rtc: driver for pxa27x and pxa3xx SoC

With PXA27x and above, a new RTC hardware block was added in addition to
the legacy one which is also found on the SA1100 SOC family.  This second
RTC block is called "wristwatch" and "periodic interrupt" and works
independently from the other RTC block.

The driver offers provides :
 - a 1Hz ticking clock
 - a periodic alarm, in the 1Hz to 1000Hz range
 - a one shot alarm

Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>
Cc: Jonathan Cameron <jic23@cam.ac.uk>
Signed-off-by: Alessandro Zummo <a.zummo@towertech.it>
Cc: David Brownell <david-b@pacbell.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Robert Jarzmik 2009-01-06 14:42:14 -08:00 committed by Linus Torvalds
parent 5d2a50371d
commit dc9443688e
3 changed files with 505 additions and 0 deletions

View file

@ -669,6 +669,17 @@ config RTC_DRV_PPC
the RTC. This exposes that functionality through the generic RTC
class.
config RTC_DRV_PXA
tristate "PXA27x/PXA3xx"
depends on ARCH_PXA
help
If you say Y here you will get access to the real time clock
built into your PXA27x or PXA3xx CPU.
This RTC driver uses PXA RTC registers available since pxa27x
series (RDxR, RYxR) instead of legacy RCNR, RTAR.
config RTC_DRV_SUN4V
bool "SUN4V Hypervisor RTC"
depends on SPARC64

View file

@ -54,6 +54,7 @@ obj-$(CONFIG_RTC_DRV_PL030) += rtc-pl030.o
obj-$(CONFIG_RTC_DRV_PL031) += rtc-pl031.o
obj-$(CONFIG_RTC_DRV_PARISC) += rtc-parisc.o
obj-$(CONFIG_RTC_DRV_PPC) += rtc-ppc.o
obj-$(CONFIG_RTC_DRV_PXA) += rtc-pxa.o
obj-$(CONFIG_RTC_DRV_R9701) += rtc-r9701.o
obj-$(CONFIG_RTC_DRV_RS5C313) += rtc-rs5c313.o
obj-$(CONFIG_RTC_DRV_RS5C348) += rtc-rs5c348.o

493
drivers/rtc/rtc-pxa.c Normal file
View file

@ -0,0 +1,493 @@
/*
* Real Time Clock interface for XScale PXA27x and PXA3xx
*
* Copyright (C) 2008 Robert Jarzmik
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/seq_file.h>
#include <linux/interrupt.h>
#include <asm/io.h>
#define TIMER_FREQ CLOCK_TICK_RATE
#define RTC_DEF_DIVIDER (32768 - 1)
#define RTC_DEF_TRIM 0
#define MAXFREQ_PERIODIC 1000
/*
* PXA Registers and bits definitions
*/
#define RTSR_PICE (1 << 15) /* Periodic interrupt count enable */
#define RTSR_PIALE (1 << 14) /* Periodic interrupt Alarm enable */
#define RTSR_PIAL (1 << 13) /* Periodic interrupt detected */
#define RTSR_SWALE2 (1 << 11) /* RTC stopwatch alarm2 enable */
#define RTSR_SWAL2 (1 << 10) /* RTC stopwatch alarm2 detected */
#define RTSR_SWALE1 (1 << 9) /* RTC stopwatch alarm1 enable */
#define RTSR_SWAL1 (1 << 8) /* RTC stopwatch alarm1 detected */
#define RTSR_RDALE2 (1 << 7) /* RTC alarm2 enable */
#define RTSR_RDAL2 (1 << 6) /* RTC alarm2 detected */
#define RTSR_RDALE1 (1 << 5) /* RTC alarm1 enable */
#define RTSR_RDAL1 (1 << 4) /* RTC alarm1 detected */
#define RTSR_HZE (1 << 3) /* HZ interrupt enable */
#define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */
#define RTSR_HZ (1 << 1) /* HZ rising-edge detected */
#define RTSR_AL (1 << 0) /* RTC alarm detected */
#define RTSR_TRIG_MASK (RTSR_AL | RTSR_HZ | RTSR_RDAL1 | RTSR_RDAL2\
| RTSR_SWAL1 | RTSR_SWAL2)
#define RYxR_YEAR_S 9
#define RYxR_YEAR_MASK (0xfff << RYxR_YEAR_S)
#define RYxR_MONTH_S 5
#define RYxR_MONTH_MASK (0xf << RYxR_MONTH_S)
#define RYxR_DAY_MASK 0x1f
#define RDxR_HOUR_S 12
#define RDxR_HOUR_MASK (0x1f << RDxR_HOUR_S)
#define RDxR_MIN_S 6
#define RDxR_MIN_MASK (0x3f << RDxR_MIN_S)
#define RDxR_SEC_MASK 0x3f
#define RTSR 0x08
#define RTTR 0x0c
#define RDCR 0x10
#define RYCR 0x14
#define RDAR1 0x18
#define RYAR1 0x1c
#define RTCPICR 0x34
#define PIAR 0x38
#define rtc_readl(pxa_rtc, reg) \
__raw_readl((pxa_rtc)->base + (reg))
#define rtc_writel(pxa_rtc, reg, value) \
__raw_writel((value), (pxa_rtc)->base + (reg))
struct pxa_rtc {
struct resource *ress;
void __iomem *base;
int irq_1Hz;
int irq_Alrm;
struct rtc_device *rtc;
spinlock_t lock; /* Protects this structure */
struct rtc_time rtc_alarm;
};
static u32 ryxr_calc(struct rtc_time *tm)
{
return ((tm->tm_year + 1900) << RYxR_YEAR_S)
| ((tm->tm_mon + 1) << RYxR_MONTH_S)
| tm->tm_mday;
}
static u32 rdxr_calc(struct rtc_time *tm)
{
return (tm->tm_hour << RDxR_HOUR_S) | (tm->tm_min << RDxR_MIN_S)
| tm->tm_sec;
}
static void tm_calc(u32 rycr, u32 rdcr, struct rtc_time *tm)
{
tm->tm_year = ((rycr & RYxR_YEAR_MASK) >> RYxR_YEAR_S) - 1900;
tm->tm_mon = (((rycr & RYxR_MONTH_MASK) >> RYxR_MONTH_S)) - 1;
tm->tm_mday = (rycr & RYxR_DAY_MASK);
tm->tm_hour = (rdcr & RDxR_HOUR_MASK) >> RDxR_HOUR_S;
tm->tm_min = (rdcr & RDxR_MIN_MASK) >> RDxR_MIN_S;
tm->tm_sec = rdcr & RDxR_SEC_MASK;
}
static void rtsr_clear_bits(struct pxa_rtc *pxa_rtc, u32 mask)
{
u32 rtsr;
rtsr = rtc_readl(pxa_rtc, RTSR);
rtsr &= ~RTSR_TRIG_MASK;
rtsr &= ~mask;
rtc_writel(pxa_rtc, RTSR, rtsr);
}
static void rtsr_set_bits(struct pxa_rtc *pxa_rtc, u32 mask)
{
u32 rtsr;
rtsr = rtc_readl(pxa_rtc, RTSR);
rtsr &= ~RTSR_TRIG_MASK;
rtsr |= mask;
rtc_writel(pxa_rtc, RTSR, rtsr);
}
static irqreturn_t pxa_rtc_irq(int irq, void *dev_id)
{
struct platform_device *pdev = to_platform_device(dev_id);
struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
u32 rtsr;
unsigned long events = 0;
spin_lock(&pxa_rtc->lock);
/* clear interrupt sources */
rtsr = rtc_readl(pxa_rtc, RTSR);
rtc_writel(pxa_rtc, RTSR, rtsr);
/* temporary disable rtc interrupts */
rtsr_clear_bits(pxa_rtc, RTSR_RDALE1 | RTSR_PIALE | RTSR_HZE);
/* clear alarm interrupt if it has occurred */
if (rtsr & RTSR_RDAL1)
rtsr &= ~RTSR_RDALE1;
/* update irq data & counter */
if (rtsr & RTSR_RDAL1)
events |= RTC_AF | RTC_IRQF;
if (rtsr & RTSR_HZ)
events |= RTC_UF | RTC_IRQF;
if (rtsr & RTSR_PIAL)
events |= RTC_PF | RTC_IRQF;
rtc_update_irq(pxa_rtc->rtc, 1, events);
/* enable back rtc interrupts */
rtc_writel(pxa_rtc, RTSR, rtsr & ~RTSR_TRIG_MASK);
spin_unlock(&pxa_rtc->lock);
return IRQ_HANDLED;
}
static int pxa_rtc_open(struct device *dev)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
int ret;
ret = request_irq(pxa_rtc->irq_1Hz, pxa_rtc_irq, IRQF_DISABLED,
"rtc 1Hz", dev);
if (ret < 0) {
dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_1Hz,
ret);
goto err_irq_1Hz;
}
ret = request_irq(pxa_rtc->irq_Alrm, pxa_rtc_irq, IRQF_DISABLED,
"rtc Alrm", dev);
if (ret < 0) {
dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_Alrm,
ret);
goto err_irq_Alrm;
}
return 0;
err_irq_Alrm:
free_irq(pxa_rtc->irq_1Hz, dev);
err_irq_1Hz:
return ret;
}
static void pxa_rtc_release(struct device *dev)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
spin_lock_irq(&pxa_rtc->lock);
rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
spin_unlock_irq(&pxa_rtc->lock);
free_irq(pxa_rtc->irq_Alrm, dev);
free_irq(pxa_rtc->irq_1Hz, dev);
}
static int pxa_periodic_irq_set_freq(struct device *dev, int freq)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
int period_ms;
if (freq < 1 || freq > MAXFREQ_PERIODIC)
return -EINVAL;
period_ms = 1000 / freq;
rtc_writel(pxa_rtc, PIAR, period_ms);
return 0;
}
static int pxa_periodic_irq_set_state(struct device *dev, int enabled)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
if (enabled)
rtsr_set_bits(pxa_rtc, RTSR_PIALE | RTSR_PICE);
else
rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_PICE);
return 0;
}
static int pxa_rtc_ioctl(struct device *dev, unsigned int cmd,
unsigned long arg)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
int ret = 0;
spin_lock_irq(&pxa_rtc->lock);
switch (cmd) {
case RTC_AIE_OFF:
rtsr_clear_bits(pxa_rtc, RTSR_RDALE1);
break;
case RTC_AIE_ON:
rtsr_set_bits(pxa_rtc, RTSR_RDALE1);
break;
case RTC_UIE_OFF:
rtsr_clear_bits(pxa_rtc, RTSR_HZE);
break;
case RTC_UIE_ON:
rtsr_set_bits(pxa_rtc, RTSR_HZE);
break;
default:
ret = -ENOIOCTLCMD;
}
spin_unlock_irq(&pxa_rtc->lock);
return ret;
}
static int pxa_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
u32 rycr, rdcr;
rycr = rtc_readl(pxa_rtc, RYCR);
rdcr = rtc_readl(pxa_rtc, RDCR);
tm_calc(rycr, rdcr, tm);
return 0;
}
static int pxa_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
rtc_writel(pxa_rtc, RYCR, ryxr_calc(tm));
rtc_writel(pxa_rtc, RDCR, rdxr_calc(tm));
return 0;
}
static int pxa_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
u32 rtsr, ryar, rdar;
ryar = rtc_readl(pxa_rtc, RYAR1);
rdar = rtc_readl(pxa_rtc, RDAR1);
tm_calc(ryar, rdar, &alrm->time);
rtsr = rtc_readl(pxa_rtc, RTSR);
alrm->enabled = (rtsr & RTSR_RDALE1) ? 1 : 0;
alrm->pending = (rtsr & RTSR_RDAL1) ? 1 : 0;
return 0;
}
static int pxa_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
u32 rtsr;
spin_lock_irq(&pxa_rtc->lock);
rtc_writel(pxa_rtc, RYAR1, ryxr_calc(&alrm->time));
rtc_writel(pxa_rtc, RDAR1, rdxr_calc(&alrm->time));
rtsr = rtc_readl(pxa_rtc, RTSR);
if (alrm->enabled)
rtsr |= RTSR_RDALE1;
else
rtsr &= ~RTSR_RDALE1;
rtc_writel(pxa_rtc, RTSR, rtsr);
spin_unlock_irq(&pxa_rtc->lock);
return 0;
}
static int pxa_rtc_proc(struct device *dev, struct seq_file *seq)
{
struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
seq_printf(seq, "trim/divider\t: 0x%08x\n", rtc_readl(pxa_rtc, RTTR));
seq_printf(seq, "update_IRQ\t: %s\n",
(rtc_readl(pxa_rtc, RTSR) & RTSR_HZE) ? "yes" : "no");
seq_printf(seq, "periodic_IRQ\t: %s\n",
(rtc_readl(pxa_rtc, RTSR) & RTSR_PIALE) ? "yes" : "no");
seq_printf(seq, "periodic_freq\t: %u\n", rtc_readl(pxa_rtc, PIAR));
return 0;
}
static const struct rtc_class_ops pxa_rtc_ops = {
.open = pxa_rtc_open,
.release = pxa_rtc_release,
.ioctl = pxa_rtc_ioctl,
.read_time = pxa_rtc_read_time,
.set_time = pxa_rtc_set_time,
.read_alarm = pxa_rtc_read_alarm,
.set_alarm = pxa_rtc_set_alarm,
.proc = pxa_rtc_proc,
.irq_set_state = pxa_periodic_irq_set_state,
.irq_set_freq = pxa_periodic_irq_set_freq,
};
static int __devinit pxa_rtc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct pxa_rtc *pxa_rtc;
int ret;
u32 rttr;
ret = -ENOMEM;
pxa_rtc = kzalloc(sizeof(struct pxa_rtc), GFP_KERNEL);
if (!pxa_rtc)
goto err_alloc;
ret = -ENXIO;
pxa_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!pxa_rtc->ress) {
dev_err(dev, "No I/O memory resource defined\n");
goto err_ress;
}
pxa_rtc->irq_1Hz = platform_get_irq(pdev, 0);
if (pxa_rtc->irq_1Hz < 0) {
dev_err(dev, "No 1Hz IRQ resource defined\n");
goto err_ress;
}
pxa_rtc->irq_Alrm = platform_get_irq(pdev, 1);
if (pxa_rtc->irq_Alrm < 0) {
dev_err(dev, "No alarm IRQ resource defined\n");
goto err_ress;
}
pxa_rtc->rtc = rtc_device_register(pdev->name, &pdev->dev, &pxa_rtc_ops,
THIS_MODULE);
ret = PTR_ERR(pxa_rtc->rtc);
if (IS_ERR(pxa_rtc->rtc)) {
dev_err(dev, "Failed to register RTC device -> %d\n", ret);
goto err_rtc_reg;
}
spin_lock_init(&pxa_rtc->lock);
platform_set_drvdata(pdev, pxa_rtc);
ret = -ENOMEM;
pxa_rtc->base = ioremap(pxa_rtc->ress->start,
pxa_rtc->ress->end - pxa_rtc->ress->start + 1);
if (!pxa_rtc->base) {
dev_err(&pdev->dev, "Unable to map pxa RTC I/O memory\n");
goto err_map;
}
/*
* If the clock divider is uninitialized then reset it to the
* default value to get the 1Hz clock.
*/
if (rtc_readl(pxa_rtc, RTTR) == 0) {
rttr = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
rtc_writel(pxa_rtc, RTTR, rttr);
dev_warn(dev, "warning: initializing default clock"
" divider/trim value\n");
}
rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
device_init_wakeup(dev, 1);
return 0;
err_map:
platform_set_drvdata(pdev, NULL);
rtc_device_unregister(pxa_rtc->rtc);
err_rtc_reg:
err_ress:
kfree(pxa_rtc);
err_alloc:
return ret;
}
static int __devexit pxa_rtc_remove(struct platform_device *pdev)
{
struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
spin_lock_irq(&pxa_rtc->lock);
iounmap(pxa_rtc->base);
pxa_rtc->base = NULL;
platform_set_drvdata(pdev, NULL);
spin_unlock_irq(&pxa_rtc->lock);
rtc_device_unregister(pxa_rtc->rtc);
kfree(pxa_rtc);
return 0;
}
#ifdef CONFIG_PM
static int pxa_rtc_suspend(struct platform_device *pdev, pm_message_t state)
{
struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
if (device_may_wakeup(&pdev->dev))
enable_irq_wake(pxa_rtc->irq_Alrm);
return 0;
}
static int pxa_rtc_resume(struct platform_device *pdev)
{
struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
if (device_may_wakeup(&pdev->dev))
disable_irq_wake(pxa_rtc->irq_Alrm);
return 0;
}
#else
#define pxa_rtc_suspend NULL
#define pxa_rtc_resume NULL
#endif
static struct platform_driver pxa_rtc_driver = {
.probe = pxa_rtc_probe,
.remove = __exit_p(pxa_rtc_remove),
.suspend = pxa_rtc_suspend,
.resume = pxa_rtc_resume,
.driver = {
.name = "pxa-rtc",
},
};
static int __init pxa_rtc_init(void)
{
if (cpu_is_pxa27x() || cpu_is_pxa3xx())
return platform_driver_register(&pxa_rtc_driver);
return -ENODEV;
}
static void __exit pxa_rtc_exit(void)
{
platform_driver_unregister(&pxa_rtc_driver);
}
module_init(pxa_rtc_init);
module_exit(pxa_rtc_exit);
MODULE_AUTHOR("Robert Jarzmik");
MODULE_DESCRIPTION("PXA27x/PXA3xx Realtime Clock Driver (RTC)");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:pxa-rtc");