Merge branches 'slab/cleanups', 'slab/failslab', 'slab/fixes' and 'slub/percpu' into slab-for-linus
This commit is contained in:
commit
e2b093f3e9
7 changed files with 147 additions and 261 deletions
|
@ -41,6 +41,7 @@ Possible debug options are
|
|||
P Poisoning (object and padding)
|
||||
U User tracking (free and alloc)
|
||||
T Trace (please only use on single slabs)
|
||||
A Toggle failslab filter mark for the cache
|
||||
O Switch debugging off for caches that would have
|
||||
caused higher minimum slab orders
|
||||
- Switch all debugging off (useful if the kernel is
|
||||
|
|
|
@ -82,9 +82,10 @@ static inline void cleanup_fault_attr_dentries(struct fault_attr *attr)
|
|||
#endif /* CONFIG_FAULT_INJECTION */
|
||||
|
||||
#ifdef CONFIG_FAILSLAB
|
||||
extern bool should_failslab(size_t size, gfp_t gfpflags);
|
||||
extern bool should_failslab(size_t size, gfp_t gfpflags, unsigned long flags);
|
||||
#else
|
||||
static inline bool should_failslab(size_t size, gfp_t gfpflags)
|
||||
static inline bool should_failslab(size_t size, gfp_t gfpflags,
|
||||
unsigned long flags)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
|
|
@ -70,6 +70,11 @@
|
|||
#else
|
||||
# define SLAB_NOTRACK 0x00000000UL
|
||||
#endif
|
||||
#ifdef CONFIG_FAILSLAB
|
||||
# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
|
||||
#else
|
||||
# define SLAB_FAILSLAB 0x00000000UL
|
||||
#endif
|
||||
|
||||
/* The following flags affect the page allocator grouping pages by mobility */
|
||||
#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
|
||||
|
|
|
@ -38,8 +38,6 @@ struct kmem_cache_cpu {
|
|||
void **freelist; /* Pointer to first free per cpu object */
|
||||
struct page *page; /* The slab from which we are allocating */
|
||||
int node; /* The node of the page (or -1 for debug) */
|
||||
unsigned int offset; /* Freepointer offset (in word units) */
|
||||
unsigned int objsize; /* Size of an object (from kmem_cache) */
|
||||
#ifdef CONFIG_SLUB_STATS
|
||||
unsigned stat[NR_SLUB_STAT_ITEMS];
|
||||
#endif
|
||||
|
@ -69,6 +67,7 @@ struct kmem_cache_order_objects {
|
|||
* Slab cache management.
|
||||
*/
|
||||
struct kmem_cache {
|
||||
struct kmem_cache_cpu *cpu_slab;
|
||||
/* Used for retriving partial slabs etc */
|
||||
unsigned long flags;
|
||||
int size; /* The size of an object including meta data */
|
||||
|
@ -104,11 +103,6 @@ struct kmem_cache {
|
|||
int remote_node_defrag_ratio;
|
||||
struct kmem_cache_node *node[MAX_NUMNODES];
|
||||
#endif
|
||||
#ifdef CONFIG_SMP
|
||||
struct kmem_cache_cpu *cpu_slab[NR_CPUS];
|
||||
#else
|
||||
struct kmem_cache_cpu cpu_slab;
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -135,11 +129,21 @@ struct kmem_cache {
|
|||
|
||||
#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
|
||||
|
||||
#ifdef CONFIG_ZONE_DMA
|
||||
#define SLUB_DMA __GFP_DMA
|
||||
/* Reserve extra caches for potential DMA use */
|
||||
#define KMALLOC_CACHES (2 * SLUB_PAGE_SHIFT - 6)
|
||||
#else
|
||||
/* Disable DMA functionality */
|
||||
#define SLUB_DMA (__force gfp_t)0
|
||||
#define KMALLOC_CACHES SLUB_PAGE_SHIFT
|
||||
#endif
|
||||
|
||||
/*
|
||||
* We keep the general caches in an array of slab caches that are used for
|
||||
* 2^x bytes of allocations.
|
||||
*/
|
||||
extern struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT];
|
||||
extern struct kmem_cache kmalloc_caches[KMALLOC_CACHES];
|
||||
|
||||
/*
|
||||
* Sorry that the following has to be that ugly but some versions of GCC
|
||||
|
@ -207,13 +211,6 @@ static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
|
|||
return &kmalloc_caches[index];
|
||||
}
|
||||
|
||||
#ifdef CONFIG_ZONE_DMA
|
||||
#define SLUB_DMA __GFP_DMA
|
||||
#else
|
||||
/* Disable DMA functionality */
|
||||
#define SLUB_DMA (__force gfp_t)0
|
||||
#endif
|
||||
|
||||
void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
|
||||
void *__kmalloc(size_t size, gfp_t flags);
|
||||
|
||||
|
|
|
@ -1,18 +1,22 @@
|
|||
#include <linux/fault-inject.h>
|
||||
#include <linux/gfp.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
static struct {
|
||||
struct fault_attr attr;
|
||||
u32 ignore_gfp_wait;
|
||||
int cache_filter;
|
||||
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
|
||||
struct dentry *ignore_gfp_wait_file;
|
||||
struct dentry *cache_filter_file;
|
||||
#endif
|
||||
} failslab = {
|
||||
.attr = FAULT_ATTR_INITIALIZER,
|
||||
.ignore_gfp_wait = 1,
|
||||
.cache_filter = 0,
|
||||
};
|
||||
|
||||
bool should_failslab(size_t size, gfp_t gfpflags)
|
||||
bool should_failslab(size_t size, gfp_t gfpflags, unsigned long cache_flags)
|
||||
{
|
||||
if (gfpflags & __GFP_NOFAIL)
|
||||
return false;
|
||||
|
@ -20,6 +24,9 @@ bool should_failslab(size_t size, gfp_t gfpflags)
|
|||
if (failslab.ignore_gfp_wait && (gfpflags & __GFP_WAIT))
|
||||
return false;
|
||||
|
||||
if (failslab.cache_filter && !(cache_flags & SLAB_FAILSLAB))
|
||||
return false;
|
||||
|
||||
return should_fail(&failslab.attr, size);
|
||||
}
|
||||
|
||||
|
@ -30,7 +37,6 @@ static int __init setup_failslab(char *str)
|
|||
__setup("failslab=", setup_failslab);
|
||||
|
||||
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
|
||||
|
||||
static int __init failslab_debugfs_init(void)
|
||||
{
|
||||
mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
|
||||
|
@ -46,8 +52,14 @@ static int __init failslab_debugfs_init(void)
|
|||
debugfs_create_bool("ignore-gfp-wait", mode, dir,
|
||||
&failslab.ignore_gfp_wait);
|
||||
|
||||
if (!failslab.ignore_gfp_wait_file) {
|
||||
failslab.cache_filter_file =
|
||||
debugfs_create_bool("cache-filter", mode, dir,
|
||||
&failslab.cache_filter);
|
||||
|
||||
if (!failslab.ignore_gfp_wait_file ||
|
||||
!failslab.cache_filter_file) {
|
||||
err = -ENOMEM;
|
||||
debugfs_remove(failslab.cache_filter_file);
|
||||
debugfs_remove(failslab.ignore_gfp_wait_file);
|
||||
cleanup_fault_attr_dentries(&failslab.attr);
|
||||
}
|
||||
|
|
13
mm/slab.c
13
mm/slab.c
|
@ -935,7 +935,6 @@ static int transfer_objects(struct array_cache *to,
|
|||
|
||||
from->avail -= nr;
|
||||
to->avail += nr;
|
||||
to->touched = 1;
|
||||
return nr;
|
||||
}
|
||||
|
||||
|
@ -983,13 +982,11 @@ static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
|
|||
|
||||
if (limit > 1)
|
||||
limit = 12;
|
||||
ac_ptr = kmalloc_node(memsize, gfp, node);
|
||||
ac_ptr = kzalloc_node(memsize, gfp, node);
|
||||
if (ac_ptr) {
|
||||
for_each_node(i) {
|
||||
if (i == node || !node_online(i)) {
|
||||
ac_ptr[i] = NULL;
|
||||
if (i == node || !node_online(i))
|
||||
continue;
|
||||
}
|
||||
ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
|
||||
if (!ac_ptr[i]) {
|
||||
for (i--; i >= 0; i--)
|
||||
|
@ -2963,8 +2960,10 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
|
|||
spin_lock(&l3->list_lock);
|
||||
|
||||
/* See if we can refill from the shared array */
|
||||
if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
|
||||
if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
|
||||
l3->shared->touched = 1;
|
||||
goto alloc_done;
|
||||
}
|
||||
|
||||
while (batchcount > 0) {
|
||||
struct list_head *entry;
|
||||
|
@ -3101,7 +3100,7 @@ static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
|
|||
if (cachep == &cache_cache)
|
||||
return false;
|
||||
|
||||
return should_failslab(obj_size(cachep), flags);
|
||||
return should_failslab(obj_size(cachep), flags, cachep->flags);
|
||||
}
|
||||
|
||||
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
|
||||
|
|
339
mm/slub.c
339
mm/slub.c
|
@ -151,7 +151,8 @@
|
|||
* Set of flags that will prevent slab merging
|
||||
*/
|
||||
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
|
||||
SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
|
||||
SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
|
||||
SLAB_FAILSLAB)
|
||||
|
||||
#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
|
||||
SLAB_CACHE_DMA | SLAB_NOTRACK)
|
||||
|
@ -217,10 +218,10 @@ static inline void sysfs_slab_remove(struct kmem_cache *s)
|
|||
|
||||
#endif
|
||||
|
||||
static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
|
||||
static inline void stat(struct kmem_cache *s, enum stat_item si)
|
||||
{
|
||||
#ifdef CONFIG_SLUB_STATS
|
||||
c->stat[si]++;
|
||||
__this_cpu_inc(s->cpu_slab->stat[si]);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -242,15 +243,6 @@ static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
|
|||
#endif
|
||||
}
|
||||
|
||||
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
|
||||
{
|
||||
#ifdef CONFIG_SMP
|
||||
return s->cpu_slab[cpu];
|
||||
#else
|
||||
return &s->cpu_slab;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Verify that a pointer has an address that is valid within a slab page */
|
||||
static inline int check_valid_pointer(struct kmem_cache *s,
|
||||
struct page *page, const void *object)
|
||||
|
@ -269,13 +261,6 @@ static inline int check_valid_pointer(struct kmem_cache *s,
|
|||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Slow version of get and set free pointer.
|
||||
*
|
||||
* This version requires touching the cache lines of kmem_cache which
|
||||
* we avoid to do in the fast alloc free paths. There we obtain the offset
|
||||
* from the page struct.
|
||||
*/
|
||||
static inline void *get_freepointer(struct kmem_cache *s, void *object)
|
||||
{
|
||||
return *(void **)(object + s->offset);
|
||||
|
@ -1020,6 +1005,9 @@ static int __init setup_slub_debug(char *str)
|
|||
case 't':
|
||||
slub_debug |= SLAB_TRACE;
|
||||
break;
|
||||
case 'a':
|
||||
slub_debug |= SLAB_FAILSLAB;
|
||||
break;
|
||||
default:
|
||||
printk(KERN_ERR "slub_debug option '%c' "
|
||||
"unknown. skipped\n", *str);
|
||||
|
@ -1124,7 +1112,7 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
|
|||
if (!page)
|
||||
return NULL;
|
||||
|
||||
stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
|
||||
stat(s, ORDER_FALLBACK);
|
||||
}
|
||||
|
||||
if (kmemcheck_enabled
|
||||
|
@ -1422,23 +1410,22 @@ static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
|
|||
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
|
||||
{
|
||||
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
|
||||
struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
|
||||
|
||||
__ClearPageSlubFrozen(page);
|
||||
if (page->inuse) {
|
||||
|
||||
if (page->freelist) {
|
||||
add_partial(n, page, tail);
|
||||
stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
|
||||
stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
|
||||
} else {
|
||||
stat(c, DEACTIVATE_FULL);
|
||||
stat(s, DEACTIVATE_FULL);
|
||||
if (SLABDEBUG && PageSlubDebug(page) &&
|
||||
(s->flags & SLAB_STORE_USER))
|
||||
add_full(n, page);
|
||||
}
|
||||
slab_unlock(page);
|
||||
} else {
|
||||
stat(c, DEACTIVATE_EMPTY);
|
||||
stat(s, DEACTIVATE_EMPTY);
|
||||
if (n->nr_partial < s->min_partial) {
|
||||
/*
|
||||
* Adding an empty slab to the partial slabs in order
|
||||
|
@ -1454,7 +1441,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
|
|||
slab_unlock(page);
|
||||
} else {
|
||||
slab_unlock(page);
|
||||
stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
|
||||
stat(s, FREE_SLAB);
|
||||
discard_slab(s, page);
|
||||
}
|
||||
}
|
||||
|
@ -1469,7 +1456,7 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
|||
int tail = 1;
|
||||
|
||||
if (page->freelist)
|
||||
stat(c, DEACTIVATE_REMOTE_FREES);
|
||||
stat(s, DEACTIVATE_REMOTE_FREES);
|
||||
/*
|
||||
* Merge cpu freelist into slab freelist. Typically we get here
|
||||
* because both freelists are empty. So this is unlikely
|
||||
|
@ -1482,10 +1469,10 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
|||
|
||||
/* Retrieve object from cpu_freelist */
|
||||
object = c->freelist;
|
||||
c->freelist = c->freelist[c->offset];
|
||||
c->freelist = get_freepointer(s, c->freelist);
|
||||
|
||||
/* And put onto the regular freelist */
|
||||
object[c->offset] = page->freelist;
|
||||
set_freepointer(s, object, page->freelist);
|
||||
page->freelist = object;
|
||||
page->inuse--;
|
||||
}
|
||||
|
@ -1495,7 +1482,7 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
|||
|
||||
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
||||
{
|
||||
stat(c, CPUSLAB_FLUSH);
|
||||
stat(s, CPUSLAB_FLUSH);
|
||||
slab_lock(c->page);
|
||||
deactivate_slab(s, c);
|
||||
}
|
||||
|
@ -1507,7 +1494,7 @@ static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
|||
*/
|
||||
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
|
||||
{
|
||||
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
|
||||
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
|
||||
|
||||
if (likely(c && c->page))
|
||||
flush_slab(s, c);
|
||||
|
@ -1635,7 +1622,7 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
|||
if (unlikely(!node_match(c, node)))
|
||||
goto another_slab;
|
||||
|
||||
stat(c, ALLOC_REFILL);
|
||||
stat(s, ALLOC_REFILL);
|
||||
|
||||
load_freelist:
|
||||
object = c->page->freelist;
|
||||
|
@ -1644,13 +1631,13 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
|||
if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
|
||||
goto debug;
|
||||
|
||||
c->freelist = object[c->offset];
|
||||
c->freelist = get_freepointer(s, object);
|
||||
c->page->inuse = c->page->objects;
|
||||
c->page->freelist = NULL;
|
||||
c->node = page_to_nid(c->page);
|
||||
unlock_out:
|
||||
slab_unlock(c->page);
|
||||
stat(c, ALLOC_SLOWPATH);
|
||||
stat(s, ALLOC_SLOWPATH);
|
||||
return object;
|
||||
|
||||
another_slab:
|
||||
|
@ -1660,7 +1647,7 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
|||
new = get_partial(s, gfpflags, node);
|
||||
if (new) {
|
||||
c->page = new;
|
||||
stat(c, ALLOC_FROM_PARTIAL);
|
||||
stat(s, ALLOC_FROM_PARTIAL);
|
||||
goto load_freelist;
|
||||
}
|
||||
|
||||
|
@ -1673,8 +1660,8 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
|||
local_irq_disable();
|
||||
|
||||
if (new) {
|
||||
c = get_cpu_slab(s, smp_processor_id());
|
||||
stat(c, ALLOC_SLAB);
|
||||
c = __this_cpu_ptr(s->cpu_slab);
|
||||
stat(s, ALLOC_SLAB);
|
||||
if (c->page)
|
||||
flush_slab(s, c);
|
||||
slab_lock(new);
|
||||
|
@ -1690,7 +1677,7 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
|||
goto another_slab;
|
||||
|
||||
c->page->inuse++;
|
||||
c->page->freelist = object[c->offset];
|
||||
c->page->freelist = get_freepointer(s, object);
|
||||
c->node = -1;
|
||||
goto unlock_out;
|
||||
}
|
||||
|
@ -1711,35 +1698,33 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
|
|||
void **object;
|
||||
struct kmem_cache_cpu *c;
|
||||
unsigned long flags;
|
||||
unsigned int objsize;
|
||||
|
||||
gfpflags &= gfp_allowed_mask;
|
||||
|
||||
lockdep_trace_alloc(gfpflags);
|
||||
might_sleep_if(gfpflags & __GFP_WAIT);
|
||||
|
||||
if (should_failslab(s->objsize, gfpflags))
|
||||
if (should_failslab(s->objsize, gfpflags, s->flags))
|
||||
return NULL;
|
||||
|
||||
local_irq_save(flags);
|
||||
c = get_cpu_slab(s, smp_processor_id());
|
||||
objsize = c->objsize;
|
||||
if (unlikely(!c->freelist || !node_match(c, node)))
|
||||
c = __this_cpu_ptr(s->cpu_slab);
|
||||
object = c->freelist;
|
||||
if (unlikely(!object || !node_match(c, node)))
|
||||
|
||||
object = __slab_alloc(s, gfpflags, node, addr, c);
|
||||
|
||||
else {
|
||||
object = c->freelist;
|
||||
c->freelist = object[c->offset];
|
||||
stat(c, ALLOC_FASTPATH);
|
||||
c->freelist = get_freepointer(s, object);
|
||||
stat(s, ALLOC_FASTPATH);
|
||||
}
|
||||
local_irq_restore(flags);
|
||||
|
||||
if (unlikely(gfpflags & __GFP_ZERO) && object)
|
||||
memset(object, 0, objsize);
|
||||
memset(object, 0, s->objsize);
|
||||
|
||||
kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
|
||||
kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
|
||||
kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
|
||||
kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
|
||||
|
||||
return object;
|
||||
}
|
||||
|
@ -1794,26 +1779,25 @@ EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
|
|||
* handling required then we can return immediately.
|
||||
*/
|
||||
static void __slab_free(struct kmem_cache *s, struct page *page,
|
||||
void *x, unsigned long addr, unsigned int offset)
|
||||
void *x, unsigned long addr)
|
||||
{
|
||||
void *prior;
|
||||
void **object = (void *)x;
|
||||
struct kmem_cache_cpu *c;
|
||||
|
||||
c = get_cpu_slab(s, raw_smp_processor_id());
|
||||
stat(c, FREE_SLOWPATH);
|
||||
stat(s, FREE_SLOWPATH);
|
||||
slab_lock(page);
|
||||
|
||||
if (unlikely(SLABDEBUG && PageSlubDebug(page)))
|
||||
goto debug;
|
||||
|
||||
checks_ok:
|
||||
prior = object[offset] = page->freelist;
|
||||
prior = page->freelist;
|
||||
set_freepointer(s, object, prior);
|
||||
page->freelist = object;
|
||||
page->inuse--;
|
||||
|
||||
if (unlikely(PageSlubFrozen(page))) {
|
||||
stat(c, FREE_FROZEN);
|
||||
stat(s, FREE_FROZEN);
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
|
@ -1826,7 +1810,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
|
|||
*/
|
||||
if (unlikely(!prior)) {
|
||||
add_partial(get_node(s, page_to_nid(page)), page, 1);
|
||||
stat(c, FREE_ADD_PARTIAL);
|
||||
stat(s, FREE_ADD_PARTIAL);
|
||||
}
|
||||
|
||||
out_unlock:
|
||||
|
@ -1839,10 +1823,10 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
|
|||
* Slab still on the partial list.
|
||||
*/
|
||||
remove_partial(s, page);
|
||||
stat(c, FREE_REMOVE_PARTIAL);
|
||||
stat(s, FREE_REMOVE_PARTIAL);
|
||||
}
|
||||
slab_unlock(page);
|
||||
stat(c, FREE_SLAB);
|
||||
stat(s, FREE_SLAB);
|
||||
discard_slab(s, page);
|
||||
return;
|
||||
|
||||
|
@ -1872,17 +1856,17 @@ static __always_inline void slab_free(struct kmem_cache *s,
|
|||
|
||||
kmemleak_free_recursive(x, s->flags);
|
||||
local_irq_save(flags);
|
||||
c = get_cpu_slab(s, smp_processor_id());
|
||||
kmemcheck_slab_free(s, object, c->objsize);
|
||||
debug_check_no_locks_freed(object, c->objsize);
|
||||
c = __this_cpu_ptr(s->cpu_slab);
|
||||
kmemcheck_slab_free(s, object, s->objsize);
|
||||
debug_check_no_locks_freed(object, s->objsize);
|
||||
if (!(s->flags & SLAB_DEBUG_OBJECTS))
|
||||
debug_check_no_obj_freed(object, c->objsize);
|
||||
debug_check_no_obj_freed(object, s->objsize);
|
||||
if (likely(page == c->page && c->node >= 0)) {
|
||||
object[c->offset] = c->freelist;
|
||||
set_freepointer(s, object, c->freelist);
|
||||
c->freelist = object;
|
||||
stat(c, FREE_FASTPATH);
|
||||
stat(s, FREE_FASTPATH);
|
||||
} else
|
||||
__slab_free(s, page, x, addr, c->offset);
|
||||
__slab_free(s, page, x, addr);
|
||||
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
@ -2069,19 +2053,6 @@ static unsigned long calculate_alignment(unsigned long flags,
|
|||
return ALIGN(align, sizeof(void *));
|
||||
}
|
||||
|
||||
static void init_kmem_cache_cpu(struct kmem_cache *s,
|
||||
struct kmem_cache_cpu *c)
|
||||
{
|
||||
c->page = NULL;
|
||||
c->freelist = NULL;
|
||||
c->node = 0;
|
||||
c->offset = s->offset / sizeof(void *);
|
||||
c->objsize = s->objsize;
|
||||
#ifdef CONFIG_SLUB_STATS
|
||||
memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
|
||||
#endif
|
||||
}
|
||||
|
||||
static void
|
||||
init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
|
||||
{
|
||||
|
@ -2095,130 +2066,24 @@ init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
|
|||
#endif
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
/*
|
||||
* Per cpu array for per cpu structures.
|
||||
*
|
||||
* The per cpu array places all kmem_cache_cpu structures from one processor
|
||||
* close together meaning that it becomes possible that multiple per cpu
|
||||
* structures are contained in one cacheline. This may be particularly
|
||||
* beneficial for the kmalloc caches.
|
||||
*
|
||||
* A desktop system typically has around 60-80 slabs. With 100 here we are
|
||||
* likely able to get per cpu structures for all caches from the array defined
|
||||
* here. We must be able to cover all kmalloc caches during bootstrap.
|
||||
*
|
||||
* If the per cpu array is exhausted then fall back to kmalloc
|
||||
* of individual cachelines. No sharing is possible then.
|
||||
*/
|
||||
#define NR_KMEM_CACHE_CPU 100
|
||||
|
||||
static DEFINE_PER_CPU(struct kmem_cache_cpu [NR_KMEM_CACHE_CPU],
|
||||
kmem_cache_cpu);
|
||||
|
||||
static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
|
||||
static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
|
||||
|
||||
static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
|
||||
int cpu, gfp_t flags)
|
||||
{
|
||||
struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
|
||||
|
||||
if (c)
|
||||
per_cpu(kmem_cache_cpu_free, cpu) =
|
||||
(void *)c->freelist;
|
||||
else {
|
||||
/* Table overflow: So allocate ourselves */
|
||||
c = kmalloc_node(
|
||||
ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
|
||||
flags, cpu_to_node(cpu));
|
||||
if (!c)
|
||||
return NULL;
|
||||
}
|
||||
|
||||
init_kmem_cache_cpu(s, c);
|
||||
return c;
|
||||
}
|
||||
|
||||
static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
|
||||
{
|
||||
if (c < per_cpu(kmem_cache_cpu, cpu) ||
|
||||
c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
|
||||
kfree(c);
|
||||
return;
|
||||
}
|
||||
c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
|
||||
per_cpu(kmem_cache_cpu_free, cpu) = c;
|
||||
}
|
||||
|
||||
static void free_kmem_cache_cpus(struct kmem_cache *s)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
for_each_online_cpu(cpu) {
|
||||
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
|
||||
|
||||
if (c) {
|
||||
s->cpu_slab[cpu] = NULL;
|
||||
free_kmem_cache_cpu(c, cpu);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
for_each_online_cpu(cpu) {
|
||||
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
|
||||
|
||||
if (c)
|
||||
continue;
|
||||
|
||||
c = alloc_kmem_cache_cpu(s, cpu, flags);
|
||||
if (!c) {
|
||||
free_kmem_cache_cpus(s);
|
||||
return 0;
|
||||
}
|
||||
s->cpu_slab[cpu] = c;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize the per cpu array.
|
||||
*/
|
||||
static void init_alloc_cpu_cpu(int cpu)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
|
||||
return;
|
||||
|
||||
for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
|
||||
free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
|
||||
|
||||
cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
|
||||
}
|
||||
|
||||
static void __init init_alloc_cpu(void)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
for_each_online_cpu(cpu)
|
||||
init_alloc_cpu_cpu(cpu);
|
||||
}
|
||||
|
||||
#else
|
||||
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
|
||||
static inline void init_alloc_cpu(void) {}
|
||||
static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
|
||||
|
||||
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
|
||||
{
|
||||
init_kmem_cache_cpu(s, &s->cpu_slab);
|
||||
if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
|
||||
/*
|
||||
* Boot time creation of the kmalloc array. Use static per cpu data
|
||||
* since the per cpu allocator is not available yet.
|
||||
*/
|
||||
s->cpu_slab = per_cpu_var(kmalloc_percpu) + (s - kmalloc_caches);
|
||||
else
|
||||
s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
|
||||
|
||||
if (!s->cpu_slab)
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_NUMA
|
||||
/*
|
||||
|
@ -2287,7 +2152,8 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
|
|||
int node;
|
||||
int local_node;
|
||||
|
||||
if (slab_state >= UP)
|
||||
if (slab_state >= UP && (s < kmalloc_caches ||
|
||||
s > kmalloc_caches + KMALLOC_CACHES))
|
||||
local_node = page_to_nid(virt_to_page(s));
|
||||
else
|
||||
local_node = 0;
|
||||
|
@ -2502,6 +2368,7 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
|
|||
|
||||
if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
|
||||
return 1;
|
||||
|
||||
free_kmem_cache_nodes(s);
|
||||
error:
|
||||
if (flags & SLAB_PANIC)
|
||||
|
@ -2609,9 +2476,8 @@ static inline int kmem_cache_close(struct kmem_cache *s)
|
|||
int node;
|
||||
|
||||
flush_all(s);
|
||||
|
||||
free_percpu(s->cpu_slab);
|
||||
/* Attempt to free all objects */
|
||||
free_kmem_cache_cpus(s);
|
||||
for_each_node_state(node, N_NORMAL_MEMORY) {
|
||||
struct kmem_cache_node *n = get_node(s, node);
|
||||
|
||||
|
@ -2651,7 +2517,7 @@ EXPORT_SYMBOL(kmem_cache_destroy);
|
|||
* Kmalloc subsystem
|
||||
*******************************************************************/
|
||||
|
||||
struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
|
||||
struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
|
||||
EXPORT_SYMBOL(kmalloc_caches);
|
||||
|
||||
static int __init setup_slub_min_order(char *str)
|
||||
|
@ -2741,6 +2607,7 @@ static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
|
|||
char *text;
|
||||
size_t realsize;
|
||||
unsigned long slabflags;
|
||||
int i;
|
||||
|
||||
s = kmalloc_caches_dma[index];
|
||||
if (s)
|
||||
|
@ -2760,7 +2627,14 @@ static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
|
|||
realsize = kmalloc_caches[index].objsize;
|
||||
text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
|
||||
(unsigned int)realsize);
|
||||
s = kmalloc(kmem_size, flags & ~SLUB_DMA);
|
||||
|
||||
s = NULL;
|
||||
for (i = 0; i < KMALLOC_CACHES; i++)
|
||||
if (!kmalloc_caches[i].size)
|
||||
break;
|
||||
|
||||
BUG_ON(i >= KMALLOC_CACHES);
|
||||
s = kmalloc_caches + i;
|
||||
|
||||
/*
|
||||
* Must defer sysfs creation to a workqueue because we don't know
|
||||
|
@ -2772,9 +2646,9 @@ static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
|
|||
if (slab_state >= SYSFS)
|
||||
slabflags |= __SYSFS_ADD_DEFERRED;
|
||||
|
||||
if (!s || !text || !kmem_cache_open(s, flags, text,
|
||||
if (!text || !kmem_cache_open(s, flags, text,
|
||||
realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
|
||||
kfree(s);
|
||||
s->size = 0;
|
||||
kfree(text);
|
||||
goto unlock_out;
|
||||
}
|
||||
|
@ -3176,8 +3050,6 @@ void __init kmem_cache_init(void)
|
|||
int i;
|
||||
int caches = 0;
|
||||
|
||||
init_alloc_cpu();
|
||||
|
||||
#ifdef CONFIG_NUMA
|
||||
/*
|
||||
* Must first have the slab cache available for the allocations of the
|
||||
|
@ -3261,8 +3133,10 @@ void __init kmem_cache_init(void)
|
|||
|
||||
#ifdef CONFIG_SMP
|
||||
register_cpu_notifier(&slab_notifier);
|
||||
kmem_size = offsetof(struct kmem_cache, cpu_slab) +
|
||||
nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
|
||||
#endif
|
||||
#ifdef CONFIG_NUMA
|
||||
kmem_size = offsetof(struct kmem_cache, node) +
|
||||
nr_node_ids * sizeof(struct kmem_cache_node *);
|
||||
#else
|
||||
kmem_size = sizeof(struct kmem_cache);
|
||||
#endif
|
||||
|
@ -3351,22 +3225,12 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
|
|||
down_write(&slub_lock);
|
||||
s = find_mergeable(size, align, flags, name, ctor);
|
||||
if (s) {
|
||||
int cpu;
|
||||
|
||||
s->refcount++;
|
||||
/*
|
||||
* Adjust the object sizes so that we clear
|
||||
* the complete object on kzalloc.
|
||||
*/
|
||||
s->objsize = max(s->objsize, (int)size);
|
||||
|
||||
/*
|
||||
* And then we need to update the object size in the
|
||||
* per cpu structures
|
||||
*/
|
||||
for_each_online_cpu(cpu)
|
||||
get_cpu_slab(s, cpu)->objsize = s->objsize;
|
||||
|
||||
s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
|
||||
up_write(&slub_lock);
|
||||
|
||||
|
@ -3420,29 +3284,15 @@ static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
|
|||
unsigned long flags;
|
||||
|
||||
switch (action) {
|
||||
case CPU_UP_PREPARE:
|
||||
case CPU_UP_PREPARE_FROZEN:
|
||||
init_alloc_cpu_cpu(cpu);
|
||||
down_read(&slub_lock);
|
||||
list_for_each_entry(s, &slab_caches, list)
|
||||
s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
|
||||
GFP_KERNEL);
|
||||
up_read(&slub_lock);
|
||||
break;
|
||||
|
||||
case CPU_UP_CANCELED:
|
||||
case CPU_UP_CANCELED_FROZEN:
|
||||
case CPU_DEAD:
|
||||
case CPU_DEAD_FROZEN:
|
||||
down_read(&slub_lock);
|
||||
list_for_each_entry(s, &slab_caches, list) {
|
||||
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
|
||||
|
||||
local_irq_save(flags);
|
||||
__flush_cpu_slab(s, cpu);
|
||||
local_irq_restore(flags);
|
||||
free_kmem_cache_cpu(c, cpu);
|
||||
s->cpu_slab[cpu] = NULL;
|
||||
}
|
||||
up_read(&slub_lock);
|
||||
break;
|
||||
|
@ -3928,7 +3778,7 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
|
|||
int cpu;
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
|
||||
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
|
||||
|
||||
if (!c || c->node < 0)
|
||||
continue;
|
||||
|
@ -4171,6 +4021,23 @@ static ssize_t trace_store(struct kmem_cache *s, const char *buf,
|
|||
}
|
||||
SLAB_ATTR(trace);
|
||||
|
||||
#ifdef CONFIG_FAILSLAB
|
||||
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
|
||||
}
|
||||
|
||||
static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
|
||||
size_t length)
|
||||
{
|
||||
s->flags &= ~SLAB_FAILSLAB;
|
||||
if (buf[0] == '1')
|
||||
s->flags |= SLAB_FAILSLAB;
|
||||
return length;
|
||||
}
|
||||
SLAB_ATTR(failslab);
|
||||
#endif
|
||||
|
||||
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
|
||||
|
@ -4353,7 +4220,7 @@ static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
|
|||
return -ENOMEM;
|
||||
|
||||
for_each_online_cpu(cpu) {
|
||||
unsigned x = get_cpu_slab(s, cpu)->stat[si];
|
||||
unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
|
||||
|
||||
data[cpu] = x;
|
||||
sum += x;
|
||||
|
@ -4376,7 +4243,7 @@ static void clear_stat(struct kmem_cache *s, enum stat_item si)
|
|||
int cpu;
|
||||
|
||||
for_each_online_cpu(cpu)
|
||||
get_cpu_slab(s, cpu)->stat[si] = 0;
|
||||
per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
|
||||
}
|
||||
|
||||
#define STAT_ATTR(si, text) \
|
||||
|
@ -4467,6 +4334,10 @@ static struct attribute *slab_attrs[] = {
|
|||
&deactivate_remote_frees_attr.attr,
|
||||
&order_fallback_attr.attr,
|
||||
#endif
|
||||
#ifdef CONFIG_FAILSLAB
|
||||
&failslab_attr.attr,
|
||||
#endif
|
||||
|
||||
NULL
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in a new issue