sched: track the next-highest priority on each runqueue

We will use this later in the series to reduce the amount of rq-lock
contention during a pull operation

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
This commit is contained in:
Gregory Haskins 2008-12-29 09:39:49 -05:00
parent 4d9842776a
commit e864c499d9
2 changed files with 67 additions and 22 deletions

View file

@ -463,7 +463,10 @@ struct rt_rq {
struct rt_prio_array active; struct rt_prio_array active;
unsigned long rt_nr_running; unsigned long rt_nr_running;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
int highest_prio; /* highest queued rt task prio */ struct {
int curr; /* highest queued rt task prio */
int next; /* next highest */
} highest_prio;
#endif #endif
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
unsigned long rt_nr_migratory; unsigned long rt_nr_migratory;
@ -8169,7 +8172,8 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
__set_bit(MAX_RT_PRIO, array->bitmap); __set_bit(MAX_RT_PRIO, array->bitmap);
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
rt_rq->highest_prio = MAX_RT_PRIO; rt_rq->highest_prio.curr = MAX_RT_PRIO;
rt_rq->highest_prio.next = MAX_RT_PRIO;
#endif #endif
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
rt_rq->rt_nr_migratory = 0; rt_rq->rt_nr_migratory = 0;

View file

@ -108,7 +108,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
if (rt_rq->rt_nr_running) { if (rt_rq->rt_nr_running) {
if (rt_se && !on_rt_rq(rt_se)) if (rt_se && !on_rt_rq(rt_se))
enqueue_rt_entity(rt_se); enqueue_rt_entity(rt_se);
if (rt_rq->highest_prio < curr->prio) if (rt_rq->highest_prio.curr < curr->prio)
resched_task(curr); resched_task(curr);
} }
} }
@ -473,7 +473,7 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se)
struct rt_rq *rt_rq = group_rt_rq(rt_se); struct rt_rq *rt_rq = group_rt_rq(rt_se);
if (rt_rq) if (rt_rq)
return rt_rq->highest_prio; return rt_rq->highest_prio.curr;
#endif #endif
return rt_task_of(rt_se)->prio; return rt_task_of(rt_se)->prio;
@ -547,6 +547,21 @@ static void update_curr_rt(struct rq *rq)
} }
} }
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
static inline int next_prio(struct rq *rq)
{
struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
if (next && rt_prio(next->prio))
return next->prio;
else
return MAX_RT_PRIO;
}
#endif
static inline static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{ {
@ -558,14 +573,32 @@ void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
WARN_ON(!rt_prio(prio)); WARN_ON(!rt_prio(prio));
rt_rq->rt_nr_running++; rt_rq->rt_nr_running++;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
if (prio < rt_rq->highest_prio) { if (prio < rt_rq->highest_prio.curr) {
rt_rq->highest_prio = prio; /*
* If the new task is higher in priority than anything on the
* run-queue, we have a new high that must be published to
* the world. We also know that the previous high becomes
* our next-highest.
*/
rt_rq->highest_prio.next = rt_rq->highest_prio.curr;
rt_rq->highest_prio.curr = prio;
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
if (rq->online) if (rq->online)
cpupri_set(&rq->rd->cpupri, rq->cpu, prio); cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
#endif #endif
} } else if (prio == rt_rq->highest_prio.curr)
/*
* If the next task is equal in priority to the highest on
* the run-queue, then we implicitly know that the next highest
* task cannot be any lower than current
*/
rt_rq->highest_prio.next = prio;
else if (prio < rt_rq->highest_prio.next)
/*
* Otherwise, we need to recompute next-highest
*/
rt_rq->highest_prio.next = next_prio(rq);
#endif #endif
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
if (rt_se->nr_cpus_allowed > 1) if (rt_se->nr_cpus_allowed > 1)
@ -589,7 +622,7 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{ {
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
struct rq *rq = rq_of_rt_rq(rt_rq); struct rq *rq = rq_of_rt_rq(rt_rq);
int highest_prio = rt_rq->highest_prio; int highest_prio = rt_rq->highest_prio.curr;
#endif #endif
WARN_ON(!rt_prio(rt_se_prio(rt_se))); WARN_ON(!rt_prio(rt_se_prio(rt_se)));
@ -597,24 +630,32 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
rt_rq->rt_nr_running--; rt_rq->rt_nr_running--;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
if (rt_rq->rt_nr_running) { if (rt_rq->rt_nr_running) {
struct rt_prio_array *array; int prio = rt_se_prio(rt_se);
WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); WARN_ON(prio < rt_rq->highest_prio.curr);
if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
/* recalculate */ /*
array = &rt_rq->active; * This may have been our highest or next-highest priority
rt_rq->highest_prio = * task and therefore we may have some recomputation to do
*/
if (prio == rt_rq->highest_prio.curr) {
struct rt_prio_array *array = &rt_rq->active;
rt_rq->highest_prio.curr =
sched_find_first_bit(array->bitmap); sched_find_first_bit(array->bitmap);
} /* otherwise leave rq->highest prio alone */ }
if (prio <= rt_rq->highest_prio.next)
rt_rq->highest_prio.next = next_prio(rq);
} else } else
rt_rq->highest_prio = MAX_RT_PRIO; rt_rq->highest_prio.curr = MAX_RT_PRIO;
#endif #endif
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
if (rt_se->nr_cpus_allowed > 1) if (rt_se->nr_cpus_allowed > 1)
rq->rt.rt_nr_migratory--; rq->rt.rt_nr_migratory--;
if (rq->online && rt_rq->highest_prio != highest_prio) if (rq->online && rt_rq->highest_prio.curr != highest_prio)
cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio); cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
update_rt_migration(rq); update_rt_migration(rq);
#endif /* CONFIG_SMP */ #endif /* CONFIG_SMP */
@ -1064,7 +1105,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
} }
/* If this rq is still suitable use it. */ /* If this rq is still suitable use it. */
if (lowest_rq->rt.highest_prio > task->prio) if (lowest_rq->rt.highest_prio.curr > task->prio)
break; break;
/* try again */ /* try again */
@ -1252,7 +1293,7 @@ static int pull_rt_task(struct rq *this_rq)
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
{ {
/* Try to pull RT tasks here if we lower this rq's prio */ /* Try to pull RT tasks here if we lower this rq's prio */
if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio) if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
pull_rt_task(rq); pull_rt_task(rq);
} }
@ -1338,7 +1379,7 @@ static void rq_online_rt(struct rq *rq)
__enable_runtime(rq); __enable_runtime(rq);
cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio); cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
} }
/* Assumes rq->lock is held */ /* Assumes rq->lock is held */
@ -1429,7 +1470,7 @@ static void prio_changed_rt(struct rq *rq, struct task_struct *p,
* can release the rq lock and p could migrate. * can release the rq lock and p could migrate.
* Only reschedule if p is still on the same runqueue. * Only reschedule if p is still on the same runqueue.
*/ */
if (p->prio > rq->rt.highest_prio && rq->curr == p) if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
resched_task(p); resched_task(p);
#else #else
/* For UP simply resched on drop of prio */ /* For UP simply resched on drop of prio */