dm mpath: add service time load balancer
This patch adds a service time oriented dynamic load balancer, dm-service-time, which selects the path with the shortest estimated service time for the incoming I/O. The service time is estimated by dividing the in-flight I/O size by a performance value of each path. The performance value can be given as a table argument at the table loading time. If no performance value is given, all paths are considered equal. Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com> Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This commit is contained in:
parent
fd5e033908
commit
f392ba889b
4 changed files with 441 additions and 0 deletions
91
Documentation/device-mapper/dm-service-time.txt
Normal file
91
Documentation/device-mapper/dm-service-time.txt
Normal file
|
@ -0,0 +1,91 @@
|
|||
dm-service-time
|
||||
===============
|
||||
|
||||
dm-service-time is a path selector module for device-mapper targets,
|
||||
which selects a path with the shortest estimated service time for
|
||||
the incoming I/O.
|
||||
|
||||
The service time for each path is estimated by dividing the total size
|
||||
of in-flight I/Os on a path with the performance value of the path.
|
||||
The performance value is a relative throughput value among all paths
|
||||
in a path-group, and it can be specified as a table argument.
|
||||
|
||||
The path selector name is 'service-time'.
|
||||
|
||||
Table parameters for each path: [<repeat_count> [<relative_throughput>]]
|
||||
<repeat_count>: The number of I/Os to dispatch using the selected
|
||||
path before switching to the next path.
|
||||
If not given, internal default is used. To check
|
||||
the default value, see the activated table.
|
||||
<relative_throughput>: The relative throughput value of the path
|
||||
among all paths in the path-group.
|
||||
The valid range is 0-100.
|
||||
If not given, minimum value '1' is used.
|
||||
If '0' is given, the path isn't selected while
|
||||
other paths having a positive value are available.
|
||||
|
||||
Status for each path: <status> <fail-count> <in-flight-size> \
|
||||
<relative_throughput>
|
||||
<status>: 'A' if the path is active, 'F' if the path is failed.
|
||||
<fail-count>: The number of path failures.
|
||||
<in-flight-size>: The size of in-flight I/Os on the path.
|
||||
<relative_throughput>: The relative throughput value of the path
|
||||
among all paths in the path-group.
|
||||
|
||||
|
||||
Algorithm
|
||||
=========
|
||||
|
||||
dm-service-time adds the I/O size to 'in-flight-size' when the I/O is
|
||||
dispatched and substracts when completed.
|
||||
Basically, dm-service-time selects a path having minimum service time
|
||||
which is calculated by:
|
||||
|
||||
('in-flight-size' + 'size-of-incoming-io') / 'relative_throughput'
|
||||
|
||||
However, some optimizations below are used to reduce the calculation
|
||||
as much as possible.
|
||||
|
||||
1. If the paths have the same 'relative_throughput', skip
|
||||
the division and just compare the 'in-flight-size'.
|
||||
|
||||
2. If the paths have the same 'in-flight-size', skip the division
|
||||
and just compare the 'relative_throughput'.
|
||||
|
||||
3. If some paths have non-zero 'relative_throughput' and others
|
||||
have zero 'relative_throughput', ignore those paths with zero
|
||||
'relative_throughput'.
|
||||
|
||||
If such optimizations can't be applied, calculate service time, and
|
||||
compare service time.
|
||||
If calculated service time is equal, the path having maximum
|
||||
'relative_throughput' may be better. So compare 'relative_throughput'
|
||||
then.
|
||||
|
||||
|
||||
Examples
|
||||
========
|
||||
In case that 2 paths (sda and sdb) are used with repeat_count == 128
|
||||
and sda has an average throughput 1GB/s and sdb has 4GB/s,
|
||||
'relative_throughput' value may be '1' for sda and '4' for sdb.
|
||||
|
||||
# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4" \
|
||||
dmsetup create test
|
||||
#
|
||||
# dmsetup table
|
||||
test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4
|
||||
#
|
||||
# dmsetup status
|
||||
test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 1 8:16 A 0 0 4
|
||||
|
||||
|
||||
Or '2' for sda and '8' for sdb would be also true.
|
||||
|
||||
# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8" \
|
||||
dmsetup create test
|
||||
#
|
||||
# dmsetup table
|
||||
test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8
|
||||
#
|
||||
# dmsetup status
|
||||
test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 2 8:16 A 0 0 8
|
|
@ -258,6 +258,16 @@ config DM_MULTIPATH_QL
|
|||
|
||||
If unsure, say N.
|
||||
|
||||
config DM_MULTIPATH_ST
|
||||
tristate "I/O Path Selector based on the service time"
|
||||
depends on DM_MULTIPATH
|
||||
---help---
|
||||
This path selector is a dynamic load balancer which selects
|
||||
the path expected to complete the incoming I/O in the shortest
|
||||
time.
|
||||
|
||||
If unsure, say N.
|
||||
|
||||
config DM_DELAY
|
||||
tristate "I/O delaying target (EXPERIMENTAL)"
|
||||
depends on BLK_DEV_DM && EXPERIMENTAL
|
||||
|
|
|
@ -37,6 +37,7 @@ obj-$(CONFIG_DM_CRYPT) += dm-crypt.o
|
|||
obj-$(CONFIG_DM_DELAY) += dm-delay.o
|
||||
obj-$(CONFIG_DM_MULTIPATH) += dm-multipath.o dm-round-robin.o
|
||||
obj-$(CONFIG_DM_MULTIPATH_QL) += dm-queue-length.o
|
||||
obj-$(CONFIG_DM_MULTIPATH_ST) += dm-service-time.o
|
||||
obj-$(CONFIG_DM_SNAPSHOT) += dm-snapshot.o
|
||||
obj-$(CONFIG_DM_MIRROR) += dm-mirror.o dm-log.o dm-region-hash.o
|
||||
obj-$(CONFIG_DM_ZERO) += dm-zero.o
|
||||
|
|
339
drivers/md/dm-service-time.c
Normal file
339
drivers/md/dm-service-time.c
Normal file
|
@ -0,0 +1,339 @@
|
|||
/*
|
||||
* Copyright (C) 2007-2009 NEC Corporation. All Rights Reserved.
|
||||
*
|
||||
* Module Author: Kiyoshi Ueda
|
||||
*
|
||||
* This file is released under the GPL.
|
||||
*
|
||||
* Throughput oriented path selector.
|
||||
*/
|
||||
|
||||
#include "dm.h"
|
||||
#include "dm-path-selector.h"
|
||||
|
||||
#define DM_MSG_PREFIX "multipath service-time"
|
||||
#define ST_MIN_IO 1
|
||||
#define ST_MAX_RELATIVE_THROUGHPUT 100
|
||||
#define ST_MAX_RELATIVE_THROUGHPUT_SHIFT 7
|
||||
#define ST_MAX_INFLIGHT_SIZE ((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT)
|
||||
#define ST_VERSION "0.2.0"
|
||||
|
||||
struct selector {
|
||||
struct list_head valid_paths;
|
||||
struct list_head failed_paths;
|
||||
};
|
||||
|
||||
struct path_info {
|
||||
struct list_head list;
|
||||
struct dm_path *path;
|
||||
unsigned repeat_count;
|
||||
unsigned relative_throughput;
|
||||
atomic_t in_flight_size; /* Total size of in-flight I/Os */
|
||||
};
|
||||
|
||||
static struct selector *alloc_selector(void)
|
||||
{
|
||||
struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
|
||||
|
||||
if (s) {
|
||||
INIT_LIST_HEAD(&s->valid_paths);
|
||||
INIT_LIST_HEAD(&s->failed_paths);
|
||||
}
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
static int st_create(struct path_selector *ps, unsigned argc, char **argv)
|
||||
{
|
||||
struct selector *s = alloc_selector();
|
||||
|
||||
if (!s)
|
||||
return -ENOMEM;
|
||||
|
||||
ps->context = s;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void free_paths(struct list_head *paths)
|
||||
{
|
||||
struct path_info *pi, *next;
|
||||
|
||||
list_for_each_entry_safe(pi, next, paths, list) {
|
||||
list_del(&pi->list);
|
||||
kfree(pi);
|
||||
}
|
||||
}
|
||||
|
||||
static void st_destroy(struct path_selector *ps)
|
||||
{
|
||||
struct selector *s = ps->context;
|
||||
|
||||
free_paths(&s->valid_paths);
|
||||
free_paths(&s->failed_paths);
|
||||
kfree(s);
|
||||
ps->context = NULL;
|
||||
}
|
||||
|
||||
static int st_status(struct path_selector *ps, struct dm_path *path,
|
||||
status_type_t type, char *result, unsigned maxlen)
|
||||
{
|
||||
unsigned sz = 0;
|
||||
struct path_info *pi;
|
||||
|
||||
if (!path)
|
||||
DMEMIT("0 ");
|
||||
else {
|
||||
pi = path->pscontext;
|
||||
|
||||
switch (type) {
|
||||
case STATUSTYPE_INFO:
|
||||
DMEMIT("%d %u ", atomic_read(&pi->in_flight_size),
|
||||
pi->relative_throughput);
|
||||
break;
|
||||
case STATUSTYPE_TABLE:
|
||||
DMEMIT("%u %u ", pi->repeat_count,
|
||||
pi->relative_throughput);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return sz;
|
||||
}
|
||||
|
||||
static int st_add_path(struct path_selector *ps, struct dm_path *path,
|
||||
int argc, char **argv, char **error)
|
||||
{
|
||||
struct selector *s = ps->context;
|
||||
struct path_info *pi;
|
||||
unsigned repeat_count = ST_MIN_IO;
|
||||
unsigned relative_throughput = 1;
|
||||
|
||||
/*
|
||||
* Arguments: [<repeat_count> [<relative_throughput>]]
|
||||
* <repeat_count>: The number of I/Os before switching path.
|
||||
* If not given, default (ST_MIN_IO) is used.
|
||||
* <relative_throughput>: The relative throughput value of
|
||||
* the path among all paths in the path-group.
|
||||
* The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT>
|
||||
* If not given, minimum value '1' is used.
|
||||
* If '0' is given, the path isn't selected while
|
||||
* other paths having a positive value are
|
||||
* available.
|
||||
*/
|
||||
if (argc > 2) {
|
||||
*error = "service-time ps: incorrect number of arguments";
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (argc && (sscanf(argv[0], "%u", &repeat_count) != 1)) {
|
||||
*error = "service-time ps: invalid repeat count";
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if ((argc == 2) &&
|
||||
(sscanf(argv[1], "%u", &relative_throughput) != 1 ||
|
||||
relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) {
|
||||
*error = "service-time ps: invalid relative_throughput value";
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* allocate the path */
|
||||
pi = kmalloc(sizeof(*pi), GFP_KERNEL);
|
||||
if (!pi) {
|
||||
*error = "service-time ps: Error allocating path context";
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
pi->path = path;
|
||||
pi->repeat_count = repeat_count;
|
||||
pi->relative_throughput = relative_throughput;
|
||||
atomic_set(&pi->in_flight_size, 0);
|
||||
|
||||
path->pscontext = pi;
|
||||
|
||||
list_add_tail(&pi->list, &s->valid_paths);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void st_fail_path(struct path_selector *ps, struct dm_path *path)
|
||||
{
|
||||
struct selector *s = ps->context;
|
||||
struct path_info *pi = path->pscontext;
|
||||
|
||||
list_move(&pi->list, &s->failed_paths);
|
||||
}
|
||||
|
||||
static int st_reinstate_path(struct path_selector *ps, struct dm_path *path)
|
||||
{
|
||||
struct selector *s = ps->context;
|
||||
struct path_info *pi = path->pscontext;
|
||||
|
||||
list_move_tail(&pi->list, &s->valid_paths);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Compare the estimated service time of 2 paths, pi1 and pi2,
|
||||
* for the incoming I/O.
|
||||
*
|
||||
* Returns:
|
||||
* < 0 : pi1 is better
|
||||
* 0 : no difference between pi1 and pi2
|
||||
* > 0 : pi2 is better
|
||||
*
|
||||
* Description:
|
||||
* Basically, the service time is estimated by:
|
||||
* ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput'
|
||||
* To reduce the calculation, some optimizations are made.
|
||||
* (See comments inline)
|
||||
*/
|
||||
static int st_compare_load(struct path_info *pi1, struct path_info *pi2,
|
||||
size_t incoming)
|
||||
{
|
||||
size_t sz1, sz2, st1, st2;
|
||||
|
||||
sz1 = atomic_read(&pi1->in_flight_size);
|
||||
sz2 = atomic_read(&pi2->in_flight_size);
|
||||
|
||||
/*
|
||||
* Case 1: Both have same throughput value. Choose less loaded path.
|
||||
*/
|
||||
if (pi1->relative_throughput == pi2->relative_throughput)
|
||||
return sz1 - sz2;
|
||||
|
||||
/*
|
||||
* Case 2a: Both have same load. Choose higher throughput path.
|
||||
* Case 2b: One path has no throughput value. Choose the other one.
|
||||
*/
|
||||
if (sz1 == sz2 ||
|
||||
!pi1->relative_throughput || !pi2->relative_throughput)
|
||||
return pi2->relative_throughput - pi1->relative_throughput;
|
||||
|
||||
/*
|
||||
* Case 3: Calculate service time. Choose faster path.
|
||||
* Service time using pi1:
|
||||
* st1 = (sz1 + incoming) / pi1->relative_throughput
|
||||
* Service time using pi2:
|
||||
* st2 = (sz2 + incoming) / pi2->relative_throughput
|
||||
*
|
||||
* To avoid the division, transform the expression to use
|
||||
* multiplication.
|
||||
* Because ->relative_throughput > 0 here, if st1 < st2,
|
||||
* the expressions below are the same meaning:
|
||||
* (sz1 + incoming) / pi1->relative_throughput <
|
||||
* (sz2 + incoming) / pi2->relative_throughput
|
||||
* (sz1 + incoming) * pi2->relative_throughput <
|
||||
* (sz2 + incoming) * pi1->relative_throughput
|
||||
* So use the later one.
|
||||
*/
|
||||
sz1 += incoming;
|
||||
sz2 += incoming;
|
||||
if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE ||
|
||||
sz2 >= ST_MAX_INFLIGHT_SIZE)) {
|
||||
/*
|
||||
* Size may be too big for multiplying pi->relative_throughput
|
||||
* and overflow.
|
||||
* To avoid the overflow and mis-selection, shift down both.
|
||||
*/
|
||||
sz1 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
|
||||
sz2 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
|
||||
}
|
||||
st1 = sz1 * pi2->relative_throughput;
|
||||
st2 = sz2 * pi1->relative_throughput;
|
||||
if (st1 != st2)
|
||||
return st1 - st2;
|
||||
|
||||
/*
|
||||
* Case 4: Service time is equal. Choose higher throughput path.
|
||||
*/
|
||||
return pi2->relative_throughput - pi1->relative_throughput;
|
||||
}
|
||||
|
||||
static struct dm_path *st_select_path(struct path_selector *ps,
|
||||
unsigned *repeat_count, size_t nr_bytes)
|
||||
{
|
||||
struct selector *s = ps->context;
|
||||
struct path_info *pi = NULL, *best = NULL;
|
||||
|
||||
if (list_empty(&s->valid_paths))
|
||||
return NULL;
|
||||
|
||||
/* Change preferred (first in list) path to evenly balance. */
|
||||
list_move_tail(s->valid_paths.next, &s->valid_paths);
|
||||
|
||||
list_for_each_entry(pi, &s->valid_paths, list)
|
||||
if (!best || (st_compare_load(pi, best, nr_bytes) < 0))
|
||||
best = pi;
|
||||
|
||||
if (!best)
|
||||
return NULL;
|
||||
|
||||
*repeat_count = best->repeat_count;
|
||||
|
||||
return best->path;
|
||||
}
|
||||
|
||||
static int st_start_io(struct path_selector *ps, struct dm_path *path,
|
||||
size_t nr_bytes)
|
||||
{
|
||||
struct path_info *pi = path->pscontext;
|
||||
|
||||
atomic_add(nr_bytes, &pi->in_flight_size);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int st_end_io(struct path_selector *ps, struct dm_path *path,
|
||||
size_t nr_bytes)
|
||||
{
|
||||
struct path_info *pi = path->pscontext;
|
||||
|
||||
atomic_sub(nr_bytes, &pi->in_flight_size);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct path_selector_type st_ps = {
|
||||
.name = "service-time",
|
||||
.module = THIS_MODULE,
|
||||
.table_args = 2,
|
||||
.info_args = 2,
|
||||
.create = st_create,
|
||||
.destroy = st_destroy,
|
||||
.status = st_status,
|
||||
.add_path = st_add_path,
|
||||
.fail_path = st_fail_path,
|
||||
.reinstate_path = st_reinstate_path,
|
||||
.select_path = st_select_path,
|
||||
.start_io = st_start_io,
|
||||
.end_io = st_end_io,
|
||||
};
|
||||
|
||||
static int __init dm_st_init(void)
|
||||
{
|
||||
int r = dm_register_path_selector(&st_ps);
|
||||
|
||||
if (r < 0)
|
||||
DMERR("register failed %d", r);
|
||||
|
||||
DMINFO("version " ST_VERSION " loaded");
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
static void __exit dm_st_exit(void)
|
||||
{
|
||||
int r = dm_unregister_path_selector(&st_ps);
|
||||
|
||||
if (r < 0)
|
||||
DMERR("unregister failed %d", r);
|
||||
}
|
||||
|
||||
module_init(dm_st_init);
|
||||
module_exit(dm_st_exit);
|
||||
|
||||
MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector");
|
||||
MODULE_AUTHOR("Kiyoshi Ueda <k-ueda@ct.jp.nec.com>");
|
||||
MODULE_LICENSE("GPL");
|
Loading…
Reference in a new issue