ARC: Page Fault handling
This includes recent changes to make handler "retry" and/or "killable" The killable (early exit) logic is loosely based on how SH implements it return if SIGKILL + either of VM_FAULT_OOM or VM_FAULT_RETRY which is different from Hexagon implementation which would NOT early exit for SIGKILL + VM_FAULT_OOM + !VM_FAULT_RETRY credits: Non executable stack support from Simon Spooner Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This commit is contained in:
parent
d79e678d74
commit
fbd7053a78
1 changed files with 228 additions and 0 deletions
228
arch/arc/mm/fault.c
Normal file
228
arch/arc/mm/fault.c
Normal file
|
@ -0,0 +1,228 @@
|
|||
/* Page Fault Handling for ARC (TLB Miss / ProtV)
|
||||
*
|
||||
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/signal.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/ptrace.h>
|
||||
#include <linux/version.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/kdebug.h>
|
||||
#include <asm/pgalloc.h>
|
||||
|
||||
static int handle_vmalloc_fault(struct mm_struct *mm, unsigned long address)
|
||||
{
|
||||
/*
|
||||
* Synchronize this task's top level page-table
|
||||
* with the 'reference' page table.
|
||||
*/
|
||||
pgd_t *pgd, *pgd_k;
|
||||
pud_t *pud, *pud_k;
|
||||
pmd_t *pmd, *pmd_k;
|
||||
|
||||
pgd = pgd_offset_fast(mm, address);
|
||||
pgd_k = pgd_offset_k(address);
|
||||
|
||||
if (!pgd_present(*pgd_k))
|
||||
goto bad_area;
|
||||
|
||||
pud = pud_offset(pgd, address);
|
||||
pud_k = pud_offset(pgd_k, address);
|
||||
if (!pud_present(*pud_k))
|
||||
goto bad_area;
|
||||
|
||||
pmd = pmd_offset(pud, address);
|
||||
pmd_k = pmd_offset(pud_k, address);
|
||||
if (!pmd_present(*pmd_k))
|
||||
goto bad_area;
|
||||
|
||||
set_pmd(pmd, *pmd_k);
|
||||
|
||||
/* XXX: create the TLB entry here */
|
||||
return 0;
|
||||
|
||||
bad_area:
|
||||
return 1;
|
||||
}
|
||||
|
||||
void do_page_fault(struct pt_regs *regs, int write, unsigned long address,
|
||||
unsigned long cause_code)
|
||||
{
|
||||
struct vm_area_struct *vma = NULL;
|
||||
struct task_struct *tsk = current;
|
||||
struct mm_struct *mm = tsk->mm;
|
||||
siginfo_t info;
|
||||
int fault, ret;
|
||||
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
|
||||
(write ? FAULT_FLAG_WRITE : 0);
|
||||
|
||||
/*
|
||||
* We fault-in kernel-space virtual memory on-demand. The
|
||||
* 'reference' page table is init_mm.pgd.
|
||||
*
|
||||
* NOTE! We MUST NOT take any locks for this case. We may
|
||||
* be in an interrupt or a critical region, and should
|
||||
* only copy the information from the master page table,
|
||||
* nothing more.
|
||||
*/
|
||||
if (address >= VMALLOC_START && address <= VMALLOC_END) {
|
||||
ret = handle_vmalloc_fault(mm, address);
|
||||
if (unlikely(ret))
|
||||
goto bad_area_nosemaphore;
|
||||
else
|
||||
return;
|
||||
}
|
||||
|
||||
info.si_code = SEGV_MAPERR;
|
||||
|
||||
/*
|
||||
* If we're in an interrupt or have no user
|
||||
* context, we must not take the fault..
|
||||
*/
|
||||
if (in_atomic() || !mm)
|
||||
goto no_context;
|
||||
|
||||
retry:
|
||||
down_read(&mm->mmap_sem);
|
||||
vma = find_vma(mm, address);
|
||||
if (!vma)
|
||||
goto bad_area;
|
||||
if (vma->vm_start <= address)
|
||||
goto good_area;
|
||||
if (!(vma->vm_flags & VM_GROWSDOWN))
|
||||
goto bad_area;
|
||||
if (expand_stack(vma, address))
|
||||
goto bad_area;
|
||||
|
||||
/*
|
||||
* Ok, we have a good vm_area for this memory access, so
|
||||
* we can handle it..
|
||||
*/
|
||||
good_area:
|
||||
info.si_code = SEGV_ACCERR;
|
||||
|
||||
/* Handle protection violation, execute on heap or stack */
|
||||
|
||||
if (cause_code == ((ECR_V_PROTV << 16) | ECR_C_PROTV_INST_FETCH))
|
||||
goto bad_area;
|
||||
|
||||
if (write) {
|
||||
if (!(vma->vm_flags & VM_WRITE))
|
||||
goto bad_area;
|
||||
} else {
|
||||
if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
|
||||
goto bad_area;
|
||||
}
|
||||
|
||||
survive:
|
||||
/*
|
||||
* If for any reason at all we couldn't handle the fault,
|
||||
* make sure we exit gracefully rather than endlessly redo
|
||||
* the fault.
|
||||
*/
|
||||
fault = handle_mm_fault(mm, vma, address, flags);
|
||||
|
||||
/* If Pagefault was interrupted by SIGKILL, exit page fault "early" */
|
||||
if (unlikely(fatal_signal_pending(current))) {
|
||||
if ((fault & VM_FAULT_ERROR) && !(fault & VM_FAULT_RETRY))
|
||||
up_read(&mm->mmap_sem);
|
||||
if (user_mode(regs))
|
||||
return;
|
||||
}
|
||||
|
||||
if (likely(!(fault & VM_FAULT_ERROR))) {
|
||||
if (flags & FAULT_FLAG_ALLOW_RETRY) {
|
||||
/* To avoid updating stats twice for retry case */
|
||||
if (fault & VM_FAULT_MAJOR)
|
||||
tsk->maj_flt++;
|
||||
else
|
||||
tsk->min_flt++;
|
||||
|
||||
if (fault & VM_FAULT_RETRY) {
|
||||
flags &= ~FAULT_FLAG_ALLOW_RETRY;
|
||||
flags |= FAULT_FLAG_TRIED;
|
||||
goto retry;
|
||||
}
|
||||
}
|
||||
|
||||
/* Fault Handled Gracefully */
|
||||
up_read(&mm->mmap_sem);
|
||||
return;
|
||||
}
|
||||
|
||||
/* TBD: switch to pagefault_out_of_memory() */
|
||||
if (fault & VM_FAULT_OOM)
|
||||
goto out_of_memory;
|
||||
else if (fault & VM_FAULT_SIGBUS)
|
||||
goto do_sigbus;
|
||||
|
||||
/* no man's land */
|
||||
BUG();
|
||||
|
||||
/*
|
||||
* Something tried to access memory that isn't in our memory map..
|
||||
* Fix it, but check if it's kernel or user first..
|
||||
*/
|
||||
bad_area:
|
||||
up_read(&mm->mmap_sem);
|
||||
|
||||
bad_area_nosemaphore:
|
||||
/* User mode accesses just cause a SIGSEGV */
|
||||
if (user_mode(regs)) {
|
||||
tsk->thread.fault_address = address;
|
||||
tsk->thread.cause_code = cause_code;
|
||||
info.si_signo = SIGSEGV;
|
||||
info.si_errno = 0;
|
||||
/* info.si_code has been set above */
|
||||
info.si_addr = (void __user *)address;
|
||||
force_sig_info(SIGSEGV, &info, tsk);
|
||||
return;
|
||||
}
|
||||
|
||||
no_context:
|
||||
/* Are we prepared to handle this kernel fault?
|
||||
*
|
||||
* (The kernel has valid exception-points in the source
|
||||
* when it acesses user-memory. When it fails in one
|
||||
* of those points, we find it in a table and do a jump
|
||||
* to some fixup code that loads an appropriate error
|
||||
* code)
|
||||
*/
|
||||
if (fixup_exception(regs))
|
||||
return;
|
||||
|
||||
die("Oops", regs, address, cause_code);
|
||||
|
||||
out_of_memory:
|
||||
if (is_global_init(tsk)) {
|
||||
yield();
|
||||
goto survive;
|
||||
}
|
||||
up_read(&mm->mmap_sem);
|
||||
|
||||
if (user_mode(regs))
|
||||
do_group_exit(SIGKILL); /* This will never return */
|
||||
|
||||
goto no_context;
|
||||
|
||||
do_sigbus:
|
||||
up_read(&mm->mmap_sem);
|
||||
|
||||
if (!user_mode(regs))
|
||||
goto no_context;
|
||||
|
||||
tsk->thread.fault_address = address;
|
||||
tsk->thread.cause_code = cause_code;
|
||||
info.si_signo = SIGBUS;
|
||||
info.si_errno = 0;
|
||||
info.si_code = BUS_ADRERR;
|
||||
info.si_addr = (void __user *)address;
|
||||
force_sig_info(SIGBUS, &info, tsk);
|
||||
}
|
Loading…
Reference in a new issue