random: mix in architectural randomness in extract_buf()
Mix in any architectural randomness in extract_buf() instead of xfer_secondary_buf(). This allows us to mix in more architectural randomness, and it also makes xfer_secondary_buf() faster, moving a tiny bit of additional CPU overhead to process which is extracting the randomness. [ Commit description modified by tytso to remove an extended advertisement for the RDRAND instruction. ] Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: DJ Johnston <dj.johnston@intel.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@vger.kernel.org
This commit is contained in:
parent
d114a33387
commit
d2e7c96af1
1 changed files with 32 additions and 24 deletions
|
@ -277,6 +277,8 @@
|
|||
#define SEC_XFER_SIZE 512
|
||||
#define EXTRACT_SIZE 10
|
||||
|
||||
#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
|
||||
|
||||
/*
|
||||
* The minimum number of bits of entropy before we wake up a read on
|
||||
* /dev/random. Should be enough to do a significant reseed.
|
||||
|
@ -813,11 +815,7 @@ static ssize_t extract_entropy(struct entropy_store *r, void *buf,
|
|||
*/
|
||||
static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
|
||||
{
|
||||
union {
|
||||
__u32 tmp[OUTPUT_POOL_WORDS];
|
||||
long hwrand[4];
|
||||
} u;
|
||||
int i;
|
||||
__u32 tmp[OUTPUT_POOL_WORDS];
|
||||
|
||||
if (r->pull && r->entropy_count < nbytes * 8 &&
|
||||
r->entropy_count < r->poolinfo->POOLBITS) {
|
||||
|
@ -828,23 +826,17 @@ static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
|
|||
/* pull at least as many as BYTES as wakeup BITS */
|
||||
bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
|
||||
/* but never more than the buffer size */
|
||||
bytes = min_t(int, bytes, sizeof(u.tmp));
|
||||
bytes = min_t(int, bytes, sizeof(tmp));
|
||||
|
||||
DEBUG_ENT("going to reseed %s with %d bits "
|
||||
"(%d of %d requested)\n",
|
||||
r->name, bytes * 8, nbytes * 8, r->entropy_count);
|
||||
|
||||
bytes = extract_entropy(r->pull, u.tmp, bytes,
|
||||
bytes = extract_entropy(r->pull, tmp, bytes,
|
||||
random_read_wakeup_thresh / 8, rsvd);
|
||||
mix_pool_bytes(r, u.tmp, bytes, NULL);
|
||||
mix_pool_bytes(r, tmp, bytes, NULL);
|
||||
credit_entropy_bits(r, bytes*8);
|
||||
}
|
||||
kmemcheck_mark_initialized(&u.hwrand, sizeof(u.hwrand));
|
||||
for (i = 0; i < 4; i++)
|
||||
if (arch_get_random_long(&u.hwrand[i]))
|
||||
break;
|
||||
if (i)
|
||||
mix_pool_bytes(r, &u.hwrand, sizeof(u.hwrand), 0);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -901,15 +893,19 @@ static size_t account(struct entropy_store *r, size_t nbytes, int min,
|
|||
static void extract_buf(struct entropy_store *r, __u8 *out)
|
||||
{
|
||||
int i;
|
||||
__u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
|
||||
union {
|
||||
__u32 w[5];
|
||||
unsigned long l[LONGS(EXTRACT_SIZE)];
|
||||
} hash;
|
||||
__u32 workspace[SHA_WORKSPACE_WORDS];
|
||||
__u8 extract[64];
|
||||
unsigned long flags;
|
||||
|
||||
/* Generate a hash across the pool, 16 words (512 bits) at a time */
|
||||
sha_init(hash);
|
||||
sha_init(hash.w);
|
||||
spin_lock_irqsave(&r->lock, flags);
|
||||
for (i = 0; i < r->poolinfo->poolwords; i += 16)
|
||||
sha_transform(hash, (__u8 *)(r->pool + i), workspace);
|
||||
sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
|
||||
|
||||
/*
|
||||
* We mix the hash back into the pool to prevent backtracking
|
||||
|
@ -920,14 +916,14 @@ static void extract_buf(struct entropy_store *r, __u8 *out)
|
|||
* brute-forcing the feedback as hard as brute-forcing the
|
||||
* hash.
|
||||
*/
|
||||
__mix_pool_bytes(r, hash, sizeof(hash), extract);
|
||||
__mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
|
||||
spin_unlock_irqrestore(&r->lock, flags);
|
||||
|
||||
/*
|
||||
* To avoid duplicates, we atomically extract a portion of the
|
||||
* pool while mixing, and hash one final time.
|
||||
*/
|
||||
sha_transform(hash, extract, workspace);
|
||||
sha_transform(hash.w, extract, workspace);
|
||||
memset(extract, 0, sizeof(extract));
|
||||
memset(workspace, 0, sizeof(workspace));
|
||||
|
||||
|
@ -936,11 +932,23 @@ static void extract_buf(struct entropy_store *r, __u8 *out)
|
|||
* pattern, we fold it in half. Thus, we always feed back
|
||||
* twice as much data as we output.
|
||||
*/
|
||||
hash[0] ^= hash[3];
|
||||
hash[1] ^= hash[4];
|
||||
hash[2] ^= rol32(hash[2], 16);
|
||||
memcpy(out, hash, EXTRACT_SIZE);
|
||||
memset(hash, 0, sizeof(hash));
|
||||
hash.w[0] ^= hash.w[3];
|
||||
hash.w[1] ^= hash.w[4];
|
||||
hash.w[2] ^= rol32(hash.w[2], 16);
|
||||
|
||||
/*
|
||||
* If we have a architectural hardware random number
|
||||
* generator, mix that in, too.
|
||||
*/
|
||||
for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
|
||||
unsigned long v;
|
||||
if (!arch_get_random_long(&v))
|
||||
break;
|
||||
hash.l[i] ^= v;
|
||||
}
|
||||
|
||||
memcpy(out, &hash, EXTRACT_SIZE);
|
||||
memset(&hash, 0, sizeof(hash));
|
||||
}
|
||||
|
||||
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
|
||||
|
|
Loading…
Reference in a new issue