BUG_ON(time_after(b, a));
return (long)a - (long)b;
}
/*
* per-filesystem client state
*
* possibly shared by multiple mount points, if they are
* mounting the same ceph filesystem/cluster.
*/
struct ceph_client {
struct ceph_fsid fsid;
bool have_fsid;
struct mutex mount_mutex; /* serialize mount attempts */
struct ceph_mount_args *mount_args;
struct super_block *sb;
unsigned long mount_state;
wait_queue_head_t auth_wq;
int auth_err;
int min_caps; /* min caps i added */
struct ceph_messenger *msgr; /* messenger instance */
struct ceph_mon_client monc;
struct ceph_mds_client mdsc;
struct ceph_osd_client osdc;
/* writeback */
mempool_t *wb_pagevec_pool;
struct workqueue_struct *wb_wq;
struct workqueue_struct *pg_inv_wq;
struct workqueue_struct *trunc_wq;
atomic_long_t writeback_count;
struct backing_dev_info backing_dev_info;
#ifdef CONFIG_DEBUG_FS
struct dentry *debugfs_monmap;
struct dentry *debugfs_mdsmap, *debugfs_osdmap;
struct dentry *debugfs_dir, *debugfs_dentry_lru, *debugfs_caps;
struct dentry *debugfs_congestion_kb;
struct dentry *debugfs_bdi;
#endif
};
static inline struct ceph_client *ceph_client(struct super_block *sb)
{
return sb->s_fs_info;
}
/*
* File i/o capability. This tracks shared state with the metadata
* server that allows us to cache or writeback attributes or to read
* and write data. For any given inode, we should have one or more
* capabilities, one issued by each metadata server, and our
* cumulative access is the OR of all issued capabilities.
*
* Each cap is referenced by the inode's i_caps rbtree and by per-mds
* session capability lists.
*/
struct ceph_cap {
struct ceph_inode_info *ci;
struct rb_node ci_node; /* per-ci cap tree */
struct ceph_mds_session *session;
struct list_head session_caps; /* per-session caplist */
int mds;
u64 cap_id; /* unique cap id (mds provided) */
int issued; /* latest, from the mds */
int implemented; /* implemented superset of issued (for revocation) */
int mds_wanted;
u32 seq, issue_seq, mseq;
u32 cap_gen; /* active/stale cycle */
unsigned long last_used;
struct list_head caps_item;
};
#define CHECK_CAPS_NODELAY 1 /* do not delay any further */
#define CHECK_CAPS_AUTHONLY 2 /* only check auth cap */
#define CHECK_CAPS_FLUSH 4 /* flush any dirty caps */
/*
* Snapped cap state that is pending flush to mds. When a snapshot occurs,
* we first complete any in-process sync writes and writeback any dirty
* data before flushing the snapped state (tracked here) back to the MDS.
*/
struct ceph_cap_snap {
atomic_t nref;
struct ceph_inode_info *ci;
struct list_head ci_item, flushing_item;
u64 follows, flush_tid;
int issued, dirty;
struct ceph_snap_context *context;
mode_t mode;
uid_t uid;
gid_t gid;
void *xattr_blob;
int xattr_len;
u64 xattr_version;
u64 size;
struct timespec mtime, atime, ctime;
u64 time_warp_seq;
int writing; /* a sync write is still in progress */
int dirty_pages; /* dirty pages awaiting writeback */
};
static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap)
{
if (atomic_dec_and_test(&capsnap->nref))
kfree(capsnap);
}
/*
* The frag tree describes how a directory is fragmented, potentially across
* multiple metadata servers. It is also used to indicate points where
* metadata authority is delegated, and whether/where metadata is replicated.
*
* A _leaf_ frag will be present in the i_fragtree IFF there is
* delegation info. That is, if mds >= 0 || ndist > 0.
*/
#define CEPH_MAX_DIRFRAG_REP 4
struct ceph_inode_frag {
struct rb_node node;
/* fragtree state */
u32 frag;
int split_by; /* i.e. 2^(split_by) children */
/* delegation and replication info */
int mds; /* -1 if same authority as parent */
int ndist; /* >0 if replicated */
int dist[CEPH_MAX_DIRFRAG_REP];
};
/*
* We cache inode xattrs as an encoded blob until they are first used,
* at which point we parse them into an rbtree.
*/
struct ceph_inode_xattr {
struct rb_node node;
const char *name;
int name_len;
const char *val;
int val_len;
int dirty;
int should_free_name;
int should_free_val;
};
struct ceph_inode_xattrs_info {
/*
* (still encoded) xattr blob. we avoid the overhead of parsing
* this until someone actually calls getxattr, etc.
*
* blob->vec.iov_len == 4 implies there are no xattrs; blob ==
* NULL means we don't know.
*/
struct ceph_buffer *blob, *prealloc_blob;
struct rb_root index;
bool dirty;
int count;
int names_size;
int vals_size;
u64 version, index_version;
};
/*
* Ceph inode.
*/
#define CEPH_I_COMPLETE 1 /* we have complete directory cached */
#define CEPH_I_NODELAY 4 /* do not delay cap release */
#define CEPH_I_FLUSH 8 /* do not delay flush of dirty metadata */
#define CEPH_I_NOFLUSH 16 /* do not flush dirty caps */
struct ceph_inode_info {
struct ceph_vino i_vino; /* ceph ino + snap */
u64 i_version;
u32 i_time_warp_seq;
unsigned i_ceph_flags;
unsigned long i_release_count;
struct ceph_file_layout i_layout;
char *i_symlink;
/* for dirs */
struct timespec i_rctime;
u64 i_rbytes, i_rfiles, i_rsubdirs;
u64 i_files, i_subdirs;
u64 i_max_offset; /* largest readdir offset, set with I_COMPLETE */
struct rb_root i_fragtree;
struct mutex i_fragtree_mutex;
struct ceph_inode_xattrs_info i_xattrs;
/* capabilities. protected _both_ by i_lock and cap->session's
* s_mutex. */
struct rb_root i_caps; /* cap list */
struct ceph_cap *i_auth_cap; /* authoritative cap, if any */
unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */
struct list_head i_dirty_item, i_flushing_item;
u64 i_cap_flush_seq;
/* we need to track cap writeback on a per-cap-bit basis, to allow
* overlapping, pipelined cap flushes to the mds. we can probably
* reduce the tid to 8 bits if we're concerned about inode size. */
u16 i_cap_flush_last_tid, i_cap_flush_tid[CEPH_CAP_BITS];
wait_queue_head_t i_cap_wq; /* threads waiting on a capability */
unsigned long i_hold_caps_min; /* jiffies */
unsigned long i_hold_caps_max; /* jiffies */
struct list_head i_cap_delay_list; /* for delayed cap release to mds */
int i_cap_exporting_mds; /* to handle cap migration between */
unsigned i_cap_exporting_mseq; /* mds's. */
unsigned i_cap_exporting_issued;
struct ceph_cap_reservation i_cap_migration_resv;
struct list_head i_cap_snaps; /* snapped state pending flush to mds */
struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 */
unsigned i_snap_caps; /* cap bits for snapped files */
int i_nr_by_mode[CEPH_FILE_MODE_NUM]; /* open file counts */
u32 i_truncate_seq; /* last truncate to smaller size */
u64 i_truncate_size; /* and the size we last truncated down to */
int i_truncate_pending; /* still need to call vmtruncate */
u64 i_max_size; /* max file size authorized by mds */
u64 i_reported_size; /* (max_)size reported to or requested of mds */
u64 i_wanted_max_size; /* offset we'd like to write too */
u64 i_requested_max_size; /* max_size we've requested */
/* held references to caps */
int i_pin_ref;
int i_rd_ref, i_rdcache_ref, i_wr_ref;
int i_wrbuffer_ref, i_wrbuffer_ref_head;
u32 i_shared_gen; /* increment each time we get FILE_SHARED */
u32 i_rdcache_gen; /* we increment this each time we get
FILE_CACHE. If it's non-zero, we
_may_ have cached pages. */
u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */
struct list_head i_unsafe_writes; /* uncommitted sync writes */
struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */
spinlock_t i_unsafe_lock;
struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */
int i_snap_realm_counter; /* snap realm (if caps) */
struct list_head i_snap_realm_item;
struct list_head i_snap_flush_item;
struct work_struct i_wb_work; /* writeback work */
struct work_struct i_pg_inv_work; /* page invalidation work */
struct work_struct i_vmtruncate_work;
struct inode vfs_inode; /* at end */
};
static inline struct ceph_inode_info *ceph_inode(struct inode *inode)
{
return container_of(inode, struct ceph_inode_info, vfs_inode);
}
static inline void ceph_i_clear(struct inode *inode, unsigned mask)
{
struct ceph_inode_info *ci = ceph_inode(inode);
spin_lock(&inode->i_lock);
ci->i_ceph_flags &= ~mask;
spin_unlock(&inode->i_lock);
}
static inline void ceph_i_set(struct inode *inode, unsigned mask)
{
struct ceph_inode_info *ci = ceph_inode(inode);
spin_lock(&inode->i_lock);
ci->i_ceph_flags |= mask;
spin_unlock(&inode->i_lock);
}
static inline bool ceph_i_test(struct inode *inode, unsigned mask)
{
struct ceph_inode_info *ci = ceph_inode(inode);
bool r;
smp_mb();
r = (ci->i_ceph_flags & mask) == mask;
return r;
}
/* find a specific frag @f */
extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci,
u32 f);
/*
* choose fragment for value @v. copy frag content to pfrag, if leaf
* exists
*/
extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v,
struct ceph_inode_frag *pfrag,
int *found);
/*
* Ceph dentry state
*/
struct ceph_dentry_info {
struct ceph_mds_session *lease_session;
u32 lease_gen, lease_shared_gen;
u32 lease_seq;
unsigned long lease_renew_after, lease_renew_from;
struct list_head lru;
struct dentry *dentry;
u64 time;
u64 offset;
};
static inline struct ceph_dentry_info *ceph_dentry(struct dentry *dentry)
{
return (struct ceph_dentry_info *)dentry->d_fsdata;
}
static inline loff_t ceph_make_fpos(unsigned frag, unsigned off)
{
return ((loff_t)frag << 32) | (loff_t)off;
}
/*
* ino_t is <64 bits on many architectures, blech.
*
* don't include snap in ino hash, at least for now.
*/
static inline ino_t ceph_vino_to_ino(struct ceph_vino vino)
{
ino_t ino = (ino_t)vino.ino; /* ^ (vino.snap << 20); */
#if BITS_PER_LONG == 32
ino ^= vino.ino >> (sizeof(u64)-sizeof(ino_t)) * 8;
if (!ino)
ino = 1;
#endif
return ino;
}
static inline int ceph_set_ino_cb(struct inode *inode, void *data)
{
ceph_inode(inode)->i_vino = *(struct ceph_vino *)data;
inode->i_ino = ceph_vino_to_ino(*(struct ceph_vino *)data);
return 0;
}
static inline struct ceph_vino ceph_vino(struct inode *inode)
{
return ceph_inode(inode)->i_vino;
}
/* for printf-style formatting */
#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap
static inline u64 ceph_ino(struct inode *inode)
{
return ceph_inode(inode)->i_vino.ino;
}
static inline u64 ceph_snap(struct inode *inode)
{
return ceph_inode(inode)->i_vino.snap;
}
static inline int ceph_ino_compare(struct inode *inode, void *data)
{
struct ceph_vino *pvino = (struct ceph_vino *)data;
struct ceph_inode_info *ci = ceph_inode(inode);
return ci->i_vino.ino == pvino->ino &&
ci->i_vino.snap == pvino->snap;
}
static inline struct inode *ceph_find_inode(struct super_block *sb,
struct ceph_vino vino)
{
ino_t t = ceph_vino_to_ino(vino);
return ilookup5(sb, t, ceph_ino_compare, &vino);
}
/*
* caps helpers
*/
static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci)
{
return !RB_EMPTY_ROOT(&ci->i_caps);
}
extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented);
extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t);
extern int __ceph_caps_issued_other(struct ceph_inode_info *ci,
struct ceph_cap *cap);
static inline int ceph_caps_issued(struct ceph_inode_info *ci)
{
int issued;
spin_lock(&ci->vfs_inode.i_lock);
issued = __ceph_caps_issued(ci, NULL);
spin_unlock(&ci->vfs_inode.i_lock);
return issued;
}
static inline int ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask,
int touch)
{
int r;
spin_lock(&ci->vfs_inode.i_lock);
r = __ceph_caps_issued_mask(ci, mask, touch);
spin_unlock(&ci->vfs_inode.i_lock);
return r;
}
static inline int __ceph_caps_dirty(struct ceph_inode_info *ci)
{
return ci->i_dirty_caps | ci->i_flushing_caps;
}
extern void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask);
extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask);
extern int __ceph_caps_used(struct ceph_inode_info *ci);
extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci);
/*
* wanted, by virtue of open file modes AND cap refs (buffered/cached data)
*/
static inline int __ceph_caps_wanted(struct ceph_inode_info *ci)
{
int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci);
if (w & CEPH_CAP_FILE_BUFFER)
w |= CEPH_CAP_FILE_EXCL; /* we want EXCL if dirty data */
return w;
}
/* what the mds thinks we want */
extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci);
extern void ceph_caps_init(void);
extern void ceph_caps_finalize(void);
extern void ceph_adjust_min_caps(int delta);
extern int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need);
extern int ceph_unreserve_caps(struct ceph_cap_reservation *ctx);
extern void ceph_reservation_status(struct ceph_client *client,
int *total, int *avail, int *used,
int *reserved, int *min);
static inline struct ceph_client *ceph_inode_to_client(struct inode *inode)
{
return (struct ceph_client *)inode->i_sb->s_fs_info;
}
static inline struct ceph_client *ceph_sb_to_client(struct super_block *sb)
{
return (struct ceph_client *)sb->s_fs_info;
}
/*
* we keep buffered readdir results attached to file->private_data
*/
struct ceph_file_info {
int fmode; /* initialized on open */
/* readdir: position within the dir */
u32 frag;
struct ceph_mds_request *last_readdir;
int at_end;
/* readdir: position within a frag */
unsigned offset; /* offset of last chunk, adjusted for . and .. */
u64 next_offset; /* offset of next chunk (last_name's + 1) */
char *last_name; /* last entry in previous chunk */
struct dentry *dentry; /* next dentry (for dcache readdir) */
unsigned long dir_release_count;
/* used for -o dirstat read() on directory thing */
char *dir_info;
int dir_info_len;
};
/*
* snapshots
*/
/*
* A "snap context" is the set of existing snapshots when we
* write data. It is used by the OSD to guide its COW behavior.
*
* The ceph_snap_context is refcounted, and attached to each dirty
* page, indicating which context the dirty data belonged when it was
* dirtied.
*/
struct ceph_snap_context {
atomic_t nref;
u64 seq;
int num_snaps;
u64 snaps[];
};
static inline struct ceph_snap_context *
ceph_get_snap_context(struct ceph_snap_context *sc)
{
/*
printk("get_snap_context %p %d -> %d\n", sc, atomic_read(&sc->nref),
atomic_read(&sc->nref)+1);
*/
if (sc)
atomic_inc(&sc->nref);
return sc;
}
static inline void ceph_put_snap_context(struct ceph_snap_context *sc)
{
if (!sc)
return;
/*
printk("put_snap_context %p %d -> %d\n", sc, atomic_read(&sc->nref),
atomic_read(&sc->nref)-1);
*/
if (atomic_dec_and_test(&sc->nref)) {
/*printk(" deleting snap_context %p\n", sc);*/
kfree(sc);
}
}
/*
* A "snap realm" describes a subset of the file hierarchy sharing
* the same set of snapshots that apply to it. The realms themselves
* are organized into a hierarchy, such that children inherit (some of)
* the snapshots of their parents.
*
* All inodes within the realm that have capabilities are linked into a
* per-realm list.
*/
struct ceph_snap_realm {
u64 ino;
atomic_t nref;
struct rb_node node;
u64 created, seq;
u64 parent_ino;
u64 parent_since; /* snapid when our current parent became so */
u64 *prior_parent_snaps; /* snaps inherited from any parents we */
int num_prior_parent_snaps; /* had prior to parent_since */
u64 *snaps; /* snaps specific to this realm */
int num_snaps;
struct ceph_snap_realm *parent;
struct list_head children; /* list of child realms */
struct list_head child_item;
struct list_head empty_item; /* if i have ref==0 */
/* the current set of snaps for this realm */
struct ceph_snap_context *cached_context;
struct list_head inodes_with_caps;
spinlock_t inodes_with_caps_lock;
};
/*
* calculate the number of pages a given length and offset map onto,
* if we align the data.
*/
static inline int calc_pages_for(u64 off, u64 len)
{
return ((off+len+PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT) -
(off >> PAGE_CACHE_SHIFT);
}
/* snap.c */
struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
u64 ino);
extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm);
extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm);
extern int ceph_update_snap_trace(struct ceph_mds_client *m,
void *p, void *e, bool deletion);
extern void ceph_handle_snap(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session,
struct ceph_msg *msg);
extern void ceph_queue_cap_snap(struct ceph_inode_info *ci,
struct ceph_snap_context *snapc);
extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
struct ceph_cap_snap *capsnap);
extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc);
/*
* a cap_snap is "pending" if it is still awaiting an in-progress
* sync write (that may/may not still update size, mtime, etc.).
*/
static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci)
{
return !list_empty(&ci->i_cap_snaps) &&
list_entry(ci->i_cap_snaps.prev, struct ceph_cap_snap,
ci_item)->writing;
}
/* super.c */
extern struct kmem_cache *ceph_inode_cachep;
extern struct kmem_cache *ceph_cap_cachep;
extern struct kmem_cache *ceph_dentry_cachep;
extern struct kmem_cache *ceph_file_cachep;
extern const char *ceph_msg_type_name(int type);
extern int ceph_check_fsid(struct ceph_client *client, struct ceph_fsid *fsid);
#define FSID_FORMAT "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-" \
"%02x%02x%02x%02x%02x%02x"
#define PR_FSID(f) (f)->fsid[0], (f)->fsid[1], (f)->fsid[2], (f)->fsid[3], \
(f)->fsid[4], (f)->fsid[5], (f)->fsid[6], (f)->fsid[7], \
(f)->fsid[8], (f)->fsid[9], (f)->fsid[10], (f)->fsid[11], \
(f)->fsid[12], (f)->fsid[13], (f)->fsid[14], (f)->fsid[15]
/* inode.c */
extern const struct inode_operations ceph_file_iops;
extern struct inode *ceph_alloc_inode(struct super_block *sb);
extern void ceph_destroy_inode(struct inode *inode);
extern struct inode *ceph_get_inode(struct super_block *sb,
struct ceph_vino vino);
extern struct inode *ceph_get_snapdir(struct inode *parent);
extern int ceph_fill_file_size(struct inode *inode, int issued,
u32 truncate_seq, u64 truncate_size, u64 size);
extern void ceph_fill_file_time(struct inode *inode, int issued,
u64 time_warp_seq, struct timespec *ctime,
struct timespec *mtime, struct timespec *atime);
extern int ceph_fill_trace(struct super_block *sb,
struct ceph_mds_request *req,
struct ceph_mds_session *session);
extern int ceph_readdir_prepopulate(struct ceph_mds_request *req,
struct ceph_mds_session *session);
extern int ceph_inode_holds_cap(struct inode *inode, int mask);
extern int ceph_inode_set_size(struct inode *inode, loff_t size);
extern void __ceph_do_pending_vmtruncate(struct inode *inode);
extern void ceph_queue_vmtruncate(struct inode *inode);
extern void ceph_queue_invalidate(struct inode *inode);
extern void ceph_queue_writeback(struct inode *inode);
extern int ceph_do_getattr(struct inode *inode, int mask);
extern int ceph_permission(struct inode *inode, int mask);
extern int ceph_setattr(struct dentry *dentry, struct iattr *attr);
extern int ceph_getattr(struct vfsmount *mnt, struct dentry *dentry,
struct kstat *stat);
/* xattr.c */
extern int ceph_setxattr(struct dentry *, const char *, const void *,
size_t, int);
extern ssize_t ceph_getxattr(struct dentry *, const char *, void *, size_t);
extern ssize_t ceph_listxattr(struct dentry *, char *, size_t);
extern int ceph_removexattr(struct dentry *, const char *);
extern void __ceph_build_xattrs_blob(struct ceph_inode_info *ci);
extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci);
/* caps.c */
extern const char *ceph_cap_string(int c);
extern void ceph_handle_caps(struct ceph_mds_session *session,
struct ceph_msg *msg);
extern int ceph_add_cap(struct inode *inode,
struct ceph_mds_session *session, u64 cap_id,
int fmode, unsigned issued, unsigned wanted,
unsigned cap, unsigned seq, u64 realmino, int flags,
struct ceph_cap_reservation *caps_reservation);
extern void __ceph_remove_cap(struct ceph_cap *cap);
static inline void ceph_remove_cap(struct ceph_cap *cap)
{
struct inode *inode = &cap->ci->vfs_inode;
spin_lock(&inode->i_lock);
__ceph_remove_cap(cap);
spin_unlock(&inode->i_lock);
}
extern void ceph_put_cap(struct ceph_cap *cap);
extern void ceph_queue_caps_release(struct inode *inode);
extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc);
extern int ceph_fsync(struct file *file, struct dentry *dentry, int datasync);
extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session);
extern int ceph_get_cap_mds(struct inode *inode);
extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps);
extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had);
extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
struct ceph_snap_context *snapc);
extern void __ceph_flush_snaps(struct ceph_inode_info *ci,
struct ceph_mds_session **psession);
extern void ceph_check_caps(struct ceph_inode_info *ci, int flags,
struct ceph_mds_session *session);
extern void ceph_check_delayed_caps(struct ceph_mds_client *mdsc);
extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc);
extern int ceph_encode_inode_release(void **p, struct inode *inode,
int mds, int drop, int unless, int force);
extern int ceph_encode_dentry_release(void **p, struct dentry *dn,
int mds, int drop, int unless);
extern int ceph_get_caps(struct ceph_inode_info *ci, int need, int want,
int *got, loff_t endoff);
/* for counting open files by mode */
static inline void __ceph_get_fmode(struct ceph_inode_info *ci, int mode)
{
ci->i_nr_by_mode[mode]++;
}
extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode);
/* addr.c */
extern const struct address_space_operations ceph_aops;
extern int ceph_mmap(struct file *file, struct vm_area_struct *vma);
/* file.c */
extern const struct file_operations ceph_file_fops;
extern const struct address_space_operations ceph_aops;
extern int ceph_open(struct inode *inode, struct file *file);
extern struct dentry *ceph_lookup_open(struct inode *dir, struct dentry *dentry,
struct nameidata *nd, int mode,
int locked_dir);
extern int ceph_release(struct inode *inode, struct file *filp);
extern void ceph_release_page_vector(struct page **pages, int num_pages);
/* dir.c */
extern const struct file_operations ceph_dir_fops;
extern const struct inode_operations ceph_dir_iops;
extern struct dentry_operations ceph_dentry_ops, ceph_snap_dentry_ops,
ceph_snapdir_dentry_ops;
extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry);
extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req,
struct dentry *dentry, int err);
extern void ceph_dentry_lru_add(struct dentry *dn);
extern void ceph_dentry_lru_touch(struct dentry *dn);
extern void ceph_dentry_lru_del(struct dentry *dn);
/*
* our d_ops vary depending on whether the inode is live,
* snapshotted (read-only), or a virtual ".snap" directory.
*/
int ceph_init_dentry(struct dentry *dentry);
/* ioctl.c */
extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
/* export.c */
extern const struct export_operations ceph_export_ops;
/* debugfs.c */
extern int ceph_debugfs_init(void);
extern void ceph_debugfs_cleanup(void);
extern int ceph_debugfs_client_init(struct ceph_client *client);
extern void ceph_debugfs_client_cleanup(struct ceph_client *client);
static inline struct inode *get_dentry_parent_inode(struct dentry *dentry)
{
if (dentry && dentry->d_parent)
return dentry->d_parent->d_inode;
return NULL;
}
#endif /* _FS_CEPH_SUPER_H */

29
fs/ceph/types.h Normal file
View file

@ -0,0 +1,29 @@
#ifndef _FS_CEPH_TYPES_H
#define _FS_CEPH_TYPES_H
/* needed before including ceph_fs.h */
#include <linux/in.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/string.h>
#include "ceph_fs.h"
#include "ceph_frag.h"
#include "ceph_hash.h"
/*
* Identify inodes by both their ino AND snapshot id (a u64).
*/
struct ceph_vino {
u64 ino;
u64 snap;
};
/* context for the caps reservation mechanism */
struct ceph_cap_reservation {
int count;
};
#endif

844
fs/ceph/xattr.c Normal file
View file

@ -0,0 +1,844 @@
#include "ceph_debug.h"
#include "super.h"
#include "decode.h"
#include <linux/xattr.h>
static bool ceph_is_valid_xattr(const char *name)
{
return !strncmp(name, XATTR_SECURITY_PREFIX,
XATTR_SECURITY_PREFIX_LEN) ||
!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
!strncmp(name, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN);
}
/*
* These define virtual xattrs exposing the recursive directory
* statistics and layout metadata.
*/
struct ceph_vxattr_cb {
bool readonly;
char *name;
size_t (*getxattr_cb)(struct ceph_inode_info *ci, char *val,
size_t size);
};
/* directories */
static size_t ceph_vxattrcb_entries(struct ceph_inode_info *ci, char *val,
size_t size)
{
return snprintf(val, size, "%lld", ci->i_files + ci->i_subdirs);
}
static size_t ceph_vxattrcb_files(struct ceph_inode_info *ci, char *val,
size_t size)
{
return snprintf(val, size, "%lld", ci->i_files);
}
static size_t ceph_vxattrcb_subdirs(struct ceph_inode_info *ci, char *val,
size_t size)
{
return snprintf(val, size, "%lld", ci->i_subdirs);
}
static size_t ceph_vxattrcb_rentries(struct ceph_inode_info *ci, char *val,
size_t size)
{
return snprintf(val, size, "%lld", ci->i_rfiles + ci->i_rsubdirs);
}
static size_t ceph_vxattrcb_rfiles(struct ceph_inode_info *ci, char *val,
size_t size)
{
return snprintf(val, size, "%lld", ci->i_rfiles);
}
static size_t ceph_vxattrcb_rsubdirs(struct ceph_inode_info *ci, char *val,
size_t size)
{
return snprintf(val, size, "%lld", ci->i_rsubdirs);
}
static size_t ceph_vxattrcb_rbytes(struct ceph_inode_info *ci, char *val,
size_t size)
{
return snprintf(val, size, "%lld", ci->i_rbytes);
}
static size_t ceph_vxattrcb_rctime(struct ceph_inode_info *ci, char *val,
size_t size)
{
return snprintf(val, size, "%ld.%ld", (long)ci->i_rctime.tv_sec,
(long)ci->i_rctime.tv_nsec);
}
static struct ceph_vxattr_cb ceph_dir_vxattrs[] = {
{ true, "user.ceph.dir.entries", ceph_vxattrcb_entries},
{ true, "user.ceph.dir.files", ceph_vxattrcb_files},
{ true, "user.ceph.dir.subdirs", ceph_vxattrcb_subdirs},
{ true, "user.ceph.dir.rentries", ceph_vxattrcb_rentries},
{ true, "user.ceph.dir.rfiles", ceph_vxattrcb_rfiles},
{ true, "user.ceph.dir.rsubdirs", ceph_vxattrcb_rsubdirs},
{ true, "user.ceph.dir.rbytes", ceph_vxattrcb_rbytes},
{ true, "user.ceph.dir.rctime", ceph_vxattrcb_rctime},
{ true, NULL, NULL }
};
/* files */
static size_t ceph_vxattrcb_layout(struct ceph_inode_info *ci, char *val,
size_t size)
{
int ret;
ret = snprintf(val, size,
"chunk_bytes=%lld\nstripe_count=%lld\nobject_size=%lld\n",
(unsigned long long)ceph_file_layout_su(ci->i_layout),
(unsigned long long)ceph_file_layout_stripe_count(ci->i_layout),
(unsigned long long)ceph_file_layout_object_size(ci->i_layout));
if (ceph_file_layout_pg_preferred(ci->i_layout))
ret += snprintf(val + ret, size, "preferred_osd=%lld\n",
(unsigned long long)ceph_file_layout_pg_preferred(
ci->i_layout));
return ret;
}
static struct ceph_vxattr_cb ceph_file_vxattrs[] = {
{ true, "user.ceph.layout", ceph_vxattrcb_layout},
{ NULL, NULL }
};
static struct ceph_vxattr_cb *ceph_inode_vxattrs(struct inode *inode)
{
if (S_ISDIR(inode->i_mode))
return ceph_dir_vxattrs;
else if (S_ISREG(inode->i_mode))
return ceph_file_vxattrs;
return NULL;
}
static struct ceph_vxattr_cb *ceph_match_vxattr(struct ceph_vxattr_cb *vxattr,
const char *name)
{
do {
if (strcmp(vxattr->name, name) == 0)
return vxattr;
vxattr++;
} while (vxattr->name);
return NULL;
}
static int __set_xattr(struct ceph_inode_info *ci,
const char *name, int name_len,
const char *val, int val_len,
int dirty,
int should_free_name, int should_free_val,
struct ceph_inode_xattr **newxattr)
{
struct rb_node **p;
struct rb_node *parent = NULL;
struct ceph_inode_xattr *xattr = NULL;
int c;
int new = 0;
p = &ci->i_xattrs.index.rb_node;
while (*p) {
parent = *p;
xattr = rb_entry(parent, struct ceph_inode_xattr, node);
c = strncmp(name, xattr->name, min(name_len, xattr->name_len));
if (c < 0)
p = &(*p)->rb_left;
else if (c > 0)
p = &(*p)->rb_right;
else {
if (name_len == xattr->name_len)
break;
else if (name_len < xattr->name_len)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
xattr = NULL;
}
if (!xattr) {
new = 1;
xattr = *newxattr;
xattr->name = name;
xattr->name_len = name_len;
xattr->should_free_name = should_free_name;
ci->i_xattrs.count++;
dout("__set_xattr count=%d\n", ci->i_xattrs.count);
} else {
kfree(*newxattr);
*newxattr = NULL;
if (xattr->should_free_val)
kfree((void *)xattr->val);
if (should_free_name) {
kfree((void *)name);
name = xattr->name;
}
ci->i_xattrs.names_size -= xattr->name_len;
ci->i_xattrs.vals_size -= xattr->val_len;
}
if (!xattr) {
pr_err("__set_xattr ENOMEM on %p %llx.%llx xattr %s=%s\n",
&ci->vfs_inode, ceph_vinop(&ci->vfs_inode), name,
xattr->val);
return -ENOMEM;
}
ci->i_xattrs.names_size += name_len;
ci->i_xattrs.vals_size += val_len;
if (val)
xattr->val = val;
else
xattr->val = "";
xattr->val_len = val_len;
xattr->dirty = dirty;
xattr->should_free_val = (val && should_free_val);
if (new) {
rb_link_node(&xattr->node, parent, p);
rb_insert_color(&xattr->node, &ci->i_xattrs.index);
dout("__set_xattr_val p=%p\n", p);
}
dout("__set_xattr_val added %llx.%llx xattr %p %s=%.*s\n",
ceph_vinop(&ci->vfs_inode), xattr, name, val_len, val);
return 0;
}
static struct ceph_inode_xattr *__get_xattr(struct ceph_inode_info *ci,
const char *name)
{
struct rb_node **p;
struct rb_node *parent = NULL;
struct ceph_inode_xattr *xattr = NULL;
int c;
p = &ci->i_xattrs.index.rb_node;
while (*p) {
parent = *p;
xattr = rb_entry(parent, struct ceph_inode_xattr, node);
c = strncmp(name, xattr->name, xattr->name_len);
if (c < 0)
p = &(*p)->rb_left;
else if (c > 0)
p = &(*p)->rb_right;
else {
dout("__get_xattr %s: found %.*s\n", name,
xattr->val_len, xattr->val);
return xattr;
}
}
dout("__get_xattr %s: not found\n", name);
return NULL;
}
static void __free_xattr(struct ceph_inode_xattr *xattr)
{
BUG_ON(!xattr);
if (xattr->should_free_name)
kfree((void *)xattr->name);
if (xattr->should_free_val)
kfree((void *)xattr->val);
kfree(xattr);
}
static int __remove_xattr(struct ceph_inode_info *ci,
struct ceph_inode_xattr *xattr)
{
if (!xattr)
return -EOPNOTSUPP;
rb_erase(&xattr->node, &ci->i_xattrs.index);
if (xattr->should_free_name)
kfree((void *)xattr->name);
if (xattr->should_free_val)
kfree((void *)xattr->val);
ci->i_xattrs.names_size -= xattr->name_len;
ci->i_xattrs.vals_size -= xattr->val_len;
ci->i_xattrs.count--;
kfree(xattr);
return 0;
}
static int __remove_xattr_by_name(struct ceph_inode_info *ci,
const char *name)
{
struct rb_node **p;
struct ceph_inode_xattr *xattr;
int err;
p = &ci->i_xattrs.index.rb_node;
xattr = __get_xattr(ci, name);
err = __remove_xattr(ci, xattr);
return err;
}
static char *__copy_xattr_names(struct ceph_inode_info *ci,
char *dest)
{
struct rb_node *p;
struct ceph_inode_xattr *xattr = NULL;
p = rb_first(&ci->i_xattrs.index);
dout("__copy_xattr_names count=%d\n", ci->i_xattrs.count);
while (p) {
xattr = rb_entry(p, struct ceph_inode_xattr, node);
memcpy(dest, xattr->name, xattr->name_len);
dest[xattr->name_len] = '\0';
dout("dest=%s %p (%s) (%d/%d)\n", dest, xattr, xattr->name,
xattr->name_len, ci->i_xattrs.names_size);
dest += xattr->name_len + 1;
p = rb_next(p);
}
return dest;
}
void __ceph_destroy_xattrs(struct ceph_inode_info *ci)
{
struct rb_node *p, *tmp;
struct ceph_inode_xattr *xattr = NULL;
p = rb_first(&ci->i_xattrs.index);
dout("__ceph_destroy_xattrs p=%p\n", p);
while (p) {
xattr = rb_entry(p, struct ceph_inode_xattr, node);
tmp = p;
p = rb_next(tmp);
dout("__ceph_destroy_xattrs next p=%p (%.*s)\n", p,
xattr->name_len, xattr->name);
rb_erase(tmp, &ci->i_xattrs.index);
__free_xattr(xattr);
}
ci->i_xattrs.names_size = 0;
ci->i_xattrs.vals_size = 0;
ci->i_xattrs.index_version = 0;
ci->i_xattrs.count = 0;
ci->i_xattrs.index = RB_ROOT;
}
static int __build_xattrs(struct inode *inode)
{
u32 namelen;
u32 numattr = 0;
void *p, *end;
u32 len;
const char *name, *val;
struct ceph_inode_info *ci = ceph_inode(inode);
int xattr_version;
struct ceph_inode_xattr **xattrs = NULL;
int err = 0;
int i;
dout("__build_xattrs() len=%d\n",
ci->i_xattrs.blob ? (int)ci->i_xattrs.blob->vec.iov_len : 0);
if (ci->i_xattrs.index_version >= ci->i_xattrs.version)
return 0; /* already built */
__ceph_destroy_xattrs(ci);
start:
/* updated internal xattr rb tree */
if (ci->i_xattrs.blob && ci->i_xattrs.blob->vec.iov_len > 4) {
p = ci->i_xattrs.blob->vec.iov_base;
end = p + ci->i_xattrs.blob->vec.iov_len;
ceph_decode_32_safe(&p, end, numattr, bad);
xattr_version = ci->i_xattrs.version;
spin_unlock(&inode->i_lock);
xattrs = kcalloc(numattr, sizeof(struct ceph_xattr *),
GFP_NOFS);
err = -ENOMEM;
if (!xattrs)
goto bad_lock;
memset(xattrs, 0, numattr*sizeof(struct ceph_xattr *));
for (i = 0; i < numattr; i++) {
xattrs[i] = kmalloc(sizeof(struct ceph_inode_xattr),
GFP_NOFS);
if (!xattrs[i])
goto bad_lock;
}
spin_lock(&inode->i_lock);
if (ci->i_xattrs.version != xattr_version) {
/* lost a race, retry */
for (i = 0; i < numattr; i++)
kfree(xattrs[i]);
kfree(xattrs);
goto start;
}
err = -EIO;
while (numattr--) {
ceph_decode_32_safe(&p, end, len, bad);
namelen = len;
name = p;
p += len;
ceph_decode_32_safe(&p, end, len, bad);
val = p;
p += len;
err = __set_xattr(ci, name, namelen, val, len,
0, 0, 0, &xattrs[numattr]);
if (err < 0)
goto bad;
}
kfree(xattrs);
}
ci->i_xattrs.index_version = ci->i_xattrs.version;
ci->i_xattrs.dirty = false;
return err;
bad_lock:
spin_lock(&inode->i_lock);
bad:
if (xattrs) {
for (i = 0; i < numattr; i++)
kfree(xattrs[i]);
kfree(xattrs);
}
ci->i_xattrs.names_size = 0;
return err;
}
static int __get_required_blob_size(struct ceph_inode_info *ci, int name_size,
int val_size)
{
/*
* 4 bytes for the length, and additional 4 bytes per each xattr name,
* 4 bytes per each value
*/
int size = 4 + ci->i_xattrs.count*(4 + 4) +
ci->i_xattrs.names_size +
ci->i_xattrs.vals_size;
dout("__get_required_blob_size c=%d names.size=%d vals.size=%d\n",
ci->i_xattrs.count, ci->i_xattrs.names_size,
ci->i_xattrs.vals_size);
if (name_size)
size += 4 + 4 + name_size + val_size;
return size;
}
/*
* If there are dirty xattrs, reencode xattrs into the prealloc_blob
* and swap into place.
*/
void __ceph_build_xattrs_blob(struct ceph_inode_info *ci)
{
struct rb_node *p;
struct ceph_inode_xattr *xattr = NULL;
void *dest;
dout("__build_xattrs_blob %p\n", &ci->vfs_inode);
if (ci->i_xattrs.dirty) {
int need = __get_required_blob_size(ci, 0, 0);
BUG_ON(need > ci->i_xattrs.prealloc_blob->alloc_len);
p = rb_first(&ci->i_xattrs.index);
dest = ci->i_xattrs.prealloc_blob->vec.iov_base;
ceph_encode_32(&dest, ci->i_xattrs.count);
while (p) {
xattr = rb_entry(p, struct ceph_inode_xattr, node);
ceph_encode_32(&dest, xattr->name_len);
memcpy(dest, xattr->name, xattr->name_len);
dest += xattr->name_len;
ceph_encode_32(&dest, xattr->val_len);
memcpy(dest, xattr->val, xattr->val_len);
dest += xattr->val_len;
p = rb_next(p);
}
/* adjust buffer len; it may be larger than we need */
ci->i_xattrs.prealloc_blob->vec.iov_len =
dest - ci->i_xattrs.prealloc_blob->vec.iov_base;
if (ci->i_xattrs.blob)
ceph_buffer_put(ci->i_xattrs.blob);
ci->i_xattrs.blob = ci->i_xattrs.prealloc_blob;
ci->i_xattrs.prealloc_blob = NULL;
ci->i_xattrs.dirty = false;
}
}
ssize_t ceph_getxattr(struct dentry *dentry, const char *name, void *value,
size_t size)
{
struct inode *inode = dentry->d_inode;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_vxattr_cb *vxattrs = ceph_inode_vxattrs(inode);
int err;
struct ceph_inode_xattr *xattr;
struct ceph_vxattr_cb *vxattr = NULL;
if (!ceph_is_valid_xattr(name))
return -ENODATA;
/* let's see if a virtual xattr was requested */
if (vxattrs)
vxattr = ceph_match_vxattr(vxattrs, name);
spin_lock(&inode->i_lock);
dout("getxattr %p ver=%lld index_ver=%lld\n", inode,
ci->i_xattrs.version, ci->i_xattrs.index_version);
if (__ceph_caps_issued_mask(ci, CEPH_CAP_XATTR_SHARED, 1) &&
(ci->i_xattrs.index_version >= ci->i_xattrs.version)) {
goto get_xattr;
} else {
spin_unlock(&inode->i_lock);
/* get xattrs from mds (if we don't already have them) */
err = ceph_do_getattr(inode, CEPH_STAT_CAP_XATTR);
if (err)
return err;
}
spin_lock(&inode->i_lock);
if (vxattr && vxattr->readonly) {
err = vxattr->getxattr_cb(ci, value, size);
goto out;
}
err = __build_xattrs(inode);
if (err < 0)
goto out;
get_xattr:
err = -ENODATA; /* == ENOATTR */
xattr = __get_xattr(ci, name);
if (!xattr) {
if (vxattr)
err = vxattr->getxattr_cb(ci, value, size);
goto out;
}
err = -ERANGE;
if (size && size < xattr->val_len)
goto out;
err = xattr->val_len;
if (size == 0)
goto out;
memcpy(value, xattr->val, xattr->val_len);
out:
spin_unlock(&inode->i_lock);
return err;
}
ssize_t ceph_listxattr(struct dentry *dentry, char *names, size_t size)
{
struct inode *inode = dentry->d_inode;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_vxattr_cb *vxattrs = ceph_inode_vxattrs(inode);
u32 vir_namelen = 0;
u32 namelen;
int err;
u32 len;
int i;
spin_lock(&inode->i_lock);
dout("listxattr %p ver=%lld index_ver=%lld\n", inode,
ci->i_xattrs.version, ci->i_xattrs.index_version);
if (__ceph_caps_issued_mask(ci, CEPH_CAP_XATTR_SHARED, 1) &&
(ci->i_xattrs.index_version > ci->i_xattrs.version)) {
goto list_xattr;
} else {
spin_unlock(&inode->i_lock);
err = ceph_do_getattr(inode, CEPH_STAT_CAP_XATTR);
if (err)
return err;
}
spin_lock(&inode->i_lock);
err = __build_xattrs(inode);
if (err < 0)
goto out;
list_xattr:
vir_namelen = 0;
/* include virtual dir xattrs */
if (vxattrs)
for (i = 0; vxattrs[i].name; i++)
vir_namelen += strlen(vxattrs[i].name) + 1;
/* adding 1 byte per each variable due to the null termination */
namelen = vir_namelen + ci->i_xattrs.names_size + ci->i_xattrs.count;
err = -ERANGE;
if (size && namelen > size)
goto out;
err = namelen;
if (size == 0)
goto out;
names = __copy_xattr_names(ci, names);
/* virtual xattr names, too */
if (vxattrs)
for (i = 0; vxattrs[i].name; i++) {
len = sprintf(names, "%s", vxattrs[i].name);
names += len + 1;
}
out:
spin_unlock(&inode->i_lock);
return err;
}
static int ceph_sync_setxattr(struct dentry *dentry, const char *name,
const char *value, size_t size, int flags)
{
struct ceph_client *client = ceph_client(dentry->d_sb);
struct inode *inode = dentry->d_inode;
struct ceph_inode_info *ci = ceph_inode(inode);
struct inode *parent_inode = dentry->d_parent->d_inode;
struct ceph_mds_request *req;
struct ceph_mds_client *mdsc = &client->mdsc;
int err;
int i, nr_pages;
struct page **pages = NULL;
void *kaddr;
/* copy value into some pages */
nr_pages = calc_pages_for(0, size);
if (nr_pages) {
pages = kmalloc(sizeof(pages[0])*nr_pages, GFP_NOFS);
if (!pages)
return -ENOMEM;
err = -ENOMEM;
for (i = 0; i < nr_pages; i++) {
pages[i] = alloc_page(GFP_NOFS);
if (!pages[i]) {
nr_pages = i;
goto out;
}
kaddr = kmap(pages[i]);
memcpy(kaddr, value + i*PAGE_CACHE_SIZE,
min(PAGE_CACHE_SIZE, size-i*PAGE_CACHE_SIZE));
}
}
dout("setxattr value=%.*s\n", (int)size, value);
/* do request */
req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_SETXATTR,
USE_AUTH_MDS);
if (IS_ERR(req)) {
err = PTR_ERR(req);
goto out;
}
req->r_inode = igrab(inode);
req->r_inode_drop = CEPH_CAP_XATTR_SHARED;
req->r_num_caps = 1;
req->r_args.setxattr.flags = cpu_to_le32(flags);
req->r_path2 = kstrdup(name, GFP_NOFS);
req->r_pages = pages;
req->r_num_pages = nr_pages;
req->r_data_len = size;
dout("xattr.ver (before): %lld\n", ci->i_xattrs.version);
err = ceph_mdsc_do_request(mdsc, parent_inode, req);
ceph_mdsc_put_request(req);
dout("xattr.ver (after): %lld\n", ci->i_xattrs.version);
out:
if (pages) {
for (i = 0; i < nr_pages; i++)
__free_page(pages[i]);
kfree(pages);
}
return err;
}
int ceph_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
struct inode *inode = dentry->d_inode;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_vxattr_cb *vxattrs = ceph_inode_vxattrs(inode);
int err;
int name_len = strlen(name);
int val_len = size;
char *newname = NULL;
char *newval = NULL;
struct ceph_inode_xattr *xattr = NULL;
int issued;
int required_blob_size;
if (ceph_snap(inode) != CEPH_NOSNAP)
return -EROFS;
if (!ceph_is_valid_xattr(name))
return -EOPNOTSUPP;
if (vxattrs) {
struct ceph_vxattr_cb *vxattr =
ceph_match_vxattr(vxattrs, name);
if (vxattr && vxattr->readonly)
return -EOPNOTSUPP;
}
/* preallocate memory for xattr name, value, index node */
err = -ENOMEM;
newname = kmalloc(name_len + 1, GFP_NOFS);
if (!newname)
goto out;
memcpy(newname, name, name_len + 1);
if (val_len) {
newval = kmalloc(val_len + 1, GFP_NOFS);
if (!newval)
goto out;
memcpy(newval, value, val_len);
newval[val_len] = '\0';
}
xattr = kmalloc(sizeof(struct ceph_inode_xattr), GFP_NOFS);
if (!xattr)
goto out;
spin_lock(&inode->i_lock);
retry:
issued = __ceph_caps_issued(ci, NULL);
if (!(issued & CEPH_CAP_XATTR_EXCL))
goto do_sync;
__build_xattrs(inode);
required_blob_size = __get_required_blob_size(ci, name_len, val_len);
if (!ci->i_xattrs.prealloc_blob ||
required_blob_size > ci->i_xattrs.prealloc_blob->alloc_len) {
struct ceph_buffer *blob = NULL;
spin_unlock(&inode->i_lock);
dout(" preaallocating new blob size=%d\n", required_blob_size);
blob = ceph_buffer_new(required_blob_size, GFP_NOFS);
if (!blob)
goto out;
spin_lock(&inode->i_lock);
if (ci->i_xattrs.prealloc_blob)
ceph_buffer_put(ci->i_xattrs.prealloc_blob);
ci->i_xattrs.prealloc_blob = blob;
goto retry;
}
dout("setxattr %p issued %s\n", inode, ceph_cap_string(issued));
err = __set_xattr(ci, newname, name_len, newval,
val_len, 1, 1, 1, &xattr);
__ceph_mark_dirty_caps(ci, CEPH_CAP_XATTR_EXCL);
ci->i_xattrs.dirty = true;
inode->i_ctime = CURRENT_TIME;
spin_unlock(&inode->i_lock);
return err;
do_sync:
spin_unlock(&inode->i_lock);
err = ceph_sync_setxattr(dentry, name, value, size, flags);
out:
kfree(newname);
kfree(newval);
kfree(xattr);
return err;
}
static int ceph_send_removexattr(struct dentry *dentry, const char *name)
{
struct ceph_client *client = ceph_client(dentry->d_sb);
struct ceph_mds_client *mdsc = &client->mdsc;
struct inode *inode = dentry->d_inode;
struct inode *parent_inode = dentry->d_parent->d_inode;
struct ceph_mds_request *req;
int err;
req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_RMXATTR,
USE_AUTH_MDS);
if (IS_ERR(req))
return PTR_ERR(req);
req->r_inode = igrab(inode);
req->r_inode_drop = CEPH_CAP_XATTR_SHARED;
req->r_num_caps = 1;
req->r_path2 = kstrdup(name, GFP_NOFS);
err = ceph_mdsc_do_request(mdsc, parent_inode, req);
ceph_mdsc_put_request(req);
return err;
}
int ceph_removexattr(struct dentry *dentry, const char *name)
{
struct inode *inode = dentry->d_inode;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_vxattr_cb *vxattrs = ceph_inode_vxattrs(inode);
int issued;
int err;
if (ceph_snap(inode) != CEPH_NOSNAP)
return -EROFS;
if (!ceph_is_valid_xattr(name))
return -EOPNOTSUPP;
if (vxattrs) {
struct ceph_vxattr_cb *vxattr =
ceph_match_vxattr(vxattrs, name);
if (vxattr && vxattr->readonly)
return -EOPNOTSUPP;
}
spin_lock(&inode->i_lock);
__build_xattrs(inode);
issued = __ceph_caps_issued(ci, NULL);
dout("removexattr %p issued %s\n", inode, ceph_cap_string(issued));
if (!(issued & CEPH_CAP_XATTR_EXCL))
goto do_sync;
err = __remove_xattr_by_name(ceph_inode(inode), name);
__ceph_mark_dirty_caps(ci, CEPH_CAP_XATTR_EXCL);
ci->i_xattrs.dirty = true;
inode->i_ctime = CURRENT_TIME;
spin_unlock(&inode->i_lock);
return err;
do_sync:
spin_unlock(&inode->i_lock);
err = ceph_send_removexattr(dentry, name);
return err;
}