xfs: split xfs_dialloc
Move the actual allocation once we have selected an allocation group into a separate helper, and make xfs_dialloc a wrapper around it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
This commit is contained in:
parent
824c313139
commit
f2ecc5e453
1 changed files with 174 additions and 175 deletions
|
@ -607,188 +607,35 @@ xfs_ialloc_get_rec(
|
|||
}
|
||||
|
||||
/*
|
||||
* Visible inode allocation functions.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Allocate an inode on disk.
|
||||
* Mode is used to tell whether the new inode will need space, and whether
|
||||
* it is a directory.
|
||||
* Allocate an inode.
|
||||
*
|
||||
* The arguments IO_agbp and alloc_done are defined to work within
|
||||
* the constraint of one allocation per transaction.
|
||||
* xfs_dialloc() is designed to be called twice if it has to do an
|
||||
* allocation to make more free inodes. On the first call,
|
||||
* IO_agbp should be set to NULL. If an inode is available,
|
||||
* i.e., xfs_dialloc() did not need to do an allocation, an inode
|
||||
* number is returned. In this case, IO_agbp would be set to the
|
||||
* current ag_buf and alloc_done set to false.
|
||||
* If an allocation needed to be done, xfs_dialloc would return
|
||||
* the current ag_buf in IO_agbp and set alloc_done to true.
|
||||
* The caller should then commit the current transaction, allocate a new
|
||||
* transaction, and call xfs_dialloc() again, passing in the previous
|
||||
* value of IO_agbp. IO_agbp should be held across the transactions.
|
||||
* Since the agbp is locked across the two calls, the second call is
|
||||
* guaranteed to have a free inode available.
|
||||
*
|
||||
* Once we successfully pick an inode its number is returned and the
|
||||
* on-disk data structures are updated. The inode itself is not read
|
||||
* in, since doing so would break ordering constraints with xfs_reclaim.
|
||||
* The caller selected an AG for us, and made sure that free inodes are
|
||||
* available.
|
||||
*/
|
||||
int
|
||||
xfs_dialloc(
|
||||
xfs_trans_t *tp, /* transaction pointer */
|
||||
xfs_ino_t parent, /* parent inode (directory) */
|
||||
umode_t mode, /* mode bits for new inode */
|
||||
int okalloc, /* ok to allocate more space */
|
||||
xfs_buf_t **IO_agbp, /* in/out ag header's buffer */
|
||||
boolean_t *alloc_done, /* true if we needed to replenish
|
||||
inode freelist */
|
||||
xfs_ino_t *inop) /* inode number allocated */
|
||||
STATIC int
|
||||
xfs_dialloc_ag(
|
||||
struct xfs_trans *tp,
|
||||
struct xfs_buf *agbp,
|
||||
xfs_ino_t parent,
|
||||
xfs_ino_t *inop)
|
||||
{
|
||||
xfs_agnumber_t agcount; /* number of allocation groups */
|
||||
xfs_buf_t *agbp; /* allocation group header's buffer */
|
||||
xfs_agnumber_t agno; /* allocation group number */
|
||||
xfs_agi_t *agi; /* allocation group header structure */
|
||||
xfs_btree_cur_t *cur; /* inode allocation btree cursor */
|
||||
int error; /* error return value */
|
||||
int i; /* result code */
|
||||
int ialloced; /* inode allocation status */
|
||||
int noroom = 0; /* no space for inode blk allocation */
|
||||
xfs_ino_t ino; /* fs-relative inode to be returned */
|
||||
/* REFERENCED */
|
||||
int j; /* result code */
|
||||
xfs_mount_t *mp; /* file system mount structure */
|
||||
int offset; /* index of inode in chunk */
|
||||
xfs_agino_t pagino; /* parent's AG relative inode # */
|
||||
xfs_agnumber_t pagno; /* parent's AG number */
|
||||
xfs_inobt_rec_incore_t rec; /* inode allocation record */
|
||||
xfs_agnumber_t tagno; /* testing allocation group number */
|
||||
xfs_btree_cur_t *tcur; /* temp cursor */
|
||||
xfs_inobt_rec_incore_t trec; /* temp inode allocation record */
|
||||
struct xfs_perag *pag;
|
||||
struct xfs_mount *mp = tp->t_mountp;
|
||||
struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
|
||||
xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
|
||||
xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
|
||||
xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
|
||||
struct xfs_perag *pag;
|
||||
struct xfs_btree_cur *cur, *tcur;
|
||||
struct xfs_inobt_rec_incore rec, trec;
|
||||
xfs_ino_t ino;
|
||||
int error;
|
||||
int offset;
|
||||
int i, j;
|
||||
|
||||
|
||||
if (*IO_agbp == NULL) {
|
||||
/*
|
||||
* We do not have an agbp, so select an initial allocation
|
||||
* group for inode allocation.
|
||||
*/
|
||||
agbp = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
|
||||
/*
|
||||
* Couldn't find an allocation group satisfying the
|
||||
* criteria, give up.
|
||||
*/
|
||||
if (!agbp) {
|
||||
*inop = NULLFSINO;
|
||||
return 0;
|
||||
}
|
||||
agi = XFS_BUF_TO_AGI(agbp);
|
||||
ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
|
||||
} else {
|
||||
/*
|
||||
* Continue where we left off before. In this case, we
|
||||
* know that the allocation group has free inodes.
|
||||
*/
|
||||
agbp = *IO_agbp;
|
||||
agi = XFS_BUF_TO_AGI(agbp);
|
||||
ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
|
||||
ASSERT(be32_to_cpu(agi->agi_freecount) > 0);
|
||||
}
|
||||
mp = tp->t_mountp;
|
||||
agcount = mp->m_sb.sb_agcount;
|
||||
agno = be32_to_cpu(agi->agi_seqno);
|
||||
tagno = agno;
|
||||
pagno = XFS_INO_TO_AGNO(mp, parent);
|
||||
pagino = XFS_INO_TO_AGINO(mp, parent);
|
||||
|
||||
/*
|
||||
* If we have already hit the ceiling of inode blocks then clear
|
||||
* okalloc so we scan all available agi structures for a free
|
||||
* inode.
|
||||
*/
|
||||
|
||||
if (mp->m_maxicount &&
|
||||
mp->m_sb.sb_icount + XFS_IALLOC_INODES(mp) > mp->m_maxicount) {
|
||||
noroom = 1;
|
||||
okalloc = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loop until we find an allocation group that either has free inodes
|
||||
* or in which we can allocate some inodes. Iterate through the
|
||||
* allocation groups upward, wrapping at the end.
|
||||
*/
|
||||
*alloc_done = B_FALSE;
|
||||
while (!agi->agi_freecount) {
|
||||
/*
|
||||
* Don't do anything if we're not supposed to allocate
|
||||
* any blocks, just go on to the next ag.
|
||||
*/
|
||||
if (okalloc) {
|
||||
/*
|
||||
* Try to allocate some new inodes in the allocation
|
||||
* group.
|
||||
*/
|
||||
if ((error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced))) {
|
||||
xfs_trans_brelse(tp, agbp);
|
||||
if (error == ENOSPC) {
|
||||
*inop = NULLFSINO;
|
||||
return 0;
|
||||
} else
|
||||
return error;
|
||||
}
|
||||
if (ialloced) {
|
||||
/*
|
||||
* We successfully allocated some inodes, return
|
||||
* the current context to the caller so that it
|
||||
* can commit the current transaction and call
|
||||
* us again where we left off.
|
||||
*/
|
||||
ASSERT(be32_to_cpu(agi->agi_freecount) > 0);
|
||||
*alloc_done = B_TRUE;
|
||||
*IO_agbp = agbp;
|
||||
*inop = NULLFSINO;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* If it failed, give up on this ag.
|
||||
*/
|
||||
xfs_trans_brelse(tp, agbp);
|
||||
/*
|
||||
* Go on to the next ag: get its ag header.
|
||||
*/
|
||||
nextag:
|
||||
if (++tagno == agcount)
|
||||
tagno = 0;
|
||||
if (tagno == agno) {
|
||||
*inop = NULLFSINO;
|
||||
return noroom ? ENOSPC : 0;
|
||||
}
|
||||
pag = xfs_perag_get(mp, tagno);
|
||||
if (pag->pagi_inodeok == 0) {
|
||||
xfs_perag_put(pag);
|
||||
goto nextag;
|
||||
}
|
||||
error = xfs_ialloc_read_agi(mp, tp, tagno, &agbp);
|
||||
xfs_perag_put(pag);
|
||||
if (error)
|
||||
goto nextag;
|
||||
agi = XFS_BUF_TO_AGI(agbp);
|
||||
ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
|
||||
}
|
||||
/*
|
||||
* Here with an allocation group that has a free inode.
|
||||
* Reset agno since we may have chosen a new ag in the
|
||||
* loop above.
|
||||
*/
|
||||
agno = tagno;
|
||||
*IO_agbp = NULL;
|
||||
pag = xfs_perag_get(mp, agno);
|
||||
|
||||
restart_pagno:
|
||||
cur = xfs_inobt_init_cursor(mp, tp, agbp, be32_to_cpu(agi->agi_seqno));
|
||||
cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
|
||||
/*
|
||||
* If pagino is 0 (this is the root inode allocation) use newino.
|
||||
* This must work because we've just allocated some.
|
||||
|
@ -1020,6 +867,158 @@ xfs_dialloc(
|
|||
return error;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate an inode on disk.
|
||||
*
|
||||
* Mode is used to tell whether the new inode will need space, and whether it
|
||||
* is a directory.
|
||||
*
|
||||
* This function is designed to be called twice if it has to do an allocation
|
||||
* to make more free inodes. On the first call, *IO_agbp should be set to NULL.
|
||||
* If an inode is available without having to performn an allocation, an inode
|
||||
* number is returned. In this case, *IO_agbp would be NULL. If an allocation
|
||||
* needes to be done, xfs_dialloc would return the current AGI buffer in
|
||||
* *IO_agbp. The caller should then commit the current transaction, allocate a
|
||||
* new transaction, and call xfs_dialloc() again, passing in the previous value
|
||||
* of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
|
||||
* buffer is locked across the two calls, the second call is guaranteed to have
|
||||
* a free inode available.
|
||||
*
|
||||
* Once we successfully pick an inode its number is returned and the on-disk
|
||||
* data structures are updated. The inode itself is not read in, since doing so
|
||||
* would break ordering constraints with xfs_reclaim.
|
||||
*/
|
||||
int
|
||||
xfs_dialloc(
|
||||
struct xfs_trans *tp,
|
||||
xfs_ino_t parent,
|
||||
umode_t mode,
|
||||
int okalloc,
|
||||
struct xfs_buf **IO_agbp,
|
||||
boolean_t *alloc_done,
|
||||
xfs_ino_t *inop)
|
||||
{
|
||||
struct xfs_buf *agbp;
|
||||
xfs_agnumber_t agno;
|
||||
struct xfs_agi *agi;
|
||||
int error;
|
||||
int ialloced;
|
||||
int noroom = 0;
|
||||
struct xfs_mount *mp;
|
||||
xfs_agnumber_t tagno;
|
||||
struct xfs_perag *pag;
|
||||
|
||||
if (*IO_agbp == NULL) {
|
||||
/*
|
||||
* We do not have an agbp, so select an initial allocation
|
||||
* group for inode allocation.
|
||||
*/
|
||||
agbp = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
|
||||
/*
|
||||
* Couldn't find an allocation group satisfying the
|
||||
* criteria, give up.
|
||||
*/
|
||||
if (!agbp) {
|
||||
*inop = NULLFSINO;
|
||||
return 0;
|
||||
}
|
||||
agi = XFS_BUF_TO_AGI(agbp);
|
||||
ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
|
||||
} else {
|
||||
/*
|
||||
* Continue where we left off before. In this case, we
|
||||
* know that the allocation group has free inodes.
|
||||
*/
|
||||
agbp = *IO_agbp;
|
||||
agi = XFS_BUF_TO_AGI(agbp);
|
||||
ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
|
||||
ASSERT(be32_to_cpu(agi->agi_freecount) > 0);
|
||||
}
|
||||
mp = tp->t_mountp;
|
||||
agno = be32_to_cpu(agi->agi_seqno);
|
||||
tagno = agno;
|
||||
|
||||
/*
|
||||
* If we have already hit the ceiling of inode blocks then clear
|
||||
* okalloc so we scan all available agi structures for a free
|
||||
* inode.
|
||||
*/
|
||||
|
||||
if (mp->m_maxicount &&
|
||||
mp->m_sb.sb_icount + XFS_IALLOC_INODES(mp) > mp->m_maxicount) {
|
||||
noroom = 1;
|
||||
okalloc = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loop until we find an allocation group that either has free inodes
|
||||
* or in which we can allocate some inodes. Iterate through the
|
||||
* allocation groups upward, wrapping at the end.
|
||||
*/
|
||||
*alloc_done = B_FALSE;
|
||||
while (!agi->agi_freecount) {
|
||||
/*
|
||||
* Don't do anything if we're not supposed to allocate
|
||||
* any blocks, just go on to the next ag.
|
||||
*/
|
||||
if (okalloc) {
|
||||
/*
|
||||
* Try to allocate some new inodes in the allocation
|
||||
* group.
|
||||
*/
|
||||
if ((error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced))) {
|
||||
xfs_trans_brelse(tp, agbp);
|
||||
if (error == ENOSPC) {
|
||||
*inop = NULLFSINO;
|
||||
return 0;
|
||||
} else
|
||||
return error;
|
||||
}
|
||||
if (ialloced) {
|
||||
/*
|
||||
* We successfully allocated some inodes, return
|
||||
* the current context to the caller so that it
|
||||
* can commit the current transaction and call
|
||||
* us again where we left off.
|
||||
*/
|
||||
ASSERT(be32_to_cpu(agi->agi_freecount) > 0);
|
||||
*alloc_done = B_TRUE;
|
||||
*IO_agbp = agbp;
|
||||
*inop = NULLFSINO;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* If it failed, give up on this ag.
|
||||
*/
|
||||
xfs_trans_brelse(tp, agbp);
|
||||
/*
|
||||
* Go on to the next ag: get its ag header.
|
||||
*/
|
||||
nextag:
|
||||
if (++tagno == mp->m_sb.sb_agcount)
|
||||
tagno = 0;
|
||||
if (tagno == agno) {
|
||||
*inop = NULLFSINO;
|
||||
return noroom ? ENOSPC : 0;
|
||||
}
|
||||
pag = xfs_perag_get(mp, tagno);
|
||||
if (pag->pagi_inodeok == 0) {
|
||||
xfs_perag_put(pag);
|
||||
goto nextag;
|
||||
}
|
||||
error = xfs_ialloc_read_agi(mp, tp, tagno, &agbp);
|
||||
xfs_perag_put(pag);
|
||||
if (error)
|
||||
goto nextag;
|
||||
agi = XFS_BUF_TO_AGI(agbp);
|
||||
ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
|
||||
}
|
||||
|
||||
*IO_agbp = NULL;
|
||||
return xfs_dialloc_ag(tp, agbp, parent, inop);
|
||||
}
|
||||
|
||||
/*
|
||||
* Free disk inode. Carefully avoids touching the incore inode, all
|
||||
* manipulations incore are the caller's responsibility.
|
||||
|
|
Loading…
Reference in a new issue